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1 Preliminaries

Consider the supervised learning setting, with input random variable X ∈ X ⊆ Rd, output
random variable Y ∈ Y , and observations S = {(xi, yi)}ni=1 drawn from a distribution Pdata

over X × Y . Let P̂data denote the empirical distribution over the samples. We also have a
set H of hypothesis functions h : X 7→ Y from which we wish to learn the best predictor.
We evaluate the goodness of a predictor via a loss function ` : Y × Y 7→ R, with true risk:

R(h) = EPdata
`(h(x), y),

which we can approximate via the empirical risk (since it is decomposable):

R̂(h) = EP̂data
`(h(x), y),

where

EP̂data
(f(x, y)) =

1

n

n∑
i=1

f(xi, yi).

In the risk definitions above, we suppress the dependence on the underlying data distribution
(which is the underlying state of nature), and our goal is to extract the functional of the
state of the nature as captured by the minimizer of the true risk. And since the true risk
is decomposable, we can approximate the true risk minimizer pointwise (that is, for any
underlying data distribution) by minimizing the empirical risk.

So far so good, but what if the decision-theoretic setup above does not fully capture what
we want to extract from the state of nature (i.e. the underlying data distribution)? Say
we do get a hypothesis h that has low expected risk. But does it also have low tail risk:
meaning that the risk is not just low in expectation, but also some higher-level quantile of
the risk is low? We might also want h to be robust to distribution shift, fair, resistant to
adversarial attacks, robust in the presence of outliers, to name a few additional desiderata.
None of these are changing the loss function ` : Y × Y 7→ R used above, but what they do
require is changing how we define our risk. It requires re-examining our decision-theoretic
fundamentals (that we largely took for granted in recent years in ML).
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2 Responsible AI Desiderata

It turns out that each of these additional requirements do not have a unique characteriza-
tion, and there are rich sub-fields dedicated to each of these requirements. These sub-fields
are sometimes collated under the umbrella of “Fairness, Accountability, and Transparency
(FAccT)” and more recently as “responsible AI”. (That means that anything outside that
umbrella is possibly irresponsible AI!) Many organizations are increasingly advocating the
use of responsible AI models [Microsoft, 2021, Google, 2020].

Let us consider each of these separately.

2.1 Distribution shift

In distribution shift, the “test” distribution with respect to which the test risk will be defined
is different from the “train” distribution Pdata available to us at training. This immediately
poses a challenge to the typical approach of minimizing true risk with respect to Pdata.
We should be minimizing the true risk with respect to the test distribution instead! The
problem being we typically do not have access to the test distribution even in the form of
samples. Obviously if the test distribution can be arbitrarily specified, bounding the test
risk is impossible in general, so researchers have formalized several possible restrictions. This
setting is broadly referred to as out-of-distribution (OOD) generalization, and was classically
explored in a setting where there is a single “source” training distribution and a different
“target” test distribution. There has been considerable recent interest in moving beyond
a single source distribution, instead assuming that the set of training data is comprised of
a collection of “environments” [Blanchard et al., 2011, Muandet et al., 2013, Peters et al.,
2016] or “groups” [Hu et al., 2018, Duchi et al., 2019, Sagawa et al., 2020], each representing
a distinct distribution, where the group identity of each sample may be known. Such a
setting is referred to as domain generalization. The hope is that by cleverly training on such
a collection of groups, one can derive a robust predictor which will better transfer to unseen
test data which relates to the observed distributions.1 A critical question then is how future
test distributions depend on these groups and how to learn predictors with good performance
on these distributions.

To set things up, suppose the training set comprises a set of distinct domains E = {ei}Ei=1,
each of which indexes a probability distribution pe, and that the test environment will relate
to these domains in some pre-specified way. Let us denote the set of such possible test
distributions by Etest. We can then cast the learner’s goal as minimizing the worst-case error
over the possible test distributions Etest. For a set of predictors F and loss `, our goal is
thus to solve the objective

1Throughout this work, we use the terms “domain”, “distribution”, and “environment” interchangeably.
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min
f∈F

max
e∈Etest

Ee[`(f)].

