Clusters & Other Low-Dimensional Structure
10716: Probabilistic Graphical Models

Pradeep Ravikumar (amending notes from Larry
Wasserman)

1 Estimating Low Dimensional Structure

Let Xy,..., X, ~ P. We are interested in extracting “low dimensional structure” in P.
This comprises pretty much of all of what we term as “unsupervised learning” aside from
density/distribution estimation, where we estimate the distribution P itself.

We can think of the structure we are looking for as a function of P. Examples of such
functions include:

= ridges of the density p
= DTM (distance to a measure)

2 The Clustering Problem

Of the various instances of low-dimensional structure, the most popular is clusters of P. It
could be because this has the most applications. Or perhaps because statistically this is the
most feasible.

In a clustering problem we aim to extract partitions of the input space X as informed by P.
This is vague, and indeed, there are many ways to formalize this, and hence many different
clustering methods. But all of them give us a partition of the input space. Many algorithms
in ML work with the empirical distribution P,, over the samples { X} ; and output groups
over these samples rather than a partition over the input space. But here, we are concerned
with the broader estimation task of recovering the target partition of A itself, given P. Note
that classification also aims to find a partition over X, with each element of the partition
corresponding to one of a discrete set of labels, but unlike classification here, the data are
not labeled, and so clustering is an example of unsupervised learning.

We will study the following approaches, each of which corresponds to a different notion of
the target “partition”:



1. k-means
2. Mixture models
3. Density-based Clustering, and the related Hierarchical Clustering

There are other notions such as mode clustering and spectral clustering, but these can also
be looked at as extracting other notions of structure, and representation learning, which we
will study in the sequel.

Example 1 Figures[2( and[21] show some synthetic examples where the clusters are meant
to be intuitively clear. In Figure |2(] there are two blob-like clusters. Identifying clusters like
this is easy. Figure shows four clusters: a blob, two rings and a half ring. Identifying
clusters with unusual shapes like this is not quite as easy. In fact, finding clusters of this
type requires nonparametric methods.

3 k-means (Vector Quantization)

One of the oldest approaches to clustering is to find k representative points, called prototypes
or cluster centers, and then divide the data into groups based on which prototype they are
closest to. For now, we assume that k is given. Later we discuss how to choose k.

Warning! My view is that k is a tuning parameter; it is not the number of clusters. Usually
we want to choose k to be larger than the number of clusters.

Let X1,...,X, ~ P where X; € R%. Let C = {cy,...,c;} where each ¢; € R%. We call C' a
codebook. Let IIo[X] be the projection of X onto C:

e [X] = argmin,c¢ e — X]|*. (1)

Define the empirical clustering risk of a codebook C by

RS R )
BalC) = 2 2 |1X —TelXi["= 3 > i, 1% — el (2)
Let Cp denote all codebooks of length k. The optimal codebook C = {c1,...,c} € C
minimizes R, (C):

C = argmingee, 2,(C). (3)
The empirical risk is an estimate of the population clustering risk defined by
2
R(C) :]EHX—HC[X]H = E min [|X — ¢ (4)
YRS



Figure 1: The Voronoi tesselation formed by 10 cluster centers cy, . .., c1o. The cluster centers
are indicated by dots. The corresponding Voronou cells Ty, ..., Tvg are defined as follows: a
point x is in T if x is closer to c; than c; fori # j.

where X ~ P. The optimal population quantization C* = {cj, ..., c;} € Cx minimizes R(C).
We can think of C' as an estimate of C*. This method is called k-means clustering or vector
quantization.

A codebook C' = {c,...,c,} defines a set of cells known as a Voronoi tesselation. Let

V}:{x: llz — ¢l < ||z —csll, foralls;«éj}. (5)

The set V} is known as a Voronoi cell and consists of all points closer to ¢; than any other
point in the codebook. See Figure [1]

The usual algorithm to minimize R,,(C) and find C is the k-means clustering algorithm—
also known as Lloyd’s algorithm— see Figure[2l The algorithm is an alternating optimization
method applied to the following reformulation of the kmeans clustering objective:
min R,(C) = min — min || X; — ¢;|?
c c
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. Choose k centers ¢y, ..., ¢ as starting values.

[N}

3. For j =1,...,k, let n; denote the number of points in C; and set

W

. Repeat steps 2 and 3 until convergence.
. Output: centers C' = {cy,...,c} and clusters C, ..., Ck.

ot

. Form the clusters C1,...,Cy as follows. Let g = (g1,...,9,) where g; = argmin,||X; — ¢;]|.

Figure 2: The k-means (Lloyd’s) clustering algorithm.

The risk R, (C) has multiple minima. The algorithm will only find a local minimum and the
solution depends on the starting values. A common way to choose the starting values is to
select k data points at random. We will discuss better methods for choosing starting values
in Section 3.2

Example 2 Figure [ shows synthetic data inspired by the Mickey Mouse example from
http: //en. wikipedia. org/wiki/K-means_ clustering. The data in the top left plot
form three clearly defined clusters. k-means easily finds in the clusters (top right). The
bottom shows the same example except that we now make the groups very unbalanced. The
lack of balance causes k-means to produce a poor clustering. But note that, if we “overfit
then merge” then there is no problem.

Example 3 The top left plot of Figure[] shows a dataset with two ring-shaped clusters. The
remaining plots show the clusters obtained using k-means clustering with k = 2,3,4. Clearly,
k-means does not capture the right structure in this case unless we overfit then merge.

3.1 Theoretical Properties

A theoretical property of the k-means method is given in the following result. Recall that
C* ={c1,...,c} minimizes R(C) = E||X — Ho[X] ||

Theorem 4 Suppose that P(||X;||> < B) =1 for some B < co. Then

k(d+ 1)logn
n

E(R(C)) — R(C*) < ¢


http://en.wikipedia.org/wiki/K-means_clustering

Figure 3: Synthetic data inspired by the “Mickey Mouse” example from wikipedia. Top

left: three balanced clusters. Top right: result from running k means with k = 3. Bottom

left: three unbalanced clusters. Bottom right: result from running k means with k = 3

on the unbalanced clusters. k-means does not work well here because the clusters are very
unbalanced.
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Figure 4: Top left: a dataset with two ring-shaped clusters. Top right: k-means with k = 2.
Bottom left: k-means with k& = 3. Bottom right: k-means with k& = 4.



for some ¢ > 0.

Warning! The fact that R(@) is close to R(C,) does not imply that C is close to C,.

This proof is due to Linder, Lugosi and Zeger (1994), and follows along standard VC theory
techniques.

~

R(C) = Ru(C) + Ro(C) = R(C*) < R(C) — Ry(C) +
R,(C)]. For each C define a function fc by fo(x) =
< 4B for all C. Now, using the fact that E(Y")

Proof. Note that R(C) — R(C*) =

R, (C*) = R(C*) < 2supgee, |R(C)
||z — TI¢[x]||?. Note that sup, |fc(
J, o P(Y > t)dt whenever Y > 0, we

_>|
hav

2 sup |R(C) — R,(C)| = 2sup %Zdei)—E(fc(X))‘

CeCy,
:%?/ GZN P(fo(Z) > Om

=1

< 8Bsup —ZI fo(X P(fo(Z) > u)

Cu

= 8Bsup |- Z I(X; € A) — P(A)

where A varies over all sets A of the form {fco(xz) > u}. The shattering number of A is
s(A,n) < nF@+D This follows since each set {fo(z) > u} is a union of the complements of

k spheres. By the VC Theorem,
ZI (X; € A) —P(4)| > )

o€
8B

n

1
= P (sup
A =1

P(R(C) — R(C*) > ¢) < <8B sup |—
- > I(X; € A) —P(A)
< 4(2n)k(d+1)e—n€2/(51232).

Now conclude that E(R(C) — R(C*)) < C\/k(d + 1),/ O

A sharper result, together with a lower bound is the following.

Theorem 5 (Bartlett, Linder and Lugosi 1997) Suppose that P (|| X||? <1) = 1 and
that n > k%, \/dk'=2/dlogn > 15, kd > 8, n > 8d and n/logn > dk'*?/?. Then,

. 1-2/d ] 1
Emww—Rwﬂgww@L7gEﬁ:o< %;yj.
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Also, if k > 3, n > 16k/(20%(—2)) then, for any method C that selects k centers, there exists

P such that
N Ll-4/d
E(R(C)) — R(C™) > ¢

n
where co = ®*(—2)2712/\/6 and ® is the standard Gaussian distribution function.

