
Causality
10716, Advanced ML

Pradeep Ravikumar (with some notes from Larry
Wasserman)

Prediction and causation are very different. Typical questions are:

Prediction: Predict Y after observing X = x
Causation: Predict Y after setting X = x.

Causation involves predicting the effect of an intervention. For example:

Prediction: Predict health given that a person takes vitamin C
Causation: Predict health if I give a person vitamin C

The difference between passively observingX = x and actively intervening and settingX = x
is significant and requires different techniques and, typically, much stronger assumptions.
This is the area known as causal inference.

For years, causal inference was studied by statisticians, epidemiologists and economists.
The machine learning community was largely uninterested. This has changed. The ML
community now has an active research program in causation. This is because it is now
recognized that many problems that were once treated as prediction problems are actually
causal questions. Questions like: “If I place this ad on a web page, will people click on it?”
and “If I recommend a product will people buy it?” are causal questions, not predictive
questions.

1 Preliminaries

Before we jump into the details, there are a few general concepts to discuss.

1.1 Two Types of Causal Questions

There are two types of causal questions. The first deals with questions like this: do cell
phones cause brain cancer? In this case, there are variables X and Y and we want to know
the causal effect of X on Y . The challenges are: formalize the causal influence of X on Y
via some parameter θ and find a way to estimate θ. This is usually what we mean when we
refer to causal inference.

The second question is: given a set of variables, determine the causal relationship between
the variables. This is called causal discovery.
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1.2 Two Types of Data

Data can be from a controlled, randomized experiment (or more generally from interven-
tions, which we will define shortly) or from an observational study. In the former, X is
randomly set for the various subjects. In the latter, it is not randomly set. In randomized
experiments, causal inference is straightforward. In observational (non-randomized) studies,
the problem is much harder and requires stronger assumptions and also requires subject
matter knowledge. Statistics and Machine Learning cannot solve causal problems without
background knowledge.

1.3 Two Languages for Causation

There are two different mathematical languages for studying causation. The first is based
on potential outcomes. The second is based on structural causal models. It will not seem
obvious at first, but the two are mathematically equivalent (apart from some small details).

1.4 Example

Consider this story. A mother notices that tall kids have a higher reading level than short
kids. The mother puts her small child on a device and stretches the child until he is tall.
She is dismayed to find out that his reading level has not changed.

The mother is correct that height and reading skill are associated. Put another way, you
can use height to predict reading skill. But that does not imply that height causes reading
skill. This is what statisticians mean when they say:

correlation is not causation.

On the other hand, consider smoking and lung cancer. We know that smoking and lung
cancer are associated. But we also believe that smoking causes lung cancer. In this case,
we recognize that intervening and forcing someone to smoke does change his probability of
getting lung cancer.

1.5 Prediction Versus Causation

The difference between prediction (association/correlation) and causation is this: in predic-
tion we are interested in

P(Y ∈ A|X = x)
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which means: the probability that Y ∈ A given that we observe that X is equal to x. For
causation we are interested in

P(Y ∈ A|set X = x)

which means: the probability that Y ∈ A given that we set X equal to x. Prediction is
about passive observation. Causation is about active intervention. The phrase correlation
is not causation can be written mathematically as

P(Y ∈ A|X = x) 6= P(Y ∈ A|set X = x).

Despite the fact that causation and association are different, people confuse them up all the
time, even people trained in statistics and machine learning. On TV recently there was a
report that good health is associated with getting seven hours of sleep. So far so good. Then
the reporter goes on to say that, therefore, everyone should strive to sleep exactly seven
hours so they will be healthy. Wrong. That’s confusing causation and association. Another
TV report pointed out a correlation between people who brush their teeth regularly and low
rates of heart disease. An interesting correlation. Then the reporter (a doctor in this case)
went on to urge people to brush their teeth to save their hearts. Wrong!

To avoid this confusion we need a way to discuss causation mathematically. That is, we need
someway to make P(Y ∈ A|set X = x) formal. We will be looking at two ways to do this:
potential outcomes, and structural causal models. There are two different languages
for saying the same thing.

