
Optimal Transport
10716: Advanced Machine Learning

Pradeep Ravikumar (with some notes from Larry
Wasserman)

1 Introduction

Studying how to “optimally” transport mass from one distribution to another forms the
topic of “optimal transport”. It predates ML, since in the “world of atoms,” many impor-
tant problems involving logistics, production planning, and routing, among others, can be
cast as moving (typically discrete) distributions. This “transport” problem was also a key
motivational driver behind the development of theory of linear programming itself.

The need in ML for such a transport map from one distribution to another is most obvious in
the context of density estimation, where a popular approach to model the data distribution
as X = Tθ(Z), for some transport map Tθ, and some Z with known distribution. This idea
of transforming one distribution to another also arises in other ML tasks such as clustering,
classification, statistical estimation, as well as domain adaption, and adversarial learning, as
well as classical tasks such as could be cast as involving an optimal transport of distributions.
In many cases, we can “lift” a single data object to a distribution. For instance, we can map
an image to a histogram of image patch features.

In many of these contexts, it is not a transport map per se but simply a divergence between
distributions that is of interest. Indeed, in statistical machine learning, almost all tasks
involve distributions. Statistical estimation for instance involves divergences (such as KL
divergences) between true data distribution and some other parameterized distribution. Such
divergences can be naturally derived from the optimal way to transport one distribution to
another. Classical divergences such as f -divergences are not always suited to more complex
data such as images. As we will see, optimal transport based distances are much better
suited to modern ML settings:

• they leverage the underlying geometry of the input space

• they are more suited to discrete distributions, and more generally to “singular” dis-
tributions which do not have support everywhere e.g. restricted to a manifold (where
e.g. KL divergences could blow up),

• they are also suited to settings where the modeling distribution does not have a closed
form density.

There has been a resurgence of interest in borrowing tools from optimal transport towards
statistical ML.
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2 Monge Assignments

Let us start with an example from the “world of atoms”.

Example: Factories and Warehouses. Consider the following resource allocation problem.
Suppose there are n warehouses, indexed by i ∈ [n], and where the i-th warehouse is located
at xi, and has a unit of raw material. And there are m factories, indexed by j ∈ [n], and
where the j-th factory is located at yj, and needs a unit of raw material. A transportation
or logistics company charges c(xi, yj) to transport a unit of raw material from the location
of warehouse i to the location of factory j. Suppose each warehouse’s unit raw material has
to be transported out, and suppose each factory needs to be transported in a unit of raw
material. Then, the what is the minimum cost to transport raw material from warehouses
to factories?

This can be seen to be:

inf
σ∈Perm(n)

n∑
i=1

c(xi, yσ(i)), (1)

where Perm(n) denotes the set of all permutations σ : [n] 7→ [n] over [n] = {1, . . . , n}.

Example: Factories and Warehouses Contd. In the example earlier, what if the number of
factories is different from the number of warehouses, and each of the factories and warehouses
have more than one unit? Suppose there are n warehouses, indexed by i ∈ [n], and where
the i-th warehouse at location xi has ai units of raw material. While there are m factories,
indexed by j ∈ [m], and where the j-th factory at location yj needs bj units of raw material.
And the transportation or logistics company charges c(xi, yj) per unit to transport raw
material from the location of warehouse i to the location of factory j. Suppose we have to
transport out all of raw material from each warehouse, and suppose each factory needs to
be transported in all of the requested units of raw material. Suppose moreover that all of
the material of a warehouse has to go to a single factory.

This requires us to go beyond permutations to so-called “Monge” maps T : {x1, . . . , xn} 7→
{y1, . . . , ym} from one set to the other that satisfies the following mass conservation con-
straint:

C = {T : bj =
∑

i∈[n]:T (xi)=yj

ai}.

We then seek a map that minimizes the overall transportation cost while satisfying the mass
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conservation constraint:

min
T

{
n∑
i=1

aic(xi, T (xi)) : T ∈ C

}
. (2)

2.1 Pushforward Operator

Now any Monge map T : {x1, . . . , xn} 7→ {y1, . . . , ym} transports individual points from
{x1, . . . , xn} to points in {y1, . . . , ym}. But note that this also has the consequence of trans-
forming any discrete distribution over {x1, . . . , xn} to a distribution over {y1, . . . , ym}. Con-
sider the discrete distribution α =

∑n
i=1 aiδxi . The Monge map T then yields the discrete

distribution:
n∑
i=1

aiδT (xi),

which can be seen to have support in {y1, . . . , ym}.

We can write this transformed distribution compactly as: T#α, where T# is called a “push-
forward map” that acts on the distributions rather than points in the support of the distri-
butions.

Now notice that the mass conservation constraint earlier can be restated as since:

n∑
i=1

aiδT (xi) =
m∑
j=1

bjδyj .

Denoting the discrete distribution β =
∑m

j=1 bjδyj , the mass conservation constraint can be
stated compactly as:

T#α = β.

We can thus cast the overall optimal transport problem in turn more compactly as:

min
T

{
n∑
i=1

aic(xi, T (xi)) : T#α = β

}
.