See Bartlett, Linder and Lugosi (1997) for a proof. It follows that (global optimum) k-

means is risk consistent in the sense that R(a) — R(C*) 20, as long as k = o(n/(dlogn)).
Moreover, the lower bound implies that we cannot find any other method that improves
much over the k-means approach, at least with respect to this loss function.

3.2 Starting Values for k-means

Since R,(C) has multiple minima, Lloyd’s algorithm is not guaranteed to minimize R,(C).
The clustering one obtains will depend on the starting values. The simplest way to choose
starting values is to use k£ randomly chosen points. But this often leads to poor clustering.

Example 6 Figure[J shows data from a distribution with nine clusters. The raw data are in
the top left plot. The top right plot shows the results of running the k-means algorithm with
k =9 using random points as starting values. The clustering is quite poor. This is because
we have not found the global minimum of the empirical risk function. The two bottom plots
show better methods for selecting starting values that we will describe below.

Hierarchical Starting Values. Tseng and Wong (2005) suggest the following method for
choosing staring values for k-means. Run single-linkage hierarchical clustering (which we
describe in Section @ to obtains p x k clusters. They suggest using p = 3 as a default. Now
take the centers of the k-largest of the p x k clusters and use these as starting values. See
the bottom left plot in Figure [5

k-means™. Arthur and Vassilvitskii (2007) invented an algorithm called k-means™" to get
good starting values. They show that if the starting points are chosen in a certain way, then
we can get close to the minimum with high probability. In fact the starting points themselves
— which we call seed points — are already close to minimizing R, (C). The algorithm is
described in Figure[6] See the bottom right plot in Figure [] for an example.

Theorem 7 (Arthur and Vassilvitskii, 2007). Let C = {c1,...,cx} be the seed points from
the k-meanst™ algorithm. Then,

E(R,(C)) < 8(logk + 2) <mcip Rn(0)> (7)

7



Figure 5: An example with 9 clusters. Top left: data. Top right: k-means with random
starting values. Bottom left: k-means using starting values from hierarchical clustering.
Bottom right: the k-means™™ algorithm.

1. Input: Data X = {Xj,..., X, } and an integer k.
2. Choose ¢; randomly from X = {X;,..., X,,}. Let C = {c1}.
3. For j=2,... k:

(a) Compute D(X;) = min.ec || X; — ¢|| for each X;.
(b) Choose a point X; from X with probability

D*(X;)
Di= S g vy
Zj:l DZ(XJ')
(c) Call this randomly chosen point ¢;. Update C' +— C' U {¢;}.

4. Run Lloyd’s algorithm using the seed points C' = {¢y, ..., ¢} as starting points and output
the result.

Figure 6: The k-means™™ algorithm.




where the expectation is over the randomness of the algorithm.

See Arthur and Vassilvitskii (2007) for a proof. They also show that the Euclidean distance
can be replaced with the £, norm in the algorithm. The result is the same except that the
constant 8 gets replaced by 2P*2. It is possible to improve the k-means™™ algorithm.

3.3 Choosing k

In k-means clustering we must choose a value for k. This is still an active area of research
and there are no definitive answers. The problem is much different than choosing a tuning
parameter in regression or classification because there is no observable label to predict.
Indeed, for k-means clustering, both the true risk R and estimated risk R, decrease to 0
as k increases. This is in contrast to classification where the true risk gets large for high
complexity classifiers even though the empirical risk decreases. Hence, minimizing risk does
not make sense. There are so many proposals for choosing tuning parameters in clustering
that we cannot possibly consider all of them here. Instead, we highlight a few methods.

3.3.1 Elbow Methods

One approach is to look for sharp drops in estimated risk. Let Ry denote the minimal risk
among all possible clusterings and let Ry be the empirical risk. It is easy to see that Ry is a
nonincreasing function of k£ so minimizing Ry does not make sense. Instead, we can look for
the first k such that the improvement Rj — Ryyy is small, sometimes called an elbow. This
can be done informally by looking at a plot of Rx. We can try to make this more formal by
fixing a small number a > 0 and defining

(8)

ka:min{k: Mga}

o2

where 02 = E(||X — /%) and 4 = E(X). An estimate of k, is

/k\;a:min{k: Rk_,\—fkﬂgoz} (9)

g

where 2 =n~! Z?ﬂ | X — 7||2

Unfortunately, the elbow method often does not work well in practice because there may not
be a well-defined elbow.



3.3.2 Hypothesis Testing

A more formal way to choose k is by way of hypothesis testing. For each k we test
Hj. : the number of clusters is &k  versus Hjy.; : the number of clusters is > k.

We begin & = 1. If the test rejects, then we repeat the test for k = 2. We continue until the
first k that is not rejected. In summary, k is the first k for which £ is not rejected.

A nice approach is the one in Liu, Hayes, Andrew Nobel and Marron (2012). (JASA, 2102,
1281-1293). They simply test if the data are multivariate Normal. If this rejects, they split
into two clusters and repeat. The have an R package sigclust for this. A similar procedure,
called PG means is described in Feng and Hammerly (2007).

Example 8 Figure [7 shows a two-dimensional example. The top left plot shows a single
cluster. The p-values are shown as a function of k in the top right plot. The first k for which
the p-value is larger than o = .05 is k = 1. The bottom left plot shows a dataset with three
clusters. The p-values are shown as a function of k in the bottom right plot. The first k for
which the p-value is larger than o = .05 is k = 3.

3.3.3 Stability

Another class of methods are based on the idea of stability. The idea is to find the largest
number of clusters than can be estimated with low variability.

We start with a high level description of the idea and then we will discuss the details. Suppose
that Y = (Y1,...,Y,) and Z = (Z,...,Z,) are two independent samples from P. Let Ay
be any clustering algorithm that takes the data as input and outputs k clusters. Define the
stability

Q(k) = E [s(A(Y), Ax(2))] (10)
where s(-,-) is some measure of the similarity of two clusterings. To estimate ) we use
random subsampling. Suppose that the original data are X = (X3,..., X5,). Randomly
split the data into two equal sets Y and Z of size n. This process if repeated N times.
Denote the random split obtained in the j* trial by Y7, Z7. Define

k) =%g (A7), A(27)]

For large NV, Q(l{) will approximate (k). There are two ways to choose k. We can choose a
small & with high stability. Alternatively, we can choose k to maximize (k) if we somehow
standardize Q(k).

10
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Figure 7: Top left: a single cluster. Top right: p-values for various k. The first £ for which
the p-value is larger than .05 is £ = 1. Bottom left: three clusters. Bottom right: p-values
for various k. The first k for which the p-value is larger than .05 is k£ = 3.
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Now we discuss the details. First, we need to define the similarity between two clusterings.
We face two problems. The first is that the cluster labels are arbitrary: the clustering
(1,1,1,2,2,2) is the same as the clustering (4,4,4,8,8,8). Second, the clusterings Ax(Y)
and Ay (Z) refer to different data sets.

The first problem is easily solved. We can insist the labels take values in {1, ..., k} and then
we can maximize the similarity over all permutations of the labels. Another way to solve
the problem is the following. Any clustering method can be regarded as a function 1 that
takes two points x and y and outputs a 0 or a 1. The interpretation is that ¢¥(z,y) =1 if =
and y are in the same cluster while ¥(z,y) = 0 if x and y are in a different cluster. Using
this representation of the clustering renders the particular choice of labels moot. This is the
approach we will take.