Given a collection of environments, there are many possible ways to specify Etest. One natural
choice is Etest = E , so that the test environment could be an adversarially chosen single
environment (i.e. the environment can pick that one single environment where the model
performs the worst.) The min-max objective in that case is known as Group DRO Duchi
et al. [2019], Sagawa et al. [2020]. This also arises in contexts of fairness as we will see in
the sequel.

Another natural choice is the set of all convex combinations (i.e., mixtures) of source envi-
ronments:

pλ :=
∑
e∈E

λep
e, (1)

where λ ∈ ∆E is a vector of convex coefficients (∆E is the (E − 1)-simplex). We will denote
this convex hull Conv(E).

This min-max objective is mathematically equivalent to Group DRO. This is because for
any predictor, the optimal choice for the adversary will be whichever training environment
produces the highest risk; that is, the adversary will always play a vertex of the simplex, so
the region Etest remains discrete. It is easy to see the equivalence of interpolation and the
discrete game:

min
f∈F

max
e∈Conv(E)

Ee[`(f)] = min
f∈F

max
e∈E

Ee[`(f)].

We note that in some prior work on Group DRO, learning models that minimize worst-case
sub-population risk is indeed the goal—that is, they only care about test domains that match
one of the source domains. In the broader domain generalization literature, however, they
do consider this form of interpolation, but as we can see from the above, and as also shown
in recent work, this does provides any additional constraint beyond group DRP on OOD
learning without additional regularization [Hu et al., 2018].

We can also cast the task of domain generalization as a continuous game of online learning
in which the player is presented with sequential test domains and must refine their predictor
at each round. We’re therefore interested in the player’s ability to learn continuously and
improve in each round. We would expect that any good learning algorithm will suffer less
per distribution as we observe more of them—that is, the per-round regret should decrease
over time. Specifically, we’d like to prove a rate at which our regret goes down as a function
of the number of distributions we’ve observed.

The full game is described in Algorithm 2.1.

Game Setup Before the game begins, we define a family of predictors f ∈ F . For some
observation space X and label space Y , nature provides a fixed loss function ` : F×(X×Y)→
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Algorithm 1 : Domain Generalization Game (likelihood reweighting)

Input: Convex parameter spaceB, distributions {pe}e∈E over X×Y , loss ` : F×(X×Y)→
R.
for t = 1 . . . T do

1. Player chooses hypothesis ft ∈ F .
2. Adversary chooses coefficients λt ∈ ∆|E|.
3. Define Lt(f) := E(x,y)∼pλt [`(f, (x, y))] =

∑
e∈E λt,eE(x,y)∼pe [`(f, (x, y))].

end for
Player suffers regret

RT =
T∑
t=1

Lt(ft)−min
f∈F

T∑
t=1

Lt(f).

R, as well as a set of E environments E = {ei}Ei=1, each of which indexes a distribution pe

over X × Y . The game proceeds as follows:

On round t, the player chooses parameters ft ∈ F . Next, the adversary chooses a set of
coefficients λt := {λt,e}e∈E , which defines the distribution pλt as the weighted combination
of the distributions of the environments in E with coefficients λt, as in Equation 1. We
assume that every choice of λ by the adversary is a set of convex coefficients, which ensures
that pλt is a valid probability distribution. At the end of the round, the player suffers loss
Lt(ft) = Rλt(ft), defined as the risk of the predictor ft on the adversary’s chosen distribution:

Rλt(f) := E(x,y)∼pλt [`(f, (x, y))]

As in standard online learning, our goal is to minimize regret with respect to the best fixed
predictor in hindsight after T rounds. That is, we hope to minimize

T∑
t=1

Lt(ft)−min
f∈F

T∑
i=1

Lt(f). (2)

As we saw in the learning and games lectures, we can achieve sub-linear regret using FTRL
strategies (if the losses Lt are convex, if not, we can achieve sub-linear expected regret via
FTRL in probability space). Recall that this takes the form:

ft = arg min
f∈F

t−1∑
s=1

Ls(f) + ηR(f),

for some strongly convex regularizer R(·). It is instructive to see the strong similarity of
this to regularized pooled ERM: where we pool the data from all environments together and
learn a pooled model via ERM. Here, instead of individual environments, we pool a set of
adversarially chosen interpolated distributions pλt .
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2.2 Sub-population Shift