Causal inference is tricky and should be used with great caution. The main messages are:

1. Causal effects can be estimated consistently from randomized experiments.

2. It is difficult to estimate causal effects from observational (non-randomized) experi-
ments.

3. All causal conclusions from observational studies should be regarded as very tentative.

2 Introduction

So far we have studied statistical models. Given such a statistical model, one could use
probabilistic reasoning to deduce likely observations and outcomes. And conversely, given a
set of observations and outcomes, one could then use statistical learning to infer the likely
underlying statistical model. But in the real world, we do not just have passively observed
data, but also outcomes of active interventions. The counterpart of statistical models here is
a causal model. We could use causal reasoning to infer the likely outcomes of interventions
and changes to the environment, and conversely, use causal learning to learn such causal
models given data comprising passive observations as well as actively intervened outcomes.
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2.1 Interventions and Counterfactuals

The key distinction between statistical and causal setting arises from outcomes of interven-
tions. An intervention comprises simply of setting a variable to a particular value. We often
assume this is an ideal intervention: where we set the value of a specific variable without
“setting” values of other variables immediately. There could still be causal effects conse-
quently, which we are actually interested in measuring. Interventions might not be possible
per se. For instance, we cannot simply instantaneously intervene on age of a person.

As we will see counterfactuals are a slightly more subtle notion: here, we do observe the
value of the specific variable, but want to reason about the outcome if we set the variable
to some other value. This results in some slightly different conclusions, as we will see in the
sequel. But what is the connection between a causal model and a statistical model? The
following important principle could be viewed as providing one such link.

2.2 Hierarchy of Models

We thus have the following hierarchy of mathematical models for reasoning in complex en-
vironments. A statistical model can answer observational queries, but not interventional, or
counterfactual queries.
A causal graphical model can answer both observational and interventional queries, but not
counterfactual ones.
A structural causal model can answer observational, interventional, as well as counterfactual
queries.
Mechanistic or Physical Models can not only all of above queries, but moreover have com-
ponents that can be mapped to the real world, so that they additionally provide “scien-
tific/physical insight”.

2.3 Causal vs Statistical Models

Thus, a causal model could be viewed as subsuming a statistical model, just as the corre-
sponding set of outcomes, both passive and active, subsumes the set of passively observed
outcomes.

Definition 1 (Reichenbach’s Common Cause Principle) If two random variables X
and Y are statistically dependent, then there exists a third random variable Z that is a
common cause (possibly coinciding with either X or Y ), such that X ⊥⊥ Y |Z.
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Remark: Spurious Dependences. Note that in some cases where we only observe the
random variables via a finite set of samples from their corresponding distributions, it is
possible for there to be a spurious observed dependence: the principle above then does
not apply. When we do not have iid data, and instead see samples from two time-varying
stochastic processes, then it might seem that the two variables are dependent. This is for
instance what leads people to claim analogues of the increasing number of Shrek movies
being associated with global warming. In such a case, we could view time itself as a common
cause. In certain cases, the samples we observe of X and Y are implicitly conditioned on
a specific value of some other variable Z. When this conditioning variable is a downstream
“effect” of X and Y , then we know that this results in observed conditional dependence of
X and Y : this is also called selection bias. In this case again the Reichenbach’s principle
does not apply, since we do not observe marginal dependence of X and Y .

Time and Causality. In certain accounts, causality is intrinsically associated with time
in the sense that the effect variable is observed after the cause variable. However, it is
not necessary we incorporate time in our causal modeling machinery. It could be that the
observations cannot be mapped to specific time, or might even be equilibrium observations.
For instance, consider motivation as cause, and grades as the effect: the former cannot be
mapped to a specfic time instance. Mapping to time is most common in hard sciences such
as physics and chemistry.