Let ¢y and ¥z be clusterings derived from Y and Z. Let us think of Y as training data and
Z as test data. Now vy returns a clustering for Y and 1z returns a clustering for Z. We’'d
like to somehow apply ¢y to Z. Then we would have two clusterings for Z which we could
then compare. There is no unique way to do this. A simple and fairly general approach is
to define

Uy.z(Zj, Zi) = Yy (Y], YY) (11)

where Y] is the closest point in Y to Z; and Y} is the closest point in Y to Z. (More
generally, we can use Y and the cluster assignment to Y as input to a classifier; see Lange
et al 2004). The notation vy 7 indicates that ¢ is trained on Y but returns a clustering for
Z. Define

s(Yy,z,0z7) = Zl Uy, z(Zs, Zy) = Vy(Zs, Zy)) -
(5)*
Thus s is the fraction of pairs of points in Z on which the two clusterings vy, z and 1 agree.
Finally, we define

N
Z (Vyi,zi, ¥zi).

Now we need to decide how to use Q(k) to choose k. The interpretation of Q(k) requires
some care. First, note that 0 < Q(k) < 1 and Q(1) = Q(n) = 1. So simply maximizing Q(k)
does not make sense. One possibility is to look for a small & larger than & > 1 with a high
stability. Alternatively, we could try to normalize (k). Lange et al (2004) suggest dividing
by the value of Q(k) obtained when cluster labels are assigned randomly. The theoretical
justification for this choice is not clear. Tibshirani, Walther, Botstein and Brown (2001)
suggest that we should compute the stability separately over each cluster and then take the
minimum. However, this can sometimes lead to very low stability for all £ > 1.

Many authors have considered schemes of this form, including Breckenridge (1989), Lange,
Roth, Braun and Buhmann (2004), Ben-Hur, Elisseeff and Guyron (2002), Dudoit and

12
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Figure 8: Examples from Ben-David, von Luxburg and P&l (2006). The first example (top
left plot) shows a case where we fit k = 2 clusters. Stability analysis will correctly show that
k is too small. The top right plot has k£ = 3. Stability analysis will correctly show that k
is too large. The bottom two plots show potential failures of stability analysis. Both cases
are stable but k£ = 2 is too small in the bottom left plot and k& = 3 is too big in the bottom
right plot.

Fridlyand (2002), Levine and Domany (2001), Buhmann (2010), Tibshirani, Walther, Bot-
stein and Brown (2001) and Rinaldo and Wasserman (2009).

It is important to interpret stability correctly. These methods choose the largest number
of stable clusters. That does not mean they choose “the true k.” Indeed, Ben-David, von
Luxburg and P4l (2006), Ben-David and von Luxburg Tiibingen (2008) and Rakhlin (2007)
have shown that trying to use stability to choose “the true k” — even if that is well-defined
— will not work. To explain this point further, we consider some examples from Ben-David,
von Luxburg and P&l (2006). Figure |8 shows the four examples. The first example (top left
plot) shows a case where we fit k& = 2 clusters. Here, stability analysis will correctly show
that k is too small. The top right plot has £ = 3. Stability analysis will correctly show
that k is too large. The bottom two plots show potential failures of stability analysis. Both
cases are stable but £ = 2 is too small in the bottom left plot and k£ = 3 is too big in the
bottom right plot. Stability is subtle. There is much potential for this approach but more
work needs to be done.
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Figure 9: (From Wikipedia) A plot of the silhouette scores of all the data points in each of
three clusters. Note that some scores are negative, indicating lack of fit with that cluster.



3.3.4 Silhouette Score

A practically useful approach is based on the silhouette scores, and silhoutte graphs (Rousseeuw
1987).

For each point X; in any cluster C}, denote its intra-cluster fit as:

1
'i:— i sl
e = o= > N =X
s€Cj,si

and denote its extra-cluster fit with any of the other clusters as:

) 1
XC; = mlnm—_l Z ||XZ — XSH
J

773 SGCj/
We can then define the silhouette value for X; as:

XCi—iCi .
= ———, if || > 1
% max{xc;,ic;}’ i1l ’

where C; is the cluster to which X; belongs to. Denote s; = 0 if |C}| = 1.

From the definition, it can be seen that —1 < 's; < 1. If X; is much much closer to points
in its own clusters as compared to the other clusters, then s; will be closer to one. On the
other hand, when it is closer to points in any other cluster on average compared to points
in its own cluster, then s; will be negative. The overall silhouette score of the clustering can

then be written as: .

s(C) = % Z Si.

i=1

But more information can be gleaned by looking at the overall silhoutte graph as in Figure
O Visual inspection of this silhouette graph might provide more insight into the goodness
of a clustering compared to the single numeric silhoutte score, for instance, by indicating if
there are many points with poor fit to their clusters.

The k-means algorithm can be generalized in many ways. For example, if we replace the Lo
norm with the L; norm we get k-medians clustering. We will not discuss these extensions
here.

3.4 Overfitting and Merging

The best way to use k-means clustering is to “overfit then merge.” Don’t think of the £ in
k-means as the number of clusters. Think of it as a tuning parameter. k-means clustering
works much better if we:

15



1. Choose k large
2. merge close clusters

This eliminates the sensitivity to the choice of k£ and it allows k-means to fit clusters with
arbitrary shapes. For a theoretical underpinning of this approach, see Aragam, Chen, Xing,
Ravikumar, Annals of Statistics, 2019 (more on this in the next section).

3.5 k-Means: Population Perspective

If we think about what K-means does at the population or distribution level, it could be
viewed as quantization or discretization: obtaining k centroids around each of which there
is a lot of probability mass, hopefully tightly concentrated. A density model with a similar
perspective is a Gaussian mixture model, where the mixture component means could be
viewed as centroids around which the density locally concentrates. Indeed, k-means could
be derived as an asymptotic limit (with variance going to zero) of an algorithm to estimate
Gaussian mixture models. We will thus study mixture models next.

4 Mixture Models

Simple cluster structure can be discovered using mixture models. We start with a simple
example. We flip a coin with success probability 7. If heads, we draw X from a density
p1(z). If tails, we draw X from a density po(z). Then the density of X is

p(x) = mpi(x) + (1 = m)po(),

which is called a mixture of two densities p; and py. Figure shows a mixture of two
Gaussians distribution.

Let Z ~ Bernoulli(7) be the unobserved coin flip. Then we can also write p(x) as

p(x) = plx,2) =Y ple|2)p(z) (12)

z=0,1 z=0,1

where p(z|Z = 0) := po(z), p(z|Z = 1) := pi(z) and p(z) = 7°(1 — 7)'7*. Equation is
called the hidden variable representation. A more formal definition of finite mixture models
is as follows.

[Finite Mixture Models] Let {py(z) : 6 € ©} be a parametric class of densities. Define the
mixture model

polz) = Y mipa,(0),
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Figure 10: A mixture of two Gaussians, p(z) = %qﬁ(az; —1.25,1) + %qﬁ(a:; 2.95,1).
where the mixing coefficients 7; > 0, Z]K:_Ol n; =1 and ¢ = (m,...,Tk-1,00,...,0k_1) are
the unknown parameters. We call py,, ..., ps,_, the component densities.

Generally, even if {py(x) : 6 € O} is an exponential family model, the mixture may no
longer be an exponential family.

4.1 Mixture of Gaussians

Let ¢(x; g, 0]2-) be the probability density function of a univariate Gaussian distribution with

mean y; and variance o?. A typical finite mixture model is the mixture of Gaussians. In

i
one dimension, we have
K-1
2
polx) =D md(x; py, o),
5=0

which has 3K — 1 unknown parameters, due to the restriction Zf;ol ;= 1.

A mixture of d-dimensional multivariate Gaussians is

K-1

T 1 _
p(x) = Z Wexp {—5(35 - uj)TEj 1(51? - Uj)} :
=0 !
There are in total
d(d+1) Kd(d+ 3)
K —_ K—-1 =~ + K-1
( 5 + g_, + L/J 5 +

# of parameters in u; of mixing coefficients
# of parameters in 3; 7 &

parameters in the mixture of K multivariate Gausssians.
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4.2 Maximum Likelihood Estimation

A finite mixture model py(z) has parameters ¢ = (m, ..., Tx_1,00,...,0x_1). The likelihood
of ¢ based on the observations X,..., X, is

n

L(y) = iljpw(Xi) = E(KEOI Py (Xz‘)>

and, as usual, the maximum likelihood estimator is the value @Z that maximizes £(1)). Usually,
the likelihood is multimodal and one seeks a local maximum instead if a global maximum.