A particular instance of the above is where the training data is a specific mixture of some
sub-populations, so that

Pdata = pλtrain ,

and where {pe}e∈E are the sub-population distributions. This arises naturally in fairness [Hashimoto
et al., 2018, Hu et al., 2018, Sagawa et al., 2019, Zhai et al., 2021], where we want to ensure
that the performance on the worst-performing group is maximized. This is a specific notion
of fairness known as minimax group fairness. There are many other notions of fairness such
as individual fairness [Dwork et al., 2012, Zemel et al., 2013], group fairness notions such as
Demographic Parity, Equality of Odds, Equality of Opportunity [Hardt et al., 2016, Zafar
et al., 2017], counterfactual fairness [Kusner et al., 2017], and Rawlsian max-min fairness
[Rawls, 2020, Hashimoto et al., 2018], among others [Barocas et al., 2017, Chouldechova
and Roth, 2018, Mehrabi et al., 2021]. It’s an interesting open problem to cast all of these
disparate notions under one umbrella.

Another application of sub-population shift is learning on class-imbalanced datasets [Cao
et al., 2019, Menon et al., 2021, Kini et al., 2021]. Suppose there are K classes, then we
would have the K sub-populations: p(X|Y = e), for e ∈ [K]. Let us define the class-
conditional risk:

Re(f) = EX∼pe [`(f(X), e),

given a classifier f : X 7→ [K] and some loss function ` : [K] × [K] 7→ R (for instance the
zero-one loss). It can be seen that the usual expected risk is given as:

R(f) =
∑
e∈[K]

peRe(f),

where pe = P [Y = e]. But this is not as useful a measure when some of the classes are
imbalanced. If pe is relatively small, R(f) is not going to be affected a lot by Re(f). In such
a case, we might be more interested in the worst case risk:

max
e∈[K]

Re(f),

which however need not correspond to the Bayes optimal classifier (which minimizes the
expected risk).

2.3 Distributionally Robust Optimization (DRO)

Suppose the samples we see are not coming from the “true” distribution, but from a noisy
variant of it. In that case, a natural estimator would not minimize expected risk but take
this noisiness of the distribution into account. A natural approach is what is known as
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Distributionally Robust Optimization (DRO). Suppose P is the noisy distribution to which
we have sampling access, but is not the true distribution Q of which all we know is that it
satisfies D(Q,P ) ≤ ρ, for some divergence D. Then DRO computes the worst-case risk over
such plausible true distributions:

max
{
Q : D(Q,P ) ≤ ρ}EZ∼Q`(f, Z),

DRO has been studied under various uncertainty sets including f -divergence based uncer-
tainty sets [Namkoong and Duchi, 2017, Duchi and Namkoong, 2018, Sagawa et al., 2019],
Wasserstein uncertainty sets [Sinha et al., 2017, Gao et al., 2022], Maximum Mean Discrep-
ancy uncertainty sets [Staib and Jegelka, 2019], more general uncertainty sets in the RKHS
space [Zhu et al., 2020].

2.3.1 Tail Risk

In expected risk, we care about the predictor that performs well on average. Suppose I tell
you that one pond you are thinking of crossing is 2 feet deep on average, and suppose you
don’t know how to swim. And another pond is 3 feet deep on average. Does this tell you
enough about which pond to cross without getting drowned? No, it doesn’t. Because what
you care about how deep the pond is at its deepest, not its average depth. Similarly, in
high-stakes settings, we may care about the model performance in the the tails of the risk
distribution.

A popular choice, known as Conditional Value at Risk (CVAR) is to focus on the worst-alpha
proportion of the data:

max
Q:P=αQ+(1−α)Q′

R(f,Q).

Let us consider the sample setting where P is simply the uniform distribution over the n
training samples S. In such a case, we can write the above as:

max
w:‖w‖0≤nα,w∈∆n

n∑
i=1

wi`(f, Zi).