3 Independent Mechanisms

Consider the two variables: altitude, denoted by A, and temperature denoted by T . By the
chain rule, we can express P (A, T ) = P (A)P (T |A) or as P (A, T ) = P (T )P (A|T ). Suppose
we are interested in determining which is the cause and which is the effect among these two
variables. One way to do so is to intervene on either A or T , and observe the effects. If A
were the cause, intervening on A would mean we observe changes in the effect T . On the
other hand, if A were the effect, intervening on A would mean we do not observe changes to
the cause T . To formalize this, we need a notion of “independence of mechanisms”.

One way to restate above is that if A were the cause, we would expect that P (A) and
P (T |A) are “independent mechanisms”. We will formalize this in the sequel, but loosely,
even if we were to change the altitude (or the distribution of altitudes) of a city/country, we
would expect that the mechanism P (T |A), which specifies how temperatures are affected by
altitudes, to not change. On the other hand, if T were the cause, we would expect that
P (T ) and P (A|T ) are independent mechanisms. Thus, if we were to somehow change the
temperature of the city, the mechanism specifying its altitude given the temperature should
not be affected. But the mechanism specifying the temperature given the altitude could be
affected.
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In other words, if A is the cause, we can perform a localized intervention on A, i.e. change
P (A) without affecting P (T |A): P (A) and P (T |A) are modular, autonomous, invariant
mechanisms. Whereas we would get different autonomous mechanisms if T were the cause.

Suppose we have data from multple countries, each with different distributions of altitudes
and temperatures. Then just from observational data, we could check if P (T |A) or P (A|T )
is an invariant mechanism (i.e. same for different P (A) or P (T )), which in turn could help
us find the causal direction. We will return to this when we study learning of causal models
from observational data.

Definition 2 (Principle of Independent Mechanisms) A Causal Generative Process con-
sists of autonomous models that do not inform or influence each other. When the causal
generative process specifies a joint probability distribution, the conditional distributions of
effects given immediate causes do not inform or influence other conditional distributions.

In the two variable case, the principle above is also referred to as independence of cause and
mechanism. This principle has three facets.

• We should be able to change one mechanism (intervene) without affecting others. In
other words, there is no pathway connecting different mechanisms via some “meta
mechanisms”. Thus, mechanisms are invariant to changes in other mechanisms. Such
autonomy is critical for transfer of knowledge from one domain to another. In a new
domain, most if not all of the mechanisms are the same, and hence can directly transfer.

• Each mechanism should not provide “information” about other mechanisms. One as-
pects of this is with respect to changes: change in one mechanism should not provide
information on how other mechanisms have changed. But there should be no informa-
tion flow even in the absence of changes.

• Suppose the conditional distributions can be specified deterministically given the set of
observed random variables, and additional noise variables. In the two variable, cause-
effect model, case, suppose that C,E are two variables, with conditional distributions
specified as:

C = NC

E = fE(C,NE),

where NC , NE are additional noise variables, and fE is a deterministic function. Then
NC , NE are statistically independent.

It can be seen that such statistical independence is necessary for independence of
mechanisms.
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To see this, note that the noise variable N acts as a gate, whose value specifies one
of many deterministic mechanisms, which we can rewrite as E = fN(C). So if N is
dependent on some other noise variable M for some other mechanism say E ′ = gM(C),
then there is information leakage between different mechanisms.

The third facet is something we have a good understanding of, namely statistical indepen-
dence of noise variables. But how do we formalize the first two facets which need some way
of specifying independence of mechanisms (rather than random variables). We will see that
in the sequel.

4 Cause Effect Models

It is instructive to first study causal models in the simplest possible setting with just two
variables: a cause variable C and an effect variable E. This would allow us to isolate the
additional facets of a causal model beyond that of a statistical model.

A common approach of specifying a causal model is via a so-called Structural Causal Model
(SCM):

C = NC

E = fE(C,NE),

where NC , NE are independent noise variables, and fE is a deterministic function. This is
associated with a “causal graph” with nodes {C,E} and a directed edge C → E.

4.1 Interventions

When we intervene on a variable, say E, we simply substitute its existing causal mechanism
(E = fE(C,NE)),for a substitute intervened one.