For fixed 0y, . .., 0k _1, the log-likelihood is often a concave function of the mixing parameters
m;. However, for fixed m, ..., mx_1, the log-likelihood is not generally concave with respect
to 90, c. ,6[(,1.

One way to find Q//J\ is to apply your favorite optimizer directly to the log-likelihood.

() = 2:1: log (KZ:_; Do (Xi)> :

However, £(1)) is not jointly convex with respect to 1. It is not clear which algorithm is the
best to optimize such a nonconvex objective function.

A convenient and commonly used algorithm for finding the maximum likelihood estimates of
a mixture model (or the more general latent variable models) is the expectation-mazimization
(EM) algorithm. To discuss this algorithm, we will re-write the statistical model for a mixture
of two Gaussians in terms of latent variables as

Z ~ Bernouli(r), (13)

Define

p(x|Z =1) :=pu, s (r) and p(z|Z =0) = p,, 5, ().

Let Xi,..., X, be the observed data and let Z,..., 7, be the “missing data”. There are
two types of unknowns: (i) the parameter vector v = (m, ug, 1)7, and the latent samples
Z1,...,Zy,. The latent variables Zi,...,Z, can be used for clustering, while ) can be
used for evaluating the likelihood. The EM algorithm is then similar to a block coordinate
ascent procedure, which aims to maximize the log-likelihod function by alternatively inferring
the information of Z,..., 7, (Expectation-step) and estimating the parameter vector 1
(Maximization-step).

Let us consider the simpler setting where ¥y = > = I.
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The Expectation-Maximization Algorithm for the Mixture of Two Gaussians

Initialize ¢ = (7, M50)7 ué@)T_
Fort=1,2,....{
e Expectation-Step (E-Step): for i = 1,...,n, calculate

7§t+1) = IEDq/;(f) (Zz - 1‘X17 cee 7Xn)

_ (Xi—ui‘b?]

7 exp [ .

(B () :
7 exp [_M] + (1 _ 71-(t)) eXp[—M]

e Maximization-Step (M-Step): Given A

1 n
(t+1) (t+1),
T — — E .
n 4 Y ;

no () y no] D)y
M§t+1) s Zz:l Y ? and lj/((]tJrl) . 2121( i ) ?

n 1 n 1
Z’i:l %’(H ) Zi:l(l - %(t+ ))

, we update the parameter 1 by

until convergence.

It can be seen that this is a “softer” version of k-means, where ~; is a softer cluster assignment
of each point to the k£ centroids, while the corresponding centroids also average the softer
cluster assignments.

While the algorithm can be slow to converge, its simplicity, flexibility, and the fact that
it doesn’t require a choice of step size make it a convenient choice for many estimation
problems. Nonetheless, the EM algorithm is only one of many numerical procedures for
obtaining a (local) maximum likelihood estimate of the latent variable models. In some
cases procedures such as Newton’s method or conjugate gradient may be more effective, and
should be considered as alternatives to EM.

In principle, there are polynomial time algorithms for finding good estimates of ¢/ based on
spectral methods and the method of moments. It appears that, at least so far, these methods
are not, yet practical enough to be used in routine data analysis.

Example. The data are measurements on duration and waiting time of eruptions of the
Old Faithful geyser from August 1 to August 15, 1985. There are two variables with 299 ob-
servations. The first variable ,“Duration”, represents the numeric eruption time in minutes.
The second variable, “waiting”, represents the waiting time to next eruption. This data is
believed to have two modes. We fit a mixture of two Gaussians using EM algorithm. To
illustrate the EM step, we purposely choose a bad starting point. The EM algorithm quickly
converges in six steps. Figure [11]illustrates the fitted densities for all the six steps. We see
that even though the starting density is unimodal, it quickly becomes bimodal.
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Figure 11: Fitting a mixture of two Gaussians on the Old Faithful Geyser data. The initial
values are mp = m = 0.5. up = (4,70)7, u; = (3,60)7, ) = 3y = (?'87(7)). We see that
even though the starting density is not bimodal, the EM algorithm converges quickly to a

bimodal density.

4.3 Nonparametric Mixture Models

Viewed from an information-theoretic lens, in clustering, we are asking: when can we recover
the unseen cluster assignment Y given just the input X7 Without much loss of generality,
this can be cast as a non-parametric mixture model estimation problem. To see this, suppose
we are given some random vector X, and denote the latent clustering assignment variable as
Y, that say takes k values. It can then be seen that Y specifies a mixture model: P(X) =
Z?:l P(Y = j) P(X|Y = j), so if we are able to estimate the mixture components, we would
be able to recover the clustering corresponding to Y. This is an identifiability question: given
the mixture components { P(X|Y)} (and mixture weights) there is obviously a unique input
distribution P(X). When is there a unique set of mixture components (and is there a
practical recover these) given just P(X)? Obviously, without any information about the
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Figure 12: A distribution that is identifiable as a mixture of Gaussians, but not identifiable
as a mixture of two sub-Gaussians.

mixture components, the answer is no, since there are many possible mixture models that
could have given rise to P(X).

With parametric mixture models, we are given the additional side information that the
mixture component distributions lie in a specific parametric family.Classical results on iden-
tifiability of mixture models (Yakowitz and Spragins, 1968; Teicher, 1963) state that so long
as the specific family of distributions is such that the CDFs of the individual distributions
are linearly independent over R, the corresponding mixture models are identifiable. This
holds true for typical parametric models (e.g. Gaussian mixture models), so that the corre-
sponding mixture model is indeed identifiable: just given P(X), we can in principle recover
the mixture components. But the moment we go to non-parametric models, identifiability
typicaly fails to hold, even for very simple non-parametric classes.

For instance, consider the mixture of three Gaussians in Figure [I2] While we can write the
distribution uniquely as a mixture of three Gaussians, we can also write it as three different
equally valid representations as a mixture of two sub-Gaussians. Thus, the distribution is
not identifiable with respect to a mixture model over sub-Gaussian distributions. Note that
even if we assume the number of components are known , and the component means are
well-separated, this would still remain non-identifiable: consider two components, and where
the third component is arbitrarily far to the right.

(Aragam, Chen, Xing, Ravikumar, Annals of Statistics 2020) provide conditions under which
non-parametric mixture models can indeed be identifiable. Loosely: Gaussian mixture mod-
els are identifiable, and moreover are dense in the space of all distributions. Thus, each
non-parametric mixture component can be approximated well via a mixture of Gaussians,
and consequently, the overall distribution as a mixture of Gaussians in turn. Thus, one
can project any non-parametric distribution onto a mixture of a large number of Gaussians.
Then so long as one could cluster these Gaussian components, then one could identify the
individual non-parametric mixture components with each cluster of Gaussian components.
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(a) Original mixture I' = m(A) = 37, Mk (b) Approximate mixture of Gaussians Q° =
m(Q7) =32, wigi-
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(¢) Components g; grouped by clustering. (d) Final approximate nonparametric mixing mea-
sure Q(a).

Figure 13: Estimating Non-parametric Mixture Models via Overfitted Gaussian Mixtures
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Figure 14: (Top) Density plot of the original mixture density. (Left) Contour plot of overfit-
ted Gaussian mixture approximation, centers marked with small circles. (Middle) Original
data color coded by the approximate Bayes optimal partition. (Right) Estimated Bayes op-
timal partition, visualized by color-coding the input space by estimated cluster membership.

Their paper essentially provided the regularity conditions under which the above very natural
procedure is guaranteed to identify the non-parametric mixture components.

The overall algorithm, as shown in Figure then is:

1. Estimate an overfitted mixture of Gaussians to the given data

2. Cluster the Gaussian densities with respect to say the Hellinger metric

3. Identify each cluster with a non-parametric mixture component
Figure [14] provides an example of a difficult clustering example, where the above approach
works well.

Given the connection between Gaussian mixture models and K-means, this also suggestive
of a theoretical underpinning for the overfitted Kmeans strategy mentioned in the previous
section: fit a large number of clusters via K-means, and then merge the (sub)-clusters.
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4.4 The Twilight Zone

Mixtures models are conceptually simple but they have some strange properties.
Computation. Finding the mle is NP-hard.