We can generalize this further to continuous distributions.

For any continuous map T : X 7→ Y , we can define its corresponding pushforward operator
T# :M(X ) 7→ M(Y) as follows. For discrete distributions α =

∑n
i=1 aiδxi , the push-forward

operator merely moves the positions of the points in the support. For a general measure
α ∈M(X ), β = T#α satisfies: for all measurable sets B ⊆ Y ,

β(B) = α({x ∈ X : T (x) ∈ B}) = α(T−1(B)),
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where T−1(B) is the pre-image of B under T . Thus, while T moves points in X to points in
Y , T# pushes forward probability mass of distribution α ∈ M(X ) to obtain a distribution
β ∈M(Y).

2.2 Monge Assignment Problem

Given this notation of a pushforward operator, we can define the general Monge problem
between arbitrary distributions as follows. Given two arbitrary probability distributions
α ∈M(X ), and β ∈M(Y), supported on two spaces X ,Y , we wish to solve:

min
T

{∫
X
c(x, T (x))dα(x) : T#α = β.

}

The main difficulty with the Monge assignment problem is that the Monge map T (·) that
solves the Monge assignment problem need not always exist, particularly between two dis-
crete distributions with differing support sizes m 6= n. Since in such a case, it might not
always be possible to get maps T that satisfy the mass conservation constraint. Even if such
maps exists, the mass convservation constraint is highly non-convex, and is thus difficult to
solve or approximate.

Remark: Random Variable Viewpoint It is also instructive to view this in terms of random
variables. Suppose we have random vectors X ∈ X with distribution α, and Y ∈ Y with
distribution β. Then the monge map T that satisfies the mass conservation constraint is
simply any map T s.t.

T (X) = Y.

We can then write the optimal transport problem as:

min
T :T (X)=Y

EX∼α[c(X,T (X))].

Remark: Reparameterization When α, β have densities ρα, ρβ, we know that by the
change of variables formula:

ρα(x) = |detJ T (x)| ρβ(T (x)),

where J T (x) is the Jacobian of T at x. Thus, if α has density ρα, then T#α does not simply
have the density ρα ◦ T , due to the presence of the Jacobian. Though, as discussed in the
“reparametrization trick” in the deep density estimation lecture, we do have that:

EY∼T#α[g(Y )] = EX∼α[g ◦ T (X)].
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3 Kantorovich Relaxation

A relaxation of the Monge assignment problem, which also makes the problem much simpler,
is to relax the deterministic transport map T to a probabilistic transport map instead.

Example: Factories and Warehouses Contd. Suppose there are n warehouses, indexed
by i ∈ [n], and where the i-th warehouse has ai units of raw material. While there are m
factories, indexed by j ∈ [m], and where the j-th factory needs bj units of raw material.
The transportation or logistics company charges Cij to transport a unit of raw material
from the location of warehouse i to the location of factory j. Suppose as before we have to
transport out all of raw material from each warehouse, and suppose each factory needs to
be transported in all of the requested units of raw material. But now suppose that you can
transport fractional units from warehouses to factories. Then, obtaining the optimal cost to
transport raw material from warehouses to factories can now be simplified considerably.

For the case with discrete distributions, consider the following set of probabilistic maps:

U(a, b) =

{
P ∈ Rm×n : ∀i ∈ [n], j ∈ [m],

m∑
j=1

Pij = ai,
n∑
i=1

Pij = bj

}
.

We can thus think of P as a joint distribution over [n]×[m] with marginal distributions a over
[n] and b over [m]. The Monge assignment problem can then be relaxed to Kantorovich’s
optimal transport problem:

LC(a, b) = min
P∈U(a,b)

∑
i,j

CijPij, (3)

where C ∈ Rn×m is the cost matrix with entries Cij = c(xi, xj). This can be seen to be
a linear program, which is much more tractable than the non-convex Monge assignment
problem.

For more general measures α, β, the relaxed mass conservation constraint can be written as
a constraint on marginal distributions of a joint distribution:

U(α, β) = {π ∈M(X × Y) : PX#π = α, PY#π = β} ,

where PX (x, y) = x, and PY(x, y) = y are coordinate projection maps. PX#π = α is
just a more compact way (though some might say convoluted) of saying that the marginal
distributions of π over X and Y are α and β respectively.

The Kantorovich optimal transport problem then becomes:

Lc(α, β) = min
π∈U(α,β)

∫
X×Y

c(x, y)dπ(x, y). (4)
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Figure 1: This plot shows one joint distribution J with a given X marginal and a given Y
marginal. Generally, there are many such joint distributions. Image credit: Wikipedia.

This is also a linear program, albeit an infinite-dimensional one. It always has a solution
when X ,Y are compact spaces, and c is continuous. The minimizer π∗ is called the optimal
transport plan or the optimal coupling.

We can also write the optimal transport problem just in terms of random variables as:

Lc(α, β) = min
π

{
E(X,Y )∼πc(X, Y ) : X ∼ α, Y ∼ β

}
.