The simplest such intervention is where the substitute mechanism is simply setting E to a
constant. This is referred to as a hard intervention, and we will denote the resulting causal
model as P do(E=e). This is to be contrasted with the more general soft interventions, where
the substitute mechanism could be a more general e.g. E = g(C, ÑE). We will denote the

resulting intervened causal model via P do(E=g(C,ÑE)).

If the causal graph is C → E, when we intervene on the effect variable, we do not expect
the cause mechanism to change. Accordingly,

P
do(E=e)
C = PC 6= PC|E=e.

7



This clearly shows that intervening is not the same as conditioning. But on the other hand
when we intervene on the cause variable:

P
do(C=c)
E = PE|C=c 6= PE.

Moreover, in the effect-intervened causal model P
do(E=ÑE)
C,E , we have that C ⊥⊥ E, but which

does not hold in the cause-intervened causal model: P
do(C=ÑC)
C,E .

4.2 Counterfactuals

Suppose we have a disease that could result in blindness, and a candidate treatment for this
disease. Let T denote the binary variable on whether or not to administer the treatment
and let B denote the binary variable on whether or not the disease causes blindness. Now
suppose that for 99% of patients, the treatment leads to a cure, and if not treated, they
get blind. While for the remaining 1% of patients, the treatment leads to blindness, and if
not treated, they get cured. So any patient belongs to one of these two categories, which in
turn depends on a condition NB ∈ {0, 1} which is unknown to the doctor. We thus have the
following causal model:

T = NT

B = T NB + (1− T )(1−NB),

where NB ∼ Ber(0.01).

Suppose somebody gets the treatment, but are blinded. A natural question would then be:
what would have happened if we had not given that person the treatment?

This is a counterfactual question. Note that unlike the intervention case, here we do observe
the values of the variables: T = 1, B = 1. Plugging these into the SCM above, we get that
NT = 1, NB = 1. Suppose we plug these values of the noise variables back into the SCM:
this then yields the counterfactual SCM:

T = 1

B = T + (1− T )0 = T.

Let us denote this counterfactual SCM by C ′. The counterfactual question asked above is
then reasoning with an intervention on this counterfactual SCM: C ′do(T=0). This can be seen
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to be the SCM: is then the SCM:

T = 0

B = T,

which places all mass on (0, 0). So the answer to the counterfactual query is that the patient
would have been cured if not treated!

Does that mean the doctor commited malpractice? Note however that the condition (affect-
ing the noise variable NB) is unknown apriori. All the doctor could thus use apriori are the
interventional probabilities :

P do(T=1)(B = 0) = P (NB = 0) = 0.99

P do(T=0)(B = 0) = P (NB = 1) = 0.01,

which does warrant the doctor treating the patient.

So for answering counterfactual questions, we first set up a counterfactual SCM by inferring
noise variables given the observed values of the observed variables, and then use intervention
based causal reasoning with this SCM. A consequence of this is that two SCMs with the
same interventional probabilities can lead to different counterfactual probabilities.

Consider the following SCM:

C = NC

E = nE(C),

where without loss of generality we have combined the functional and noise elements of the
effect mechanism in the earlier SCM into a random function nE . Suppose C takes values in
the finite set C = [k], and E in some other finite set E. Then any deterministic function g
from C to E can be associated with the vector (g(1), . . . , g(k)) ∈ Ek. Thus the set of random
functions g is associated with a random vector (g(1), . . . , g(k)). Since C is the cause, and

E is the effect, P
do(C=j)
E = PE|C=j = Pg(j), so that the observational and interventional

distributions (when we intervene on the cause) coincide, and moreover only depend on the
marginal distributions Pg(j) of the random noise function g.

Suppose we observe some values (j, e) of the cause and effect variables. And suppose as
before we identify nE with a random vector (g(1), . . . , g(k)). Then, in the counterfactual
SCM above:

C = j

E ∼ g(C) | g(j) = e

Now consider the counterfactual query of what would have happened were C = j′ instead.