Infinite Likelihood. Let py(x) = Zle m¢(x; puj,07), be a mixture of Gaussians. Let
L(1p) = [T}, py(Xi) be the likelihood function based on a sample of size n. Then sup,, £(¢) =
co. To see this, set p; = X for some j. Then ¢(Xy; py,07) = (v2mo;)~t. Now let a; — 0.
We have ¢(Xy; ,uj,a]z) — 00. Therefore, the log-likelihood is unbounded. This behavior
is very different from a typical parametric model. Fortunately, if we define the maximum
likelihood estimate to be a mode of £(1)) in the interior of the parameter space, we get a
well-defined estimator.

Multimodality of the Density. Consider the mixture of two Gaussians

p(x) = (1 — m)d(x; p1, 0%) + 7 (x; po, o).

You would expect p(z) to be multimodal but this is not necessarily true. The density p(x)
is unimodal when |p; — p2| < 20 and bimodal when | — pe| > 20. One might expect that
the maximum number of modes of a mixture of £ Gaussians would be k. However, there are
examples where a mixture of k& Gaussians has more than k£ modes. In fact, Edelsbrunner,
Fasy and Rote (2012) show that the relationship between the number of modes of p and the
number of components in the mixture is very complex.

Nonintinuitive Group Membership. Our motivation for studying mixture modes in
this chapter was clustering. But one should be aware that mixtures can exhibit unexpected
behavior with respect to clustering. Let

p(x) = (1 —7)¢(x; p1, 07) + (3 pia, 03).

Suppose that p; < ps. We can classify an observation as being from cluster 1 or cluster 2
by computing the probability of being from the first or second component, denoted Z = 0
and Z = 1. We get

(1 —m)o(x; p1, 07)
(1 = m)o(; pa, 07) + wh(; po, 03)

Define Z(z) = 0 if P(Z = 0|X = ) > 1/2 and Z(z) = 1 otherwise. When oy is much
larger than o9, Figure [15| shows Z(z). We end up classifying all the observations with large
X, to the leftmost component. Technically this is correct, yet it seems to be an unintended
consequence of the model and does not capture what we mean by a cluster.

P(Z=0|X =2x) =

Improper Posteriors. Bayesian inference is based on the posterior distribution p(¢| Xy, ..., X,) x
L(Y)m(v). Here, m(1)) is the prior distribution that represents our knowledge of 1 before
seeing the data. Often, the prior is improper, meaning that it does not have a finite integral.
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Figure 15: Mixtures are used as a parametric method for finding clusters. Observations with
x =0 and x = 6 are both classified into the first component.

For example, suppose that Xi,..., X, ~ N(u,1). It is common to use an improper prior
m(p) = 1. This is improper because

[ b

Nevertheless, the posterior p(u|D,,) o< L(p)m(u) is a proper distribution, where £(u) is the
data likelihood of y. In fact, the posterior for x is N(X,1/4/n) where 7 is the sample mean.
The posterior inferences in this case coincide exactly with the frequentist inferences. In many
parametric models, the posterior inferences are well defined even if the prior is improper and
usually they approximate the frequentist inferences. Not so with mixtures. Let

Pl ) = 56(:0,1) + So(w: . 1) (15)

If 7w (1) is improper then so is the posterior. Moreover, Wasserman (2000) shows that the only
priors that yield posteriors in close agreement to frequentist methods are data-dependent
priors.

Nonidentifability. A model {py(z): 6 € O} is identifiable if
01 # 0, implies Py, # Py,

where Py is the distribution corresponding to the density py. Mixture models are noniden-
tifiable in two different ways. First, there is nonidentifiability due to permutation of labels.
For example, consider a mixture of two univariate Gaussians,

Py () = 0.3¢(x;0,1) +0.7¢(x;2,1)
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and
Py, () = 0.7¢(2;2,1) + 0.3¢p(2;0,1),

then py, (z) = py,(z) even though ¢ = (0.3,0.7,0,2,1)T # (0.7,0.3,2,0,1)" = ¢». This is
not a serious problem although it does contribute to the multimodality of the likelihood.

A more serious problem is local nonidentifiability. Suppose that

p(s 7, s pro) = (1 —m)p(s pn, 1) + (5 2, 1), (16)

When 1y = s = p, we see that p(x; m, 1, o) = ¢(x; u). The parameter 7 has disappeared.
Similarly, when m = 1, the parameter p; disappears. This means that there are subspaces of
the parameter space where the family is not identifiable. This local nonidentifiability causes
many of the usual theoretical properties— such as asymptotic Normality of the maximum
likelihood estimator and the limiting x? behavior of the likelihood ratio test— to break
down. For the model , there is no simple theory to describe the distribution of the
likelihood ratio test for Hy : gy = po versus Hy : py; # po. The best available theory is
very complicated. However, some progress has been made lately using ideas from algebraic
geometry (Yamazaki and Watanabe 2003, Watanabe 2010).

The lack of local identifiabilty causes other problems too. For example, we usually have that
the Fisher information is non-zero and that 6 — § = Op(n~Y/2) where @ is the maximum
likelihood estimator. Mixture models are, in general, irregular: they do not satisfy the usual
regularity conditions that make parametric models so easy to deal with. Here is an example
from Chen (1995).

Consider a univariate mixture of two Gaussians distribution:
2 1
pola) = 36(2; =0, 1) + S (2;26, 1).

Then it is easy to check that I(0) = 0 where I(f) is the Fisher information. Moreover, no
estimator of @ can converge faster than n~'/* if the number of components is not known
in advance. Compare this to a Normal family ¢(z;6,1) where the Fisher information is
I(f) = n and the maximum likelihood estimator converges at rate n~'/2. Moreover, the
distribution of the mle is not even well understood for mixture models. The same applies to
the likelihood ratio test.

Mixture Models: Use With Caution. Mixture models can have very unusual and
unexpected behavior. This does not mean that we should not use mixture modes. Indeed,
mixture models are extremely useful. However, when you use mixture models, it is important
to keep in mind that many of the properties of models that we often take for granted, may
not hold.

If you are going to use mixture models, it is worthwhile remembering the words of Rod
Serling:
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There is a fifth dimension beyond that which is known to man. It is a dimension
as vast as space and as timeless as infinity. It is the middle ground between light
and shadow, between science and superstition, and it lies between the pit of man’s
fears and the summit of his knowledge. This is the dimension of imagination. It
is an area which we call the Twilight Zone.

5 Density-Based Clustering

Let p be the density if the data. Let L, = {z : py(z) > t} denote an upper level set of p.
Suppose that L; can be decomposed into finitely many disjoint sets: L; = Ci - - J Ck,.
We call C; = {CY,...,Cy,} the level set clusters at level t.

Let C = J,»oC:. The clusters in C form a tree: if A, B € C, the either (i) A C Bor (ii))B C A
or (iii) AN B = (). We call C the level set cluster tree.

The level sets can be estimated in the obvious way: L, = {z : pp(z) > t}. How do we
decompose L; into its connected components? This can be done as follows. For each t let

Now construct a graph G; where each X; € &, is a vertex and there is an edge between X,
and X, if and only if ||X; — X,|| < € where ¢ > 0 is a tuning parameter. Bobrowski et al
(2014) show that we can take e = h. G, is a called a Rips graphs. The clusters at level ¢ are
estimated by taking the connected components of the graph G;. In summary:

1. Compute py,.
2. For each t, let X, = {X; : pn(X;) > t}.
3. Form a graph G, for the points in X; by connecting X; and X; if ||.X; — X;|| < h.
4. The clusters at level t are the connected components of G;.
A Python package, called DeBaCl, written by Brian Kent, can be found at

http://www.brianpkent.com/projects.html.

Fabrizio Lecci has written an R implementation, include in his R package: TDA (topological
data analysis). You can get it at:

http://cran.r-project.org/web/packages/TDA/index.html

Two examples are shown in Figures [I6] and [17]
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Figure 17: DeBaClR in three dimensions.