Figure 1 shows an example of a joint distribution with two given marginal distributions.

4 Kantorovich Dual

Consider the discrete optimal transport problem in (3), which was a finite-dimensional linear
program. Its corresponding dual program can then be written as:

LC(a, b) = max
(f,g)∈R(C)

〈f, a〉+ 〈g, b〉,

where R(C) = {(f, g) ∈ Rn×Rm : ∀(i, j) ∈ [n]× [m], fi + gj ≤ Cij} is the set of admissible
dual variables.
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Example: Factories and Warehouses (Contd.) Continuing with the example of n ware-
houses, and m factories, suppose a logistics vendor charges price fi per unit raw material
to move from warehouse i, and price gj per unit raw material to move to factory j. Then,
we would consider this vendor only when they satisfy the constraint that fi + gj ≤ Cij,
since otherwise we would just go with the transportation company. On the other hand, the
vendor would aim to ask for the highest possible prices, so that they would aim for the
highest overall price 〈f, a〉+ 〈g, b〉 subject to the cost constraint above. By duality of linear
programs, the two objectives are exactly the same. But note that this allows us to pass the
onus of the potentially difficult task of ensuring optimality to the logistics vendor: we just
need to ensure the individual constraints that fi + gj ≤ Cij.

For more general measures, we have that:

Lc(α, β) = sup
(f,g)∈R(c)

∫
X
f(x)dα(x) +

∫
Y
g(y)dβ(y),

where, denoting C(X ) as the set of real-valued continuous functions with domain X , the set
of admissible dual “potentials” is:

R(c) = {(f, g) ∈ C(X )× C(Y) : ∀(x, y), f(x) + g(y) ≤ c(x, y)}.

Here f, g are continuous functions, that are also called “Kantorovich” potentials.

5 Wasserstein Distance

So far, we have been concerned with the optimal transport between two distributions. When
the two distributions have the same domain X = Y , and when the cost function corresponds
to some metric d(x, y) over X , then the optimal transport cost between the two distributions
can also be used as a distance between the two distributions; a very useful class of distances
called Wasserstein distances.

Given a distance metric d : X × X 7→ R+, the p-Wasserstein distance on X is given as:

Wp(α, β) = Ldp(α, β)1/p.

The p-Wasserstein distance is actually a distance metric over M(X ): it is symmetric, non-
negative, is zero iff the two measures are equal, and satisfies the triangle inequality. When
not specified, we typically mean the 2-Wasserstein distance.

When p = 1 this is also called the Earth Mover distance.

When d(x, y) = I(x 6= y) (which is not actually a full-metric), the corresponding 1-Wasserstein
distance is actually the TV distance

sup
A
|α(A)− β(A)| = 1

2

∫
X
|dα(x)− dβ(x)|.
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Crucial advantages of Wasserstein distances is that it uses the underlying geometry of the
input space (via the metrix d), and is also more suited to discrete distributions. To see this,
let us compare Wasserstein with some classical divergence measures.

5.1 Properties of Wasserstein Distances

Suppose X ∼ P and Y ∼ Q and let the densities be p and q. We assume that X, Y ∈ Rd.
Some popular divergence measures between P and Q include:

Total Variation : sup
A
|P (A)−Q(A)| = 1

2

∫
|p− q|

Hellinger :

√∫
(
√
p−√q)2

L2 :

∫
(p− q)2

χ2 :

∫
(p− q)2

q
.

These distances are all useful, but they have some drawbacks.

Applicability to Singular Discrete Distributions. We cannot use classical distances to
compare P and Q when one is discrete and the other is continuous. For example, suppose
that P is uniform on [0, 1] and that Q is uniform on the finite set {0, 1/N, 2/N, . . . , 1}.
Practically speaking, there is little difference between these distributions. But the total
variation distance is 1 (which is the largest the distance can be). The Wasserstein distance
is 1/N which seems quite reasonable.

More generally, classical divergences are not always suited to “singular” distributions which
do not have support everywhere (e.g. restricted to a manifold), whereas Wasserstein distances
are still well-defined. Note that in ML, the empirical distribution over finite set of training
samples is necessarily discrete, while the data is often on lower-dimensional manifolds (e.g.
images) so that the distribution in the ambient space is necessarily singular (i.e. does not
have support everywhere).

Using Underlying Geometry of Space. Classical distances ignore the underlying geometry
of the space. To see this consider Figure 2. In this figure we see three densities p1, p2, p3.
It is easy to see that

∫
|p1 − p2| =

∫
|p1 − p3| =

∫
|p2 − p3| and similarly for the other

distances. But our intuition tells us that p1 and p2 are close together. This is captured by
the Wasserstein distance.

8



−3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3

Figure 2: Three densities p1, p2, p3. Each pair has the same distance in L1, L2, Hellinger
etc. But in Wasserstein distance, p1 and p2 are close.

As another consequence, some of the classical distances are sensitive to small wiggles in the
distribution. But the Wasserstein distance is insensitive to small wiggles. For example if P
is uniform on [0, 1] and Q has density 1 + sin(2πkx) on [0, 1] then the Wasserstein distance
is O(1/k).