This could be answered by P
do(C=j′)
E = PE|C=j′ = Pg(j′)|g(j)=e, which explicitly involves the

joint distribution of the noise distribution g.
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5 Causality: Connections to Unsupervised Learning

In the Unsupervised Learning task of clustering, we are given (samples based access to) the
distribution PX of some variables X, and are asked to infer PY |X of some “cluster” label Y .
Note that we do not have any access, sampling based or otherwise, to PY or PX,Y .

Suppose X is the cause, and Y is the effect. Then by independence of causal mechanisms,
PX has no information about PY |X . So unsupervised learning “in a causal direction” is not
possible.

On the other hand, suppose X is the effect, and Y is the cause. then PX may have info
about PY |X . As an example, suppose Y ∈ {−1, 1}, and X = Y µ+NX where NX ∼ N (0, 1),
then, PX is a Gaussian mixture model, from which can recover the Gaussian components
PX|Y and hence via Bayes rule PY |X .

Remark. Note that if we aim to obtain an optimal decision function f ∗ ∈ F , and optimize
out PY |X over a set P , wrt some optimality criterion, then this optimal f ∗ by definition will
depend on PX .

As an example, suppose we use a Bayesian optimality criertion, with respect to some prior
π over distributions PY |X . Then solving for:

arg inf
finF

EPY |X∼πloss(f, PY |X , PX),

clearly only depends on PX .

This is also the case with a minimax optimality criterion:

arg inf
f∈F

sup
PY |X∈P

loss(f, PY |X , PX),

clearly only depends on PX .

Thus the key point is not whether the decision function of interest depends only on PX , but
rather is an informational statement about PX itself: whether PY |X is idenfitiable given PX .

6 Causality: Connections to Domain Adaptation

Suppose X is the cause, and Y the effect. Then even if we change PX (covariate shift),
the “autonomous mechanism” PY |X need not change, and hence could be used even in the
covariate shifted domain. Of course, it is still possible that PY |X also changes (independent
of the changes in PX), but by the independence principle, the new P ′X has no info about
P ′Y |X so we might as well use the old PY |X in the absence of further information.
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The above is only justified in the causal direction. Whereas, in the anti-causal direction, any
change in PX could also entail changes in PY |X , and indeed we could even aim to estimate
this change. In one extreme, P ′X could make P ′Y |X identifiable, so we could use unsupervised
learning to infer this.

Causality seems to have a lot to say about domain adaptation and transfer problems, but
much is still open.

7 General Structural Causal Models (SCMs)

An SCM C consists of a DAG G, and a collection of “structural assignments”:

Xj = fj(PAj, Nj),

where PAj are parents of Xj in G, and (N1, ..., Np) are independent noise terms. Each
such assignment is simply an alternative characterization of the conditional distribution of
Xj given PAj. The variables PAj are called direct causes of Xj, and Xj is a direct effect
of its causes. SCMs are also called Structural Equation Models (SEMs). When fj(·) are
non-linear, these are called non-linear SCMs/SEMs.

Proposition 3 An SCM entails a unique joint distribution over (X1, ..., Xp).

This just follows from how in the case of DGMs, the conditional distributions of variables
given their parents specifies a unique joint distribution that is simply the product of these
node conditional distributions.

Remark. SCMs are still not “mechanistic” enough for “scientific theories”, many of which
for instance take the form of PDEs, with components corresponding to physical quantities.

But one can analyze the behavior of these PDEs in their equilibrium state, which can then
yield an SCM (Dash 2005, Hansen & Sokol 2014).

7.1 Interventions

Given an SCM C with DAG G, suppose we replace one or more structural assignments to
obtain a new SCM C̃:

Xk = f̃(P̃Ak, Ñk).
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We then call this an intervention SCM, and the resulting distribution P C̃ as the intervention
distribution. Variables whose structural assignments are replaced are said to be intervened
on.

We denote this as:
P C̃ = P do(Xk:=f̃(P̃Ak,Ñk)).

When f̃(P̃Ak, Ñk) places a point mass on a constant a, we simply write:

P C̃ = P do(Xk:=a.