28



5.1 Theory

How well does this work? Define the Hausdorff distance between two sets by
H(U,V) :inf{e: UCV@&e and V C U@e}

where
Vde= U B(z,€)

zeV

and B(z, ) denotes a ball of radius € centered at 2. We would like to say that L, and L, are
close. In general this is not true. Sometimes L; and L;,; are drastically different even for
small §. (Think of the case where a mode has height ¢.) But we can estimate stable level
sets. Let us say that L, is stable if there exists a > 0 and C' > 0 such that, for all § < a,

H(Lt—57 Lt+6) S C(S
Theorem 9 Suppose that L, is stable. Then H(Ly, L) = Op(y/log n/(nh?)).

Proof. Let r, = /logn/(nh?)). We need to show two things: (i) for every x € L; there
exists y € Ly such that ||z — y|| = Op(r,) and (ii) for every = € L, there exists y € L; such
that ||z — y|| = Op(r,). First, we note that, by earlier results, ||pn — pulloc = Op(ryn). To
show (i), suppose that = € L;. By the stability assumption, there exists y € L;,,, such that
|z = y|| < Cry. Then pu(y) > t + r, which implies that p,(y) > ¢ and so y € L,. To show
(ii), let 2 € L, so that py(z) > t. Thus py(z) > t — r,. By stability, there is a y € L, such
that ||z —y|| < Cr,. O

5.2 Persistence

Consider a smooth density p with M = sup, p(z) < oo. The t-level set clusters are the
connected components of the set L, = {x : p(x) > t}. Suppose we find the upper level
sets Ly = {z : p(x) > t} as we vary t from M to 0. Persistent homology measures how
the topology of L; varies as we decrease t. In our case, we are only interested in the modes,
which correspond to the zeroth order homology. (Higher order homology refers to holes,
tunnels etc.) The idea of using persistence to study clustering was introduced by Chazal,
Guibas, Oudot and Skraba (2013).

Imagine setting t = M and then gradually decreasing t. Whenever we hit a mode, a new
level set cluster is born. As we decrease t further, some clusters may merge and we say that
one of the clusters (the one born most recently) has died. See Figure [18]
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Figure 18: Starting at the top of the density and moving down, each mode has a birth time
b and a death time d. The persistence diagram (right) plots the points (dy,b1),. .., (dy, by).
Modes with a long lifetime are far from the diagonal.

In summary, each mode m; has a death time and a birth time denoted by (d;, b;). (Note that
the birth time is larger than the death time because we start at high density and move to
lower density.) The modes can be summarized with a persistence diagram where we plot the
points (di,b1),. .., (dk, by) in the plane. See Figure[18] Points near the diagonal correspond
to modes with short lifetimes. We might kill modes with lifetimes smaller than the noise
level, as captured by the deviation of the density estimate, and the true density. We measure
this via the bootstrap quantile ¢, defined by

B
. 1 ~b o
ea:mf{z: E;ﬂ[(th —thoo>z) §04}. (17)

Here, p;® is the density estimator based on the b™ bootstrap sample. This corresponds
to killing a mode if it is in a 2¢, band around the diagonal. See Fasy, Lecci, Rinaldo,
Wasserman, Balakrishnan and Singh (2014). Note that the starting and ending points of the
vertical bars on the level set tree are precisely the coordinates of the persistence diagram.
(A more precise bootstrap approach was introduced in Chazal, Fasy, Lecci, Michel, Rinaldo
and Wasserman (2014).)

6 Hierarchical Clustering

Hierarchical clustering methods build a set of nested clusters at different resolutions. As
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we will see, this is very closely related to the density based clustering approach discussed
previously.

The are two types of hierarchical clustering: agglomerative (bottom-up) and divisive (top-
down). With agglomerative clustering we start with some distance or dissimilarity d(z,y)
between points. We then extend this distance so that we can compute the distance d(A, B)
between to sets of points A and B.

The three most common ways of extending the distance are:

Single Linkage d(A,B) = min d(z,y)

r€A,yeB

Average Linkage | d(A,B) = m Z d(x,y)

r€A,yeB

Complete Linkage | d(A, B) = IB&XBd([E,y)
rTEA,YE

The algorithm is:

1. Input: data X = {Xj,..., X, } and metric d giving distance between clusters.
2. Let Tn = {Cla Cg, ey Cn} where Cz = {Xz}
3. Forj=n—1to 1L:

(a) Find j, k to minimize d(C}, Cy) over all C;, Cy € Tj41.
(b) Let T; be the same as T} except that C; and Cj, are replaced with C; U C.

4. Return the sets of clusters T1,...,T,.

The result can be represented as a tree, called a dendogram. We can then cut the tree at
different places to yield any number of clusters ranging from 1 to n. Single linkage often
produces thin clusters while complete linkage is better at rounder clusters. Average linkage
is in between.

Example 10 Figure shows agglomerative clustering applied to data generated from two
rings plus noise. The noise is large enough so that the smaller ring looks like a blob. The
data are show in the top left plot. The top right plot shows hierarchical clustering using single
linkage. (The tree is cut to obtain two clusters.) The bottom left plot shows average linkage
and the bottom right plot shows complete linkage. Single linkage works well while average
and complete linkage do poorly.

31



Figure 19: Hierarchical clustering applied to two noisy rings. Top left: the data. Top right:
two clusters from hierarchical clustering using single linkage. Bottom left: average linkage.
Bottom right: complete linkage.

Finally, let us mention divisive clustering. This is a form of hierarchical clustering where
we start with one large cluster and then break the cluster recursively into smaller and smaller
pieces.

6.1 Hierarchical Clustering & Density based Clustering

As we will see in this section, hierarchical clustering and density based clustering are very
closely related. Suppose that X7, ..., X, is a sample from a distribution P on R¢ with density
p. Recall that in density based clustering, we extract maximal connected components of level
sets {x : p(x) > A}

Let us next revisit single linkage hierarchical clustering discussed in the previous section.
Let’s look at this from the perspective of partitioning a graph. Let G = (V, E) be a graph
where V = {X;,...,X,,} and E;; = 1if ||X; — X;|| <eand E;; =0if ||X; — X;|| > €. Let
Ci,...,C% denote the connected components of the graph. We can then see that as we vary
€ we get exactly the hierarchical clustering tree.

But varying € and hence the distance of the nearest neighbor can be viewed as extracting
a high-density set i.e. a level set of the density. One might thus expect that single linkage
clusters would exactly correspond to high density clusters. This turns out not quite to be the
case as was pointed out by Hartigan (1981). Loosely, higher up in the hierarchical clustering
tree, clusters get large enough that they might intersect with multiple connected components
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of the density level sets. So Hartigan (1981) suggested that to obtain high density clusters
from single linkage clustering, we need to make it more “robust,” and remove points from
lower density regions that would not have made the corresponding density level set.

Chaudhuri and DasGupta (2010) formalized this, and suggested the following modified ver-
sion of hierarchical clustering that attempts to fix this problem, and which can be seen to
be very similar to density clustering introduced earlier:

1. For each x;, let r(x;) = {infr : B(x;,r) contains k data points}.
2. As r increases from 0 to oo:

(a) Construct a graph G, with nodes {z; : ri(z;) < r}. Include edge (z;,z;) if
|z — 2| < ar.

(b) Output C(r) as the connected components of G,.

Here, the neighborhood radius parameter r ranging from 0 to co corresponds to the level
set parameter A in density clustering ranging from 0 to oco. In both cases, we remove points
corresponding to lower density regions: in this case, by checking if the point has at least
k nearest neighbors within that radius. There are two parameters here: £ and «. It can
be seen that single linkage is obtained by setting o = 1,k = 2. More robust versions can
be obtained by setting k& to be much larger. Chaudhuri and DasGupta (2010) showed that
a > /2, and k ~ dlogn suffices to obtain consistent estimates of high density clusters.

7 High-Dimensional Clustering

As usual, interesting and unexpected things happen in high dimensions. The usual methods
may break down and even the meaning of a cluster may not be clear.