Geometry over Space of Distributions. When we compute the usual distance between two
distributions, we get a number but we don’t get any qualitative information about why the
distributions differ. But with the Wasserstein distance we also get an “optimal transport”
map that shows us how we have to move the mass of P to morph it into Q.

Suppose we want to create a path of distributions (a geodesic) Pt that interpolates between
two distributions P0 and P1. We would like the distributions Pt to preserve the basic structure
of the distributions. Figure 4 shows an example. The top row shows the path between P0

and P1 using Wasserstein distance. The bottom row shows the path using L2 distance. We
see that the Wasserstein path does a better job of preserving the structure.

When we average different objects — such as distributions or images — we would like to make
sure that we get back a similar object. The top plot in Figure 3 shows some distributions,
each of which is uniform on a circle. The bottom left plot shows the Euclidean average of the
distributions which is just a gray mess. The bottom right shows the Wasserstein barycenter
(which we will define later) which is a much better summary of the set of images.

Weak Convergence. On a compact domain X , a sequence of measures {αn} is said to
weakly converge to a measure α ∈ M(X ) iff for all continuous functions f : X 7→ R, we
have that

∫
X fdαn →

∫
X fdα, as n → ∞. This convergence can be shown to be equivalent

to Wp(αn, α)→ 0.
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Figure 3: Top: Some random circles. Bottom left: Euclidean average of the circles. Bottom
right: Wasserstein barycenter.

5.2 Computing Wasserstein Distances

In the examples below, we use the Euclidean distance d(x, y) = ‖x − y‖2 unless specified
otherwise.

1 dim. case: Empirical Distributions. Suppose X = R. Then, for any two empirical
measures α = 1

n

∑n
i=1 δxi , and β = 1

n

∑n
j=1 δyj , then we have the following simple formula:

Wp(α, β)p =
1

n

n∑
i=1

|x(i) − y(i)|p,

where x(i) is the i-th order statistic of {xi}ni=1, so that x(1) ≤ x(2) ≤ . . . ≤ x(n). Thus,
Wp(α, β) is simply the `p norm between ordered values of α and β.

Higher dim. Empirical Distributions. Suppose X = Rd. Then, for any two empirical
measures α = 1

n

∑n
i=1 δxi , and β = 1

n

∑n
j=1 δyj , we have that:

Wp(α, β)p = min
σ∈Perm(n)

∑
i

‖xi − yσ(i)‖p.
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Though the minimization is over all permutations σ ∈ Perm(n), this may be solved in O(n3)
time using the Hungarian algorithm.

1D Case: General Distributions. For any measure α on R, let Fα : R 7→ [0, 1] be its CDF,
so that Fα(x) =

∫ x
−∞ dα. Let F−1

α : [0, 1] 7→ R ∪ {−∞} denote its pseudo-inverse (note that
the CDF can be flat even if non-decreasing):

F−1
α (t) = arg min

x
{x ∈ R ∪ {−∞} : Fα(x) ≥ t}.

F−1
α is also called the generalized quantile function of the measure α. Then,

Wp(α, β)p =

∫ 1

0

|F−1
α (t)− F−1

β (t)|pdt.

Gaussians. Suppose α = N (µα,Σα), and β = N (µβ,Σβ). Then, it can be shown that:

W2
2 (α, β) = ‖µα − µβ‖2

2 + B(Σα,Σβ)2,

where B is the so-called Bures metric between positive-definite matrices defined as:

B(Σα,Σβ)2 = tr
(

Σα + Σβ − 2
(
Σ1/2
α ΣβΣ1/2

α

)1/2
)
,

where Σ1/2 is the matrix square-root. B can be shown to be a distance on covariance matrices,
and moreover B2 is convex with respect to both its arguments. As an instructive simple case,
when Σα = diag(r), and Σβ = diag(s) are diagonal matrices, then

B(Σα,Σβ) = ‖r− s‖2.

For 1D Gaussians, W2 is thus simply the 2D Euclidean distance between the means and
standard-deviations of the two distributions.

Empirical and General Measures; W2. Suppose X = Rd. Suppose that one of the
distributions P has density p and the other Q =

∑m
j=1 qjδyj is discrete. Given weights

w = (w1, . . . , wm) define the power diagram V1, . . . , Vm where y ∈ Vj if y is closer to the ball
B(yj, wj) than any other ball B(ys, ws). Define the map T (x) = yj when x ∈ Vj. According
to a result known as Bernier’s theorem, if have that P (Vj) = qj then

W2(P,Q) =

(∑
j

∫
Vj

||x− yj||2dP (x)

)1/2

.

The problem is: how do we choose w is that we end up with P (Vj) = qj? It was shown by
Aurenhammer, Hoffmann, Aronov (1998) that this corresponds to minimizing

F (w) =
∑
j

(
qjwj −

∫
Vj

[||x− yj||2 − wj]dP (x)

)
.
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Entropic Regularization. Cuturi (2013) showed that if we replace

inf
π
E(X,Y )∼π‖X − Y ‖p,

with the regularized version

inf
π
E(X,Y )∈π {‖X − Y ‖p + λI(X, Y )} ,

where I(X, Y ) = KL(π, α×β), then a minimizer can be found using a fast, iterative algorithm
called the Sinkhorn algorithm. However, this requires discretizing the space and it changes
the metric.