Example: Consider the DAG X1 → Y → X2, and the structural assignments:

X1 = NX1

Y = X1 +NY

X2 = Y +NX2 ,

where NX1 , NY ∼ N(0, 1), and NX2 ∼ N(0, 0.1) are all independent noise terms. Suppose
we are interested in predicting Y given (X1, X2). Clearly X2 is a better predictor of Y : it
has lower variance, and hence a linear model with X2 has much lower MSE than that with
X1. However X2 is useless wrt interventions:

P
C;do(X2=Ñ)
Y = P CY .

Note in particular that intervention is distinct from conditioning:

P
C;do(X2=x)
Y = P CY 6= P CY |X2=x.

On the other hand:
P
C;do(X1=Ñ)
Y 6= P CY .

7.2 Total Causal Effect

Given an SCM C, there is a total causal effect from X to Y iff

X 6⊥⊥ Y in P
do(X=ÑX)
X ,

for some RV ÑX .

Proposition 4 Given an SCM C, the following statements are equivalent:
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• There is a total causal effect from X to Y .

• X 6⊥⊥ Y in P
do(X=ÑX)
X for any RV ÑX with full support

• There exists x, x′ ∈ X s.t. P
do(X=x)
Y 6= P

do(X=x′)
Y

• There exists x ∈ X s.t. P
do(X=x)
Y 6= P CY .

Remark. If there is no directed path from X to Y , then clearly there is no total causal
effect. On the other hand, even if there is a directed path, there could be no causal effect
(due to cancellations).

8 Counterfactuals

Consider an SCM C with DAG G over a random vector X. Given discrete observations x,
the counterfactual SCM, denoted by CX=x is the same set of structural assignments, but
which the noise variables having distribution PN |X=x, where PN is the noise distribution in
the original SCM C. Note that in this counterfactual SCM, the new set of noise variables
need not be independent anymore.

Consider an SCM C1:

X1 = N1

X2 = N2

X3 = (I[N3 > 0]X1 + I[N3 = 0]X2)I(X1 6= X2) +N3I[X1 = X2].

And a slightly different SCM C2:

X1 = N1

X2 = N2

X3 = (I[N3 > 0]X1 + I[N3 = 0]X2)I(X1 6= X2) + (2−N3)I[X1 = X2].

And suppose N3 ∼ Unif[0, 2]. Then it can seen that we also have 2−N3 ∼ Unif[0, 2]. Thus,
both SCMs entail the same observation distribution P (X). They also correspond to the
same causal graphical model, since the distribution of each node given their parents is the
same in both cases. They have the same intervention distributions as well. But they have
different counterfactual distributions.
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Suppose we observe (X1, X2, X3) = (1, 0, 0). It then follows that N1 = 1, N2 = 0, N3 = 0.
The corresponding counterfactual SCM C1;X=(1,0,0) is given as:

X1 = 1

X2 = 0

X3 = X2I(X1 6= X2)

while the counterfactual SCM C2;X=(1,0,0) is given as:

X1 = 1

X2 = 0

X3 = X2I(X1 6= X2) + 2I[X1 = X3].

It can be seen that the counterfactual SCMs are different. In particular, if we were to ask
the counterfactual query of consequences if we were to change X1to0, we would get different
answers from the two counterfactual SCMs.

8.1 Falsifiability

One could verify observational distributions via observational data. And verify interventional
distributions via interventions i.e. randomized experiments. But there is no counterpart of
counterfactual distributions in the real world.

It is possible in certain cases for counterfactual distributions to be falsifiable. For instance,
if we can observe the specific noise samples as entailed by the counterfactual distribution
(e.g. imagine if the noise variables could be obtained via some measurement). One could also
falsify the counterfactual SCM by drawing upon scientific theories or domain knowledge. But
in general, it is not falsifiable. That said, humans often think in terms of counterfactuals,
and indeed, counterfactuals have occured in literature and philosophy throughout human
history. What if I was on the plane that crashed, rather than the plane that left an hour
later? What if I had picked the winning lottery numbers? And so on.

8.2 Equivalence of Causal Models

Definition 5 We say two models as probabilistically/interventionally/counterfactually equiv-
alent if they entail the same obs./obs. and interv./obs., interv., and counterfactual distribu-
tions.