We will begin by discussing some recent results from Sarkar and Ghosh (arXiv:1612.09121).
Suppose we have data coming from k distributions Py, ..., P,. Let p, be the mean of P,

and X, be the covariance matrix. Most clustering methods depend on the pairwise distances
HXl — XJHQ I\IOVV7

d
16 = X511 =) 8(a)
a=1
where §, = (X;(a) — X;(a))?. This is a sum. As d increases, by the law of large numbers

we might expect this sum to converge to a number (assuming the features are not too
dependent). Indeed, suppose that X is from P, and Y is from P; then

1
ﬁnx—ynimwzwm
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where

d
_ _ 2

(gngQMu (a)|
and {

o2 = lim —trace(%,).

d—o0
Note that v, = 0.
Consider two clusters, C7 and Cy:
X Y || X =Y

Xel, Ye(, ||X—Y||:20'%
Xel; Yel ||X—Y||:20'g
XECl YECQ HX—YH:U%‘FO'%‘FI/H

If

2 2
o] + Vg < 05

then every point in cluster 2 is closer to a point in cluster 1 than to other points
in cluster 2. Indeed, if you simulate high dimensional Gaussians, you will see that all the
standard clustering methods fail terribly.

What’s really going on is that high dimensional data tend to cluster on rings. Pairwise
distance methods don’t respect rings.

8 Modes

Now that we have looked at various approaches to extract a partition of the input space i.e.
clusters given P, let’s look at approaches to extract other types of low-dimensional structure.
A very important such notion is that of modes: which are the local maxima of the density
p of the distribution.

Let p be the density of X € R%. Assume that p has modes my, ..., my, and that p is a Morse
function, which means that the Hessian of p at each stationary point is non-degenerate.

8.1 Mode Integral Curves

Given any point x € R%, there is a unique gradient ascent path, or integral curve, passing
through x that eventually leads to one of the modes.
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Figure 21: A synthetic example with four clusters with a variety of different shapes.

Formally, an integral curve through z is a path 7, : R — R? such that 7,(0) = z and

T (t) = Vp(m.(1)). (18)
Integral curves never intersect (except at stationary points) and they partition the space.

Equation means that the path 7 follows the direction of steepest ascent of p through x.
The destination of the integral curve m through a (non-mode) point x is defined by

dest(z) = lim m,(¢). (19)

t—o00

It can then be shown that for all x, dest(z) = m; for some mode m;. That is: all integral
curves lead to modes. For each mode m;, define the sets

A; = {.CE : dest(z) = mj}. (20)

These sets are known as the ascending manifolds, or the basin of attraction of m;. The A;’s
partition the space. See Figure[22] The collection of ascending manifolds is called the Morse
complez.

Given data Xi,..., X, we construct an estimate p of the density. Let My, ..., be the
estimated modes and let Ay, ..., Ay be the corresponding ascending manifolds derived from
p. The sample clusters C4, ..., Cy are defined to be C; = {XZ- : X, € Aj}.

Recall that the kernel density estimator is

Pe) = Fule) = > o K (”x‘—hx“) (1)
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Figure 22: The left plot shows a function with four modes. The right plot shows the ascending
manifolds (basins of attraction) corresponding to the four modes.

where K is a smooth, symmetric kernel and h > 0 is the bandwidth[| The mean of the
estimator 1s

p(2) = Effu()] = / K(t)pla + th)dt. (22)

To locate the modes of p;, we use the mean shift algorithm which finds modes by approximat-
ing the steepest ascent paths. The algorithm is given in Figure [23], and is essentially a fixed
point iteration obtained by setting the gradient of the kernel estimate to zero. Consider the
RBF Kernel density estimate:

N 1 — lz — X2
i) = o e ().
=1

Then, its gradient is given as:

N l ~/z—-2X; la — X;||?
vl‘ph(‘r) = nhd E < h/2 > €xXp (_ 2h2 .
=1

Setting this to zero can be seen to yield the fixed point iteration in the algorithm.

The result of this process is the set of estimated modes M = {mq,...,my}.

A modified version of the algorithm is the blurred mean-shift algorithm (Carreira-Perpinan,
2006). Here, we use the data as the mesh and we replace the data with the mean-shifted data
at each step. This converges very quickly but must be stopped before everything converges
to a single point; see Figures 25 and [26]

!In general, we can use a bandwidth matrix H in the estimator, with p(z) = py(z) = 2 30 | Kg(z—X;)
where Ky (z) = |H| 2 K(H 2z).
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Mean Shift Algorithm

1. Input: p(z) and a mesh of points A = {ay,...,ax} (often taken to be the data
points).

(0)

2. For each mesh point a;, set ajo = a; and iterate the following equation until

convergence:
S XK (HaS-S)—XiIl)
=14V h
(A o)X
n a;” —X;
S ()
3. Let M be the unique values of the set {a§°°), o ,ag\?o)}.
4. Output: M.

Figure 23: The Mean Shift Algorithm.

8.2 Mode Clustering

We can also obtain a clustering i.e. a partition of the input space using modes, an approach
which is also known as mode clustering. We simply define the clusters to be the “basins of
attraction” of the modes, the equivalence classes of points whose ascent paths lead to the
same mode.

We also get the clustering for free from the mean shift algorithm, which not only estimates
the modes but also shows us what mode each point is attracted to. See Figure [24]

What we are doing is tracing out the gradient flow. The flow lines lead to the modes and
they define the clusters. In general, a flow is a map ¢ : R x R — R¢ such that ¢(z,0) = =
and ¢(p(x,t),s) = ¢(x,s +t). The latter is called the semi-group property.

8.3 Choosing the Bandwidth

As usual, choosing a good bandwidth is crucial. You might wonder if increasing the band-
width, decreases the number of modes. Silverman (1981) showed that the answer is yes if
you use a Normal kernel.

Theorem 11 (Silverman 1981) Let p, be a kernel density estimator using a Gaussian
kernel in one dimension. Then the number of modes of py, is a non-increasing function of h.
The Gaussian kernel is the unique kernel with this property.
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Figure 24: A simple example of the mean shift algorithm.

Figure 25: The crescent data example. Top left: data. Top right: a few steps of mean-shift.
Bottom left: a few steps of blurred mean-shift.
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Figure 26: The Broken Ring example. Top left: data. Top right: a few steps of mean-shift.
Bottom left: a few steps of blurred mean-shift.

We still need a way to pick h. We can use cross-validation as before. One could argue that
we should choose h so that we estimate the gradient g(z) = Vp(x) well since the clustering
is based on the gradient flow.

How can we estimate the loss of the gradient? Consider, first the scalar case. Note that

J& 2= [@r-2[w+ [0r

We can ignore the last term. The first term is known. To estimate the middle term, we use

integration by parts to get
/ Py’ = - / p'p

suggesting the cross-validation estimator
2
~ 2 ~1
dr + — (X
/(p(fv)) T+ E i (Xi)

where p is the leave-one-out second derivative. More generally, by repeated integration by
parts, we can estimate the loss for the r*® derivative by

OV, () = [ (37(a)dn = (-1 S5 (X0
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8.4 Theoretical Analysis

How well can we estimate the modes?

Theorem 12 Assume that p is Morse with finitely many modes my, ..., my. Then for h >0
and not too large, py, is Morse with modes mpyy, ..., mp, and (possibly after relabelling),

max [[m; — mjp|| = O(h?).
With probability tending to 1, py, has the same number of modes which we denote by mp1, . .., Mp.
Furthermore,

~ 1
max [ — mgn|| = Op (\/ W)
_ ) 1
mjax||mjh—mj||:O(h)+Op sl

Remark: Setting h =< n=/(@+6) gives the rate n=2/(4*6) which is minimax (Tsyabkov 1990)
under smoothness assumptions. See also Romano (1988). However, if we take the fixed h
point if view, then we have a n~'/2 rate.

and

Proof Outline. But a small ball B; around each m;,. We will skip the first step, which is
to show that there is one (and only one) local mode in B;. Let’s focus on showing

~ 1
max || —mgn|| = Op (\/ W) :

For simplicity, write m = mj;, and = m;j,. Let g(x) and H(x) be the gradient and Hessian
of pp(x) and let g(z) and H(x) be the gradient Hessian of p,(x). Then

0,....0) = 5(x) = §(m) + (x — m)T/O H(m + u(z —m))du

and so
(z — m)T / FH(m + ulz — m))du = (g(m) — g(m))

where we used the fact that 0 = g(m). Multiplying on the right by = — m we have

(z — m)T/O H(m + u(x = m))(x — m)du = (G(m) - §(m))" (z — m).
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Let A = info<y<i Amin(H(m 4+ u(x —m))). Then A = A\ (H(m)) + op(1) and
(x — m)T/O H(z +u(m — z))(z — m)du > M|z — m||>.