6 Dual Characterization of Wasserstein Distance

The Kantorovich dual for Wasserstein distances can be further simplified for p ∈ (0, 1] where
d(x, y)p is itself a distance, and satisfies the triangle inequality. Under such a setting, it can
be shown that the set

{(f,−f) : Lipp(f) ≤ 1}
suffice as a set of Kantorovich potentials, where

Lipp(f) = sup
x,y∈X , x 6=y

{
|f(x)− f(y)|
d(x, y)p

}
.

This thus entails that the Kantorovich dual for Wasserstein distances can be written as:

Wp(α, β)p = max
f : Lipp(f)≤1

∫
X
f(x)(dα(x)− dβ(x)).

It can thus be seen that Wp(α, β) can be written as a dual norm of (α− β). We will discuss
more about such dual norm based distances over probability measures, known as integral
probability metrics in the next section.

6.1 Examples

Note that in all the examples below, we assume that p ∈ (0, 1]. The most common setting
of p in this setting is likely p = 1, with W1 as the corresponding Wasserstein distance.

Discrete Measures. Suppose α−β =
∑

kmkδzk , for zk ∈ X . When α and β are probability
measures, note that we have that

∑
kmk = 0. We then have that:

Wp(α, β)p = max
f

{∑
k

fkmk : ∀(k, `), |fk − f`| ≤ d(zk, z`)
p

}
.
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When X = R, we can further reduce the number of constraints by ordering the support
points {zk} as z1 ≤ z2 ≤ . . ., and obtain that:

Wp(α, β)p = max
f

{∑
k

fkmk : ∀k, |fk+1 − fk| ≤ d(zk+1, zk)
p

}
.

Euclidean Spaces. When X = Y = Rd, and d(x, y) = ‖x− y‖2, and for p = 1, the global
Lipshitz constraint on the Kantorovich potential can be reduced to a uniform bound on the
gradient, so that:

W1(α, β) = max
f :‖∇f‖∞≤1

∫
Rd
f(x)(dα(x)− dβ(x)).

7 Other Distribution Divergences

We now briefly contrast the Wasserstein distance with two other classical classes of diver-
gences over distributions.

7.1 f-divergence

Let f : R 7→ R∪{∞} be convex, with some additional regularity properties that it be: lower
semi-continuous, with domain dom(f) ⊂ [0,∞) that is also non-trivial so that dom(f) ∩
(0,∞) 6= ∅. Such a function is also called an entropy function. Given two measures α, β ∈
M(X ) such that α is absolutely continuous with respect to β (so that for any set A ⊆ X ,
β(A) = 0 implies α(A) = 0), the f -divergence Df between them is defined as:

Df (α, β) =

∫
X
f

(
dα

dβ

)
dβ.

When α and β are both absolutely continuous with respect to a base measure µ, with
corresponding densities ρα and ρβ, we can write this as:

Df (α, β) =

∫
X
f

(
ρα(x)

ρβ(x)

)
ρβ(x)dµ(x).

Most divergences used in machine learning are instances of the class of f-divergences, includ-
ing KL, Hellinger, total variation, and chi-squared divergences.

There are three main caveats to this class of divergences. The first is the requirement of
absolute continuity of α with respect to β, without which these divergences are not bounded
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(or even well-defined). This precludes their use with singular distributions with support
restricted to some manifold, or even discrete measures. The second caveat, though this is
subjective, is that they induce a geometry over divergences that is much more complex and
might not be exactly what we want. We discussed some examples in the introductory section;
we can also look at the simple example of a pair of 1D Gaussian distributions, α = N (µα, σ

2
α),

and β = N (µβ, σ
2
β). Then f -divergences such as KL induce a hyperbolic geometry over the

space of Gaussian parameters (m,
√
σ). For instance, it can be shown that

KL(α, β) =
1

σ2
β

(
1

2
(µα − µβ)2 + (

√
σβ −

√
σα)2

)
+ o((µα − µβ)2, (µα − µβ)2).

While the Wasserstein distance is simply associated with the Euclidean geometry over
(m,
√
σ), since

W2(α, β)2 = (µα − µβ)2 + (
√
σβ −

√
σα)2.

Lastly, these divergences are not always easy to approximate given samples. We will discuss
more about statistical rates in a following section.

7.2 Integral Probability Metrics

The Kantorovich dual form of W1 is a special instance of a larger class of dual norm based
divergences, called integral probability metrics.

Suppose B is a symmetric, convex set of measurable functions. Then, we can define the
following dual norm:

‖α‖B = max
f∈B

∫
X
f(x)dα(x),

which can then be used to define a metric over measures as ‖α− β‖B.