This in turn is commonly relaxed to the convex set:

max
w:‖w‖infty≤1/(nα),w∈∆n

n∑
i=1

wi`(f, Zi),

and is in fact also commonly referred to as the CVAR risk.
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2.4 Boosting

Recall the boosting game, where we aimed to solve for the classifier f that minimizes the
max loss over distributions over the n training samples S:

max
w∈∆n

n∑
i=1

wi`(f, Zi).

The problem with this is that if there is a single noisy sample, or a single sample where the
predictor f is bad, we are giving it the maximum possible risk. This is too conservative.
One way to address is a softening of this:

max
w∈∆n :KL(w‖Unif([n]))≤ρn

wi`(f, Zi).

2.5 Adversarial Robustness

It is natural to expect that if we perturb the test input by an infinitesimal amount, for
instance by changing a few pixels in an input image, the output of the model should not
change. This however turned to not be the case for many state of the art deep neural
network models [Goodfellow et al., 2015, Szegedy et al., 2013], which led to a decade long
quest to learn models that are robust to such perturbations. This is referred to as adversarial
robustness, since the perturbations can be adversarially chosen. We can cast the learning
of adversarially robust models as a two player game: the adversary outputs a perturbation
function that maps each data point to a perturbation, and the learner selects a model.
Alternatively, we aim to minimize the adversarial risk:

E(X,Y )∼P max
X′:d(X,X′)≤ε

`(f(X ′), Y )),

for some perturbation distance d : X × X 7→ R. It turns out that this can be compactly
stated as:

EQ:Wd(P,Q)≤εE(X,Y )∼Q`(f(X), Y )),

where Wd is the 1-Wasserstein distance with cost d.

3 RAI Risk

Our development here follows Gupta et al. [2023]. Given a set of samples {(xi, yi)}ni=1, we de-

fine the class of empirical RAI risks (for Responsible AI risks) as: R̂Wn(h) = supw∈Wn
Ew(h(x), y),
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where Wn ⊆ ∆n, is some set of sample weights (a.k.a uncertainty set), and Ew(f(x, y)) =∑n
i=1 wif(xi, yi).

It can be seen that the examples we discussed above are all instances of RAI risks, for
different uncertainty sets Wn.

Given the empirical RAI risk R̂Wn(h) of a hypothesis, and set of hypotheses H, we naturally

wish to obtain the hypothesis that minimizes the empirical RAI risk: minh∈H R̂Wn(h). This
can be seen as solving a zero-sum game.

Definition 1 (RAI Games) Given a set of hypothesis H, and a RAI sample weight set
Wn, the class of RAI games is given as: minh∈H maxw∈Wn Ew(h(x), y).

We now know that in many high-stakes settings, what we want to minimize is not the
expected risk but a RAI risk. Accordingly, there has been a lot of effort over the past decade
in developing algorithms to solve such RAI games. Unfortunately the RAI game above need
not have a Nash Equilibrium in general, and their min-max and max-min game values need
not coincide, so that this is a difficult problem to solve. Particularly so when the hypothesis
class is large, such as deep neural networks. Accordingly, there are heuristic approaches to
solve these, which however turn out to not be as responsible as we might hope. This has
seen the most development likely in adversarial robustness, where there are “defenses” which
are heuristic approaches to solve the RAI game, and “attacks” which essentially provide a
witness that they haven’t actually solved the game well.

For example, Adversarial Training [Madry et al., 2018] (AT) is a notable technique that
trains a robust model by two alternative steps: 1) finding adversarial examples of training
data against the current model; 2) updating the model to correctly classify the adversarial
examples and returning to step 1). This procedure can be connected to an alternating best-
response strategy in the 2-player zero-sum RAI game. However, [REF] show that even in
simple settings, the alternating best-response strategy may not converge.

What do we do? From the learning and games lecture, we know that one strategy is to solve
the linearized problem instead. There is also a statistical, rather than purely computational
reason to do so. Looking at the definition of the RAI game, good worst-case performance
over the sample weight set Wn is generally harder, and for a simpler set of hypotheses H,
there may not exist h ∈ H that can achieve such good worst-case performance. Thus it is
natural to consider deterministic ensemble models over H, which effectively gives us more
powerful hypothesis classes.