It turns out that for a pair of positive distributions, for them to be interventionally equivalent
it suffices for them to agree on simple single-node interventions where Xk = Ñk for some

14



independent noise distribution (rather than an entirely different SCM component that could
depend on some other subsets of nodes). This is convenient because such interventions are
easier to setup in the real world, and are also mathematically easier.

Proposition 6 Suppose that two SCMs C1, C2 with strictly positive SCM components, sat-
isfy:

P
C1;do(Xj=Ñj)
X = P

C2;do(Xj=Ñj)
X ,

for all j ∈ [p], and all distributions Ñj with full support. Then C1 and C2 are fully interven-
tionally equivalent.

9 SCM Calculus

While the truncated factorization in (??) specifies a new intervention SCM, and one would
need to perform probabilistic reasoning on this new SCM to derive conditional probabilities
of interest. But could we directly express the conditional probabilities in the intervention
SCM in terms of conditional probabilities in the original SCM?

Definition 7 (Confounding) Consider an SCM C, with a directed path from X to Y , for
some nodes X, Y ∈ V . The causal effect from X to Y is said to be confounded if:

P C;do(X:=x)(y) 6= P C)(y).

Otherwise the causal effect is said to unconfounded.

Thus, there exist some confounding variables that account for the dependence between X
and Y . Consider the following simple instance of such confounding.

Example 8 (Kidney Stones) Suppose somebody has kidney stones for which they seek
treatment. Let Z be a RV that denotes the size of the kidney stones, T a binary treatment
RV (with T = 0 indicating one treatment, and T = 1indicating the other), and R a binary
recovery RV (with R = 1 indicating recovery, and R = 0 otherwise.) We are interested in
measuring the average causal effect between the treatments:

P C;do(T=1)(R = 1)− P C;do(T=2)(R = 1).

Note that this is different from the difference between the conditionals:

P C(R = 1|T = 1)− P C(R = 1|T = 2).
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But we can connect some conditionals in P C;do(T=t) to conditionals in P C. For instance, it
can be seen from inspecting the intervention SCM that:

P C;do(T=1)(R = 1|T = 1, Z = z) = P C(R = 1|T = 1, Z = z

P C;do(T=1)(Z = z) = P C(Z = z).

This thus allows us to perform the following calculation:

P C;do(T=1)(R = 1) =
∑
z

P C;do(T=1)(R = 1, T = 1, Z = z)

=
∑
z

P C;do(T=1)(R = 1|T = 1, Z = z)P C;do(T=1)(T = 1, Z = z)

=
∑
z

P C;do(T=1)(R = 1|T = 1, Z = z)P C;do(T=1)(Z = z)

=
∑
z

P C(R = 1|T = 1, Z = z)P C(Z = z),

In the example above, by adjusting for Z, we could compute the effect of the treatment
entirely from observational conditional probabilities. This leads us to the following concept.

Definition 9 (Valid Adjustment Set) Consider an SCM C, and two nodes X, Y ∈ V ,
where Y 6∈ paX . We call a set Z a valid adjustment set for the ordered pair (X, Y ) if:

P C;do(X:=x)(y) =
∑
z

P C)(y|x, z)P C(z).

Let us now perform a calculation similar to the kidney stones example. For any set of nodes
Z ⊆ V , we have that:

P C;do(X:=x)(y) =
∑
z

P C;do(X:=x)(y, z)

=
∑
z

P C;do(X:=x)(y|x, z)P C;do(X:=x)(z).

So, if the set of nodes Z satisfies:

P C;do(X:=x)(y|x, z) = P C(y|x, z)

P C;do(X:=x)(z) = P C(z), (1)

it then follows that Z is a valid adjustment set.
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Figure 1: Left: X and Y have positive association. Right: The lines are the potential
outcomes, i.e. what would happen to each person if I changed their X value. Despite the
positive association, the causal effect is negative. If we increase X everyone’s Y values will
decrease.