The total variation norm is an instance of this dual norm class, with

B = {f ∈ C(X ) : ‖f‖∞ ≤ 1}.

As discussed earlier, W1 is an instance of such a dual norm with

B = {f : Lip(f) ≤ 1}.

A caveat with the W1 norm is that it requires
∫
dα = 0, otherwise ‖α‖B = ∞. To fix this,

we can bound the value of the Kantorovich potential f , similar to TV.

One approach towards this, the flat norm, sometimes also called the Kantorovich-Rubinstein
norm, uses:

B = {f : ‖∇f‖∞ ≤ 1, ‖f‖∞ ≤ 1}.
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A related norm, corresponding to the Dudley metric, uses:

B = {f : ‖∇f‖∞ + ‖f‖∞ ≤ 1}.

7.2.1 Maximum Mean Discrepancy, Dual RKHS Norms

Given an RKHS H, a natural class of functions to specify the dual norm is simply:

B = {f ∈ H : ‖f‖H ≤ 1}.

Given the kernel k : X × X 7→ R corresponding to the RKHS H, this can be simplified to:

‖α‖Hk = sup
f :‖f‖Hk≤1

∫
f(x)dα(x)

= sup
f :‖f‖Hk≤1

∫
〈f, k(x, ·)〉dα(x) = ‖

∫
k(x, ·)dα(x)‖Hk ,

so that by the reproducing kernel property:

‖α‖2
Hk =

∫
X×X

k(x, y)dα(x)dα(y).

The above expression can also be written more compactly as:

‖α‖2
Hk = EX,X′∼α[k(X,X ′)].

Consider the case where we have the given measure is the difference of two measures: α−β.
In that case, the above can be simplified further to:

‖α− β‖Hk = ‖
∫
k(x, ·)(dα(x)− dβ(x))‖Hk

= ‖
∫
µα − µβ‖Hk ,

where µα =
∫
k(x, ·)dα(x) is the mean kernel embedding, so that the above measures the

mean discrepancy. The metric above is thus called “Maximum Mean Discrepancy” or MMD.
In terms of kernel evaluations, the above expression reduces to:

‖α− β‖2
Hk = EX,X′∼α[k(X,X ′)] + EX,X′∼β[k(X,X ′)]− 2EX∼α,X′∼β[k(X,X ′)].
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8 Empirical Estimators, Convergence Rates

Suppose we are given n samples {xi}ni=1 drawn iid from α, and m samples {yj}mj=1 drawn iid
from β. How do we estimate some specified divergence D(α, β) given samples?

Let α̂n = 1
n

∑n
i=1 δxi , and β̂n = 1

m

∑m
j=1 δyj . Then, a natural estimator of D(α, β) is simply

D(α̂n, β̂m).

However, for TV distance, and indeed most f -divergences, D(α̂n, β̂m) does not converge to

D(α, β). For instance, ‖α̂n − β̂n‖TV = 1 with probability 1 since the supports of the two
discrete measures will likely not overlap. One needs to devise careful smoothing of these
empirical measures, which forms a large body of work on non-parametric and parametric
estimation of distributions.

But it turns out for Wasserstein distances, just using the empirical distributions suffices.

For X = Rd, and where the measures α, β have support in a bounded set, (Dudley, 1969)
showed that for d ≥ 2, and 1 ≤ p <∞,

E|Wp(α̂n, β̂n)−Wp(α, β)| = O(n−1/d).

It is also possible to prove concentration ofWp(α̂n, β̂n) around its meanWp(α, β) (Weed and
Bach, 2017).

For MMD distances, there is the interesting result that the rate does not depend on the
ambient dimension (Sriperumbudur et al., 2012):

E[‖α̂n − β̂n‖k]− ‖α− β‖k = O(n−1/2).

9 Geodesics

Let P0 and P1 be two distributions. Consider a map c taking [0, 1] to the set of distributions,
such that c(0) = P0 and c(1) = P1. Thus (Pt : 0 ≤ t ≤ 1) is a path connecting P0 and P1,
where Pt = c(t). The length of c, denoted by L(c), is the supremum of

∑m
i=1Wp(c(ti−1), c(ti))

over all m and all 0 = t1 < · · · < tm = 1.

A geodesic connecting P0 and P1 is a path (Pt : 0 ≤ t ≤ 1) with the smallest length. It can
be shown that such a path always exists, and moreover, that for this geodesic path

Pt = Ft#π

where π is the optimal coupling between P0 and P1, and Ft(x, y) = (1− t)x+ ty. Examples
are shown in Figures 4 and 5.
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Figure 4: Top row: Geodesic path from P0 to P1. Bottom row: Euclidean path from P0 to
P1.

Figure 5: Morphing one image into another using the Wasserstein geodesic. Image credit:
Bauer, Joshi and Modin 2015.

10 Robustness

One problem with the Wasserstein distance is that it is not robust. To see this, note that
W(P, (1− ε)P + εδx)→∞ as x→∞.