Given a hypothesis class H, a randomized ensemble is specified by some distribution
Q ∈ ∆H , and is given by: P[hrand;Q(x) = y] = Eh∼QI[h(x) = y]. Similarly, we can define its

corresponding randomized ensemble RAI risk: R̂rand;Wn(Q) = maxw∈Wn Eh∼QEw`(h(x), y).

We can then also define the class of ensemble RAI games:
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Definition 2 (Randomized Ensemble RAI Games) Given a set of hypothesis H, a RAI
sample weight set Wn, the class of mixed RAI games is given as:

min
Q∈∆H

max
w∈Wn

Eh∼QEw`(h(x), y). (3)

This is a much better class of zero-sum games: it is linear in both the hypothesis distribution
P , as well as the sample weights w, and if the sample weight set Wn is convex, is a convex-
concave game. And under some mild conditions [REF], this game can be shown to have a
Nash equilibrium (i.e. a mixed Nash equilibrium of the original RAI game).

One caveat with this is that in practice, the randomized ensemble risk is not what we will
be evaluated by. In practice, we are expected to provide a deterministic prediction, and we
will be evaluated by the loss of that prediction. In particular, when we talk about ensemble
classifiers, we typically do not have a randomized ensemble in mind, rather what we are
talking about is a deterministic ensemble.

Given a hypothesis class H, a deterministic ensemble is specified by some distribution Q ∈
∆H , and is given by: hdet;Q(x) = arg maxy∈Y Eh∼QI[h(x) = y].

Alternative definitions for deterministic ensembles could be considered. For example, one
could consider hdet;Q(x) = arg miny∈Y Eh∼Q`(h(x), y). [Cotter et al., 2019, Wu et al., 2022]
designed other more sophisticated strategies, but these are largely domain dependent. How-
ever the definition above is the most standard. For regression, a popular de-randomization
strategy is to compute the expected prediction: hdet;Q(x) = Eh∼Q[h(x)].

Correspondingly, we can write the deterministic ensemble RAI risk as R̂Wn(hdet;Q(x)) =
maxw∈Wn Ew`(hdet;Q(x), y). This admits a class of deterministic RAI games:

Definition 3 (Deterministic Ensemble RAI Games) Given a set of hypothesis H, a
RAI sample weight set Wn, the class of RAI games for deterministic ensembles over H is
given as:

min
Q∈∆H

max
w∈Wn

Ew`(hdet;Q(x), y).

However, the aforementioned game is computationally less amenable because of the non-
smooth nature of de-randomized predictions. Moreover, they need not have a Nash Equi-
librium (NE), and in general, their min-max and max-min game values need not coincide.
This poses challenges in solving the games efficiently. Which was the key reason we wanted
to move to ensemble RAI games in the first place.

Interestingly, for the very specific case of binary classification, we can provide simple rela-
tionships between the risks of the randomized and deterministic ensemble.
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Proposition 4 Consider the setting with Y = {−1, 1}, the zero-one loss `, and Wn = ∆n.
Then,

R̂Wn(hdet;Q) = I[R̂Wn(hrand;Q) ≥ 1/2].

Proof.

sup
w∈∆n

ÊwI[hdet;Q(x) 6= y] = sup
i∈[n]

I[yi 6= arg max
y∈Y

EQ[h(xi) = y]]

= I[ sup
w∈∆n

EwEQI[h(x) 6= y] ≥ 1/2]

= I[R̂Wn(hrand;Q) ≥ 1/2]

as required. � In this case, we can also relate the existence of a perfect deterministic ensemble
(“boostability”) to a weak learning condition on the set of hypotheses. Specifically, suppose

H is boostable iff there exists Q ∈ ∆H s.t. R̂Wn(hdet;Q) = 0. From the above proposition

this is equivalent to requiring that R̂Wn(hrand;Q) < 1/2. We thus obtain:

inf
Q∈∆H

sup
w∈Wn

Ew,Q`(h(x), y) < 1/2 ⇐⇒ sup
w∈Wn

inf
h∈H

Ew`(h(x), y) < 1/2

where the equivalence follows from the min-max theorem and the linearity of the objective
in P . The last statement says that for any sample weights w ∈ Wn, there exists a hypothesis
h ∈ H that has w-weighted loss at most 1/2. We can state this as a “weak-learning”
condition on individual hypotheses in H. The above thus shows that for the specific case of
Y = {−1, 1}, the zero-one loss `(y, y′) = I[y 6= y′], and Wn = ∆n, we can relate boostability
of H to a weak learning condition on hypothesis within H.