Hence, using Cauchy-Schwartz,

N SO 1
Mz=ml|* < [[g(m)—g(m)[] [lz—ml|| < |lz—m]] Sl;pHg(y)—g(y)H < [[z—=m[|Op (\/ W)

and so ||z —m|| = Op (WW)D

Remark: If we treat h as fixed (not decreasing) then the rate is Op(1/1/n) independent of
dimension.

9 Ridges

A ridge is a high-density, low dimensional structure. A O-dimensional ridge is just a mode.
In this case
Vp(z) =0 and Aax(H(z)) <0

where H is the Hessian. (assuming p is Morse). Recall that a mode can also be thought of
as the destination of a gradient ascent path, m,: i.e.
m = lim 7, (t)
t—00
where
o (t) = Vp(ma ().
The modes of p can be found by the mean-shift algorithm as in Figure [27]
Higher dimensional ridges can be defined as the zeros of a projected gradient. Think of the
ridge of a mountain. The left plot in Figure 28 shows a density with a sharp, one-dimensional

ridge. The right plot show the underlying manifold, the ridge, and the ridge of the smoothed
density.

To define the ridge formally, let p be a density with gradient g and Hessian H. Denote the
eigenvalues of H(x) by

AM(z) > Xo(z) > - > M) > Ngga(z) > -+ > Ap(x).

Let U(z) = [W(z) : V()] be the matrix of eigenvectors. Then L(z) = V(z)VT(x) is the
projector onto the local tangent space. Define the projected gradient G(x) = L(x)g(x).
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Figure 27: The mean shift algorithm.
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Figure 28: Left: The one-dimensional ridge of a density. Right: the manifold, the ridge of
the density p, and the ridge of the smoothed density p x Kj,.
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Finally. define the ridge by

R(p) = {x D Aat1(z) <0 and G(z) = 0}.

Several other definitions of a ridge have been proposed in the literature; see Eberly (1996).
The one we use has several useful properties: if p is close to p then R(p) is close in Hausdorff
distance to R(p).

And, there is an algorithm to find the ridge: the subspace-constrained mean-shift algorithm
(SCMS, Ozertem and Erdogmus 2011). (The usual mean-shift algorithm with a projection

step.)

To estimate R(p), estimate the density, its gradient, and its Hessian:
N I 1 y—Y,
=— —K
=13k (15

g = gradient of p and H = Hessian of p. Denoising: remove low density points. Apply the
SCMS algorithm.

}A% is a consistent estimator of R and:
H(R,R) = Op (n—ﬁ)

For fixed bandwidth h (which still captures the shape),

H(By, By) = Op ( 10g”>

n

and }A%h is (nearly) homotopic to Rj,. See Figures 29| and [30| for examples. A real example is
shown in |31| (from Chen, Ho, Freeman, Genovese and Wasserman: arXiv:1501.05303).

How to choose a good bandwidth A is not clear. Figure shows that the ridge is fairly
stable as we decrease h until we reach a phase transition where the ridge falls apart.

10 Manifolds

A common assumption is that P is supported on a (low-dimensional) manifold M. This
is usually a bogus assumption. More realistically, the data might be concentrated near a
low dimensional structure. Assuming that the structure is smooth and that the support is
exactly on this structure is unrealistic. But it is a starting place.
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Figure 29: Left: Manifold in blue. Estimated ridge in red. Right: sample example with more
data.

Figure 30: Left: data. Right: SCMS output.
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Figure 31: Galazy data from the Sloan Digital Sky Survey at three different redshifts. The
fourth plot shows known galaxy clusters. From: Chen, Ho, Freeman, Genovese and Wasser-
man: arXiw:1501.05303

So, for now, assume that Y; € R? and that P is supported on a manifold M of dimension
d < D, and that our goal is to estimate this manifold M.

Just as we needed some conditions on a density function or regression function to estimate
it, we needed a condition on a manifold to estimate it. The most common condition is that
M has positive reach. The reach of a manifold M is the largest r such that d(x, M) < r
implies that = has a unique projection onto M. This is also called the thickness or condition
number of the manifold; see Niyoki, Smale, and Weinberger (2009). Intuitively, a manifold
M with reach(M) = k has two constraints:

1. Curvature. A ball or radius r < k can roll freely and smoothly over M, but a ball or
radius r > k cannot.

2. Separation. M is at least 2x from self-intersecting.

See Figure [33] Also, normal vectors of length less than s will not cross. See Figure [34]

The easiest way to estimate a d-manifold embedded in R” is just to estimate the support of
P. For example, the Devroye-Wise (1980) estimator is

M =] Bi0.
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Figure 32: As we decrease the bandwidth, the ridge is quite stable. FEventually we reach a
phase transition where the estimated ridge falls apart.

We define the minimax risk

R, = inf sup Ep[H(M, M(P))]
M PeP

where H is the Hausdorfl distance:
H(A,B)=inf{e: AC B®ecand BC A®¢€}

and
ADe= U B(z, ).

T€A

Choosing €, < (1/n)"P we get

C’logn)fl’

E[H (M, M)] < ( -

This estimator is simple but sub-optimal. Note that the rate depends on the ambient di-
mension.

Let Yi,...,Y, ~ P where
Yi=&+ Z
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e, =~ ®0

Figure 33: First two plots: a ball of raidus r < k rolls freely. Third plot: ball cannot roll
because reach is 0. Fourth: ball cannot roll because r > k.

Figure 34: Left: Normal vectors of length » < x don’t cross. Right: Normal vectors of length
r > Kk do cross.
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where Y; € RP, &,...,¢&, ~ G where G is uniform on a d-manifold M and the noise Z;
is perpendicular to M (uniform on the normals). It’s a weird model but it was used in
Niyogi, Smale, Weinberger (2008). Let P be the set of distributions with bounded density
on d-manifolds with reach at least x. Then (GPVW 2011)

R —¢ <logn>2id'
n

Thus the rate depends on d not D. I don’t know a practical estimator to achieve this rate.

Now suppose that
Yi,.... Yy~ (1—-mU+7G

where G is supported on M, 0 < m < 1, U is uniform on a compact set  C R”. Then

(GPVW 2012)
n

A more realistic model is Y; = X; + Z; where Xy,...,X,, ~ G and and Z; ~ N(0,02Ip).
Then

SHIN

! <R, < !

logn Viogn

This means that, with additive noise, the problem is hopeless.

11 Dimension of Manifold

In some applications, what we might care about is simply the dimensionality of the lower-
dimensional manifold rather than the manifold itself. Say we are given points {z;}7, C RP
drawn from some distribution P.

For the i-th data point z;, define

Ci(e) ={z;j € n].j # il llz — =] <e}.

At reasonable radius €, we can expect C;(€) to scale as ¢/ where d is the intrinsic dimension.
See Figure for too small or large values of e: the resulting manifold itself might look
different.

(Grassberger and Procaccia) define the more stable estimate:
Cle) =D Cile),
i=1
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Figure 35: (from Burges 2010) Circle of reducing radius from left to right. At the “right”
radius, the number of neighbors scales as radius to the power of manifold dimension.

Oor evemn:

1
Cle) = mwaj € [n], i # j |z — 2| < e}
We can then plot log C'(e) against loge and measure the slope to get an estimate of the

intrinsic dimension; see Figure

* log(Gel) va. log(e)
*_ StraightLine Fit

lag(Cie))

Figure 36: Left: Samples uniformly distributed across 2-sphere. Right: Straight-line fit for
the samples from the left.

This works well when the ambient dimension D is small, but might fail to do so for high D;
indeed, it is known to underestimate the intrinsic dimension in such cases. As we saw earlier
with clustering as well, high-dimensional vectors are near orthogonal, and so normalized
vectors will have small inner product and be near equi-distant. We can thus not expect a
purely distance based approach as above to do well.
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12 Summary

We looked at various notions of low-dimensional structure of a distribution P, most of which
are very difficult to estimate in the non-parametric regime where P does not belong to a
finite-dimensional parametric family. One solution is to give up on estimating M and instead
estimate features that “respect” M. This is the next topic of representation learning.
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