However, a partial solution to the robustness problem is available due to Alvarez-Esteban,
del Barrio, Cuesta Albertos and Matran (2008). They define the α-trimmed Wasserstein
distance

τ(P,Q) = inf
A
W2(PA, QA)

where PA(·) = P (A ∩ ·)/P (A), QA(·) = Q(A ∩ ·)/Q(A) and A varies over all sets such that
P (A) ≥ 1− α and Q(A) ≥ 1− α. When d = 1, they show that

τ(P,Q) = inf
A

(
1

1− α

∫
A

(F−1(t)−G−1(t))2dt

)1/2

where A varies over all sets with Lebesgue measure 1− α.
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11 Optimal Transport for Classification

Consider the task of binary classification, with response Y ∈ {0, 1}, and input X ∈ X , and
where (X, Y ) ∼ P . The Bayes risk, that is the risk of the Bayes optimal classifier, with
respect to the zero-one loss is given by:

inf
f
P (f(X) 6= Y ).

Suppose P (Y = 1) = P (Y = 0) = 1/2. Note that:

P (f(X) = Y ) = P (f(X) = 1|Y = 1)P (Y = 1) + P (f(X) = 0|Y = 0)P (Y = 0)

=
1

2
+

1

2
(P (f(X) = 1|Y = 1)− P (f(X) = 1|Y = 0))

=
1

2
+

1

2
(PX|Y=1(Af )− PX|Y=0(Af )),

where Af = {x ∈ X : f(x) = 1}. It can thus be seen that:

sup
f
P (f(X) = Y ) =

1

2
+

1

2
sup
A⊆X

(PX|Y=1(A)− PX|Y=0(A))

=
1

2
+

1

2
TV(PX|Y=1, PX|Y=0),

so that

inf
f
P (f(X) 6= Y ) =

1

2
− 1

2
TV(PX|Y=1, PX|Y=0)

=
1

2
− 1

2
Lc0/1(PX|Y=1, PX|Y=0)

where c0/1(x, x′) = I(x 6= x′). Thus, the misclassification error of the Bayes classifier has
a closed form expression in terms of the TV distance, which is the optimal transport dis-
tance under the zero-one cost function, between PX|Y=1 and PX|Y=0. Note that when the
TV distance is one, the supports are disjoint, and hence are perfectly separable, and conse-
quently the Bayes risk is zero. And when the TV distance is zero, so that the two conditional
distributions are indistinguishable, then the Bayes risk is 1/2. The identity above is some-
times called the Lecam identity for binary classification, which Lecam used in turn provide
information-theoretic lower bounds for statistical estimation (by reducing those to binary
and multi-class classification).

This can be extended to adversarial ML settings. Here, at test time, the input x could be
adversarially moved to a nearby x′ ∈ B(x), for some ball B(x) around x, where the aim of the
adversary is to get the classifier to change its decision even with such a small perturbation.
The aim of robust classification then is to learn classifiers that cannot be manipulated by
such adversaries.
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A common adversarial risk is given by:

E(X,Y )∼P sup
X′∈B(X)

P (f(X ′) 6= Y ).

What is the Bayes optimal classifier with respect to the robust classification objective above?
(Bhagoji et al, 2019) showed that Lecam identity could be extended to this robust setting
with the slight modification of the cost from the zero-one cost to the robust cost:

crob(x, x′) = I(B(x) ∩B(x′) = ∅),

which reduces to the standard zero-one loss when B(x) = {x}. They then showed that:

inf
f
E(X,Y )∼P sup

X′∈B(X)

P (f(X ′) 6= Y ) =
1

2
− 1

2
Lcrob(PX|Y=1, PX|Y=0),

which they then used to provide lower bounds on robust misclassification error for simple
parametric classes such as Gaussian distributions for PX|Y=1 and PX|Y=0.

12 Optimal Transport for Clustering

A critical subtask in clustering, and also an important problem in its own right, is to compute
the “mean” or “barycenter” of a set of data points. Given {xj}mj=1 each lying in some space
X with metric d, a general weighted barycenter is defined as:

min
x∈X

∑
j

λj d(x, xj)
p,

for a given set of weights {λj}nj=1, which are typically just set to 1, and where p is typically
set to 2. When X = Rd, and d(x, y) = ‖x − y‖2, this simply leads to the sample mean∑

j λjxj/(
∑

j λj) for p = 2, and the sample median for p = 1.

How could we extend this concept to a set of measures? Suppose {αj}nj=1 are a set of
measures defined on some input space X . We could take the average 1

n

∑n
j=1 αj. But the

resulting average won’t look like any of the αj’s. See Figure 6.

The optimal transport based barycenter is on the other hand defined as:

min
α∈M(X )

∑
j

λj Lc(α, βj).

A natural choice for the cost function is c = d2, so that we would obtain theW2 Wasserstein
barycenter. The bottom right plot of Figure 6 shows an example. You can see that this does
a much better job.
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Figure 6: Top: Five distributions. Bottom left: Euclidean average of the distributions.
Bottom right: Wasserstein barycenter.

The same holds for empirical measures (regarding datasets as empirical measures). See
Figure 7. The average (red dots) n−1

∑
j α̂j of these empirical distributions α̂j is useless.