General Classification But in general, we do not have simple connections between
R̂Wn(hdet;Q) and R̂Wn(hrand;Q). All we can guarantee is the following upper bound:

Proposition 5 Let γQ = 1/mini∈[n] maxy∈Y PQ[h(xi) = y]. Then,

R̂Wn(hdet;Q) ≤ γQR̂Wn(hrand;Q).

Corollary 6 For binary classification, we have γP ≤ 2 and thus, we recover the well known
bound R̂Wn(hdet;Q) ≤ 2R̂Wn(hrand;Q)
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Proof. Denote yQ(x) = arg maxy∈Y EQ(h(x) = y). Then,

R̂Wn(hdet;Q) = sup
w∈Wn

Ew`(yQ(x), y)

≤ sup
w∈Wn

Ew`(yQ(x), y)
PQ(h(x) = yQ(x))

1/γQ

≤ γQ sup
w∈Wn

Ew
∑
y′∈Y

`(y′, y)PQ(h(x) = y′)

= γQ sup
w∈Wn

EwEQ
∑
y′∈Y

`(y′, y)I[h(x) = y′]

= γQ sup
w∈Wn

EwEQ`(h(x), y)

= γQR̂Wn(hrand;Q),

as required. �

Note that these bounds might be loose in practice. Specifically, for the binary case, if
R̂Wn(hrand;Q) ≤ 1

2
then we have R̂Wn(hdet;Q) = 0. To this end, prior work [Lacasse et al., 2006,

Germain et al., 2015, Masegosa et al., 2020] have developed tighter bounds using second-
order inequalities. Note that these might suggest second-order RAI games, which might be
a good course project for an intrepid team. As such, we can cast minimizing randomized
RAI risk as minimizing an upper bound on the deterministic ensemble RAI risk. Thus, the
corresponding randomized RAI game can be cast as a relaxation of the deterministic RAI
game. In the sequel, we thus focus on this randomized ensemble RAI game, which we can
then use to obtain a deterministic ensemble. Following the bounds above, the corresponding
deterministic ensemble risk will be bounded by the randomized ensemble RAI risk.

4 Algorithms

For simplicity, assume H is a finite set, though the results extend to uncountable sets.

The first class of algorithms are game play based algorithms, where both the min and the
max players are engaged in a repeated game against each other. Both players rely on low-
regret algorithms to decide their next action. As we have seen, such a procedure converges
to a mixed NE of the game Cesa-Bianchi and Lugosi [2006]. In the tth round, the following
distribution wt ∈ W is computed over the training data points (which is an Follow-The-
Regularized-Leader (FTRL) update):

wt ← argmax
w∈Wn

t−1∑
s=1

Ew`(hs(x), y) + ηt−1Reg(w) (4)
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Here, Reg(·) is a strongly concave regularizer and ηt−1 is the regularization strength. One
popular choice for Reg(·) is the negative entropy which is given by −

∑
iwi logwi. This reg-

ularizer is also used by AdaBoost, which is a popular boosting algorithm. Below, we provide
analytical expressions for wt for various choices of Wn,Reg(·). Recall that the regularizer in
the FTRL update ensures the stability of the updates; i.e., it ensures consecutive iterates
do not vary too much. This stability is naturally guaranteed when Wn is a strongly convex
set (an example of a strongly convex set is the level set of a strongly convex function. Con-
sequently, the regularization strength ηt−1 could be set to 0 in this case, and the algorithm
still converges to a NE [Huang et al., 2017].

• Wn = {P̂data} (Empirical Risk Minimization)

wt ← P̂data

• Wn = ∆n (Worst Case Margin)

wt ← ut

‖ut‖1

where uti ← exp

(
−
∑t−1

s=1 l(h
s(xi), yi)

ηt−1

)

• Wn = {w : w ∈ ∆n, w � 1
αn
} (α-CVaR)

wti ← min

(
1

αn
, exp

(
−
∑t−1

s=1 l(h
s(xi), yi)

ηt−1
− λ

))
for λ S.T.