But the Wasserstein barycenter (blue dots) gives us a better sense of what a typical dataset
looks like.

12.1 KMeans via Optimal Transport

Suppose we are given a single empirical measure β =
∑n

i=1 δxi , where the input space X = Rd

endowed the Euclidean distance metric, and we wish to perform K-means clustering over
these data points. Letting {µj}j∈[K] denote K centroids, and c : {xi}ni=1 7→ [K] denote the
clustering assignment, K-means solves for:

min
µ

min
c

n∑
i=1

‖xi − µc(xi)‖2.

It can be seen that the cluster assignment is a Monge map from {xi}ni=1 to {µj}Kj=1, so that:

min
c

n∑
i=1

‖xi − µc(xi)‖2 =W2(α, µ),
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Figure 7: The top five lines show five, one-dimensional datasets. The red points the what
happens if we simple average the give empirical distributions. The blue dots show the Wasser-
stein barycenter which, in this case, can be obtained simply by averaging the order statistics.

where µ =
∑K

j=1 δµj . Denoting Mk(X ) as the set of distributions with finite support of size
upto k, the overall K-means problem can then be seen to solve for:

min
µ∈Mk(X )

W2(α, µ).

The support of the solution µ are the centroids of k-means, and its weights correspond to
the fraction of points assigned to the corresponding centroid.

13 Optimal Transport for Statistical Estimation

In the general setup of statistical estimation, we are given n samples {xi}ni=1 ⊂ X drawn
from some unknown distribution β, and the goal is to fit a parametric model αθ ∈M(X ) to
the observed empirical measure βn = 1

n

∑n
i=1 δxi :

min
θ∈Θ
L(βn, αθ),

where L is some suitable loss function. When αθ has density ρθ with respect to the Lebesgue
measure, a classical approach is to use the MLE which optimizes the negative log-likelihood:

LMLE(αθ, βn) = −
n∑
i=1

log(ρθ(xi)),
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which as we saw in the decision theory lecture is a sample estimate of the KL divergence
KL(β, αθ) (modulo a constant).

But KL is not suited for settings where the true distribution β is singular, or when the statis-
tical model αθ either does not have a density, or the density is not available in closed form or is
otherwise inaccessible (e.g. due to a difficult to estimate log-partition function/normalization
constant).

In such settings, it is useful to use dual norm based distances instead:

L(αθ, β) = max
f∈B

{∫
X

f(x)dαθ(x)−
∫
X
f(x)dβ(x)

}
,

where B is some set of functions. A natural choice is to use B = {f : Lip(f) ≤ 1}, which
as we saw earlier yields the Wasserstein divergence W1. Unlike KL and similar divergences,
these are suited to singular true distributions, and moreover do not require that αθ have a
readily available density so long as we can optimize the variational problem above.

Thus, we get the following class of estimators as natural extensions of the classical MLE:

θ̂ ∈ arg min
θ
L(αθ, βn).

For instance, in Wasserstein GANs (Arjovsky et al., 2017), they suggest using using the W1

divergence, and the class of distributions αθ = hθ#γ, where γ is some base distribution such
as a standard Gaussian distribution, and hθ is some flexible parametrization such as a deep
neural network.

In their case, they then solve for:

min
θ

max
f∈B
{EX∼βn [f(X)]− EX∼αθ [f(X)]} .

Letting fθ be the optimal Kantorovich potential for a given αθ, by an application of an
envelope theorem (Milgrom, Segal, 2002), and the reparameterization trick, it follows that
the gradient of the objective with respect to θ can be written as

∇θL(βn, αθ) = −EZ∼γ∇θfθ(hθ(Z)),

which thus facilitates easily optimization.

In some cases we do not even have access to a parametric generative model for αθ. Instead,
we can simulate from it. This happens quite often, for example, in astronomy and climate
science. In such settings, we can again replace the MLE with minimum Wasserstein distance,
as was suggested in such contexts by Berntom et al (2017). That is, given data {xi}ni=1 ∼ β,
we can solve for:

θ̂ = argmin
θ
W(αθ, βn),

where we approximate αθ via the empirical measure αθ,m = 1
m

∑m
j=1 δzj , where {zj}mj=1 ∼ αθ.
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14 Optimal Transport for Domain Adaptation

An interesting and natural application of optimal transport is to domain adaptation. Suppose
we have two data sets D1 = {(X1, Y1), . . . , (Xn, Yn)} and D2 = {(X ′1, Y ′1), . . . , (X ′N , Y

′
N)} from

two related problems. We want to construct a predictor for the first problem. We could use
just D1. But if we can find a transport map T that makes D2 similar to D1, then we can
apply the map to D2 and effectively increase the sample size for problem 1. This kind of
reasoning can be used for many statistical tasks.

15 Summary, References

Wasserstein distance has many nice properties and has become popular in statistics and
machine learning. But the distance does have problems. First, it is hard to compute.
Second, the distance is not a smooth functional which is not a good thing. We have also
seen that the distance is not robust although the trimmed version may fix this.
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