∑
i

wti = 1

• Wn = {w : D(w||P̂data) ≤ ρn} (DRO) For general f -divergences, there do not exist
closed form updates for wt. However, they can still be empirically solved using FW-like
updates.

• Wn = {P̂data(G1), P̂data(G2), . . . P̂data(GK)} (Group DRO)

wt ← ut

‖ut‖1

where uti ← exp

(
−
∑t−1

s=1

∑
i∈Gk l(h

s(xi), yi)

ηt−1sk

)
for i ∈ Gk, sk = |Gk|

Once we have wt, a new classifier ht is computed to minimize the weighted loss relative to wt,
and added to the ensemble. This update is called the Best Response (BR) update. Learning
ht in this way helps us fix past classifiers’ mistakes, eventually leading to an ensemble with
good performance.
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Algorithm 2 Game play algorithm for solving mixed RAI game

Input: Training data {(xi, yi)}ni=1, loss function `, constraint set Wn, hypothesis set H,
strongly concave regularizer R over Wn, learning rates {ηt}Tt=1

1: for t← 1 to T do
2: FTRL: wt ← argmaxw∈Wn

∑t−1
s=1 Ew`(hs(x), y) + ηt−1Reg(w)

3: BR: ht ← argminh∈H Ewt`(h(x), y)
4: end for
5: return P T = 1

T

∑T
t=1w

t, QT = Unif{h1, . . . hT}

Just as we saw in the boosting lecture notes, we can also take a purely optimization theoretic
viewpoint to design algorithms for solving the mixed RAI game. Let L(Q) denote the inner
maximization problem of (3): L(Q) := maxw∈Wn Eh∼QEw`(h(x), y). When L(Q) is smooth
(this is the case when Wn is a strongly convex set), one could use Frank-Wolfe (FW) to
minimize it. The updates of this algorithm are given by

Qt ← (1− αt)Qt−1 + αtG, where G = argmin
Q

〈
Q,∇QL(Qt−1)

〉
.

Here, ∇QL(Qt−1) = argmaxw∈Wn
Eh∼Qt−1Ew`(h(x), y). This algorithm is known to converge

to a minimizer of L(Q) at O(1/t) rate [Jaggi, 2013]. When L(Q) is non-smooth, we first need
to smooth the objective before performing FW. In this work we perform Moreau smooth-
ing [Parikh et al., 2014], which is given by

Lη(Q) = max
w∈Wn

Eh∼QEw`(h(x), y) + ηReg(w). (5)

Here Reg(·) is a strongly concave regularizer. If Reg(·) is 1-strongly concave, it is well known
that Lη(Q) is O(1/η) smooth. Once we have the smoothed objective, we perform FW to
find its optimizer (see Algorithm 3 for pseudocode).

Relaxing the simplex constraint. We can obtain a slightly different algorithm by relaxing
the simplex constraint on Q. Using Lagrangian duality we can rewrite minQ∈∆H

Lη(Q) as
the following problem for some λ ∈ R

min
Q�0

Lη(Q) + λ
∑
h∈H

Q(h).

One interesting observation is that when Wn is the entire simplex and when λ = −1/2, we
recover the AdaBoost algorithm. Given the practical success of AdaBoost, we extend it to
general Wn. In particular, we set λ = −1/2 and solve the resulting objective using greedy
coordinate-descent. The updates of this algorithm are given in Algorithm 3.

Remark 7 Algorithm 3 takes the step sizes {αt}Tt=1 as input. In practice, one could use line
search to figure out the optimal step-sizes, for better performance.
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Algorithm 3 Greedy algorithms for solving Equation (3)

Input: Training data {(xi, yi)}ni=1, loss function `, constraint set Wn, hypothesis set H,
strongly concave regularizer R over Wn, regularization strength η, step sizes {αt}Tt=1

1: for t← 1 to T do
2: Gt = argminQ 〈Q,∇QLη(Q

t−1)〉
3: FW: Qt ← (1− αt)Qt−1 + αtGt / Gen-AdaBoost: Qt ← Qt−1 + αtGt

4: end for
5: return QT
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