10 Potential Outcomes

Suppose that X is a binary variable that represents some exposure. So X = 1 means
the subject was exposed and X = 0 means the subject was not exposed. And Y is some
“outcome” variable measuring how well the treatment worked.

We can address the problem of predicting Y from X by estimating P (Y |X = x). But that
does not get at causal dependence between X and Y . Let Y1 denote the response if the
subject is exposed. Let Y0 denote the response if the subject is not exposed. If we expose
a subject, we observe Y1 but we do not observe Y0. Instead, Y0 is the value we would have
observed if the subject had NOT been exposed.

Thus,

Y =

{
Y1 if X = 1

Y0 if X = 0.

More succinctly
Y = XY1 + (1−X)Y0. (2)

The variables (Y0, Y1) are also called potential outcomes.

We have replaced the random variables (X, Y ) with the more detailed variables (X, Y0, Y1, Y )
where Y = XY1 + (1−X)Y0.

A small dataset might look like this:
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X Y Y0 Y1

1 1 * 1
1 1 * 1
1 0 * 0
1 1 * 1
0 1 1 *
0 0 0 *
0 1 1 *
0 1 1 *

It is important to keep in mind here that each row corresponds to a different subject. Thus,
X = 1 in any row indicates that subject was given the treatment, and X = 0 indicates
they were not. The asterisks indicate unobserved variables. So, for those subjects for whom
X = 1, for those specific subjects, we only observe their Y1 value, and do not observe their
Y0 value.

Causal questions involve the the distribution P (Y0, Y1) of the potential outcomes. For in-
stance, the treatment could be said to be effective if E[Y1]− E[Y0] is large.

The mean treatment effect or mean causal effect is defined by

θ = E(Y1)− E(Y0) = E(Y |set X = 1)− E(Y |set X = 0).

The parameter θ has the following interpretation: θ is the mean response if we exposed
everyone minus the mean response if we exposed no-one.

Lemma 10 In general,

E[Y1] 6= E[Y |X = 1] and E[Y0] 6= E[Y |X = 0].

To see this, note that since Y = XY1 + (1 − X)Y0, we have that E[Y |X = 1] = E[Y1|X =
1] 6= E[Y1] unless for instance Y1 is independent of X.

Suppose now that we observe a sample (X(1), Y (1)), . . . , (X(n), Y (n)). Can we estimate θ? In
general the answer is no. We can estimate

α = E(Y |X = 1)− E(Y |X = 0)

but α is not equal to θ. Quantities like E(Y |X = 1) and E(Y |X = 0) are predictive param-
eters. These are things that are commonly estimated in statistics and machine learning.

Let’s formalize this. Let P be the set of distributions for (X, Y0, Y1, Y ) such that P (X =
0) > δ and P (X = 1) > δ for some δ > 0. (We have no hope if we do not have positive
probability of observing exposed and unexposed subjects.) Recall that Y = XY1 +(1−X)Y0.
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The observed data are (X(1), Y (1)), . . . , (X(n), Y (n)) ∼ P . Let θ(P ) = E[Y1] − E[Y0]. An
estimator is uniformly consistent if, for every ε > 0,

sup
P∈P

P (|θ̂n − θ(P )| > ε)→ 0

as n→∞.

Theorem 11 In general, there does not exist a uniformly consistent estimator of θ.

Proof. It is easy construct P (X, Y0, Y1) and and Q(X, Y0, Y1) such that θ(P ) 6= θ(Q) and
yet P (X, Y ) = Q(X, Y ). �

In the case that X is continuous, the causal quantity (or rather, an example of a causal
quantity) is

θ(x) = E[Y (x)]

which, in general, is NOT equal to m(x) = E[Y |X = x].

Thus, in the potential outcomes view, causal analysis involves reasoning about some random
variables — potential outcomes — which by definition are rife with missingness. How do we
relate this to causal SCMs, and the causal graph approach we have studied so far?

Given an SCM C, we can interpret Y1 as Y C;do(X=1) and Y0 as Y C;do(X=0) We can verify that
for any SCM C:

Y C = Y C;do(X=1)I[XC = 1] + Y C;do(X=0)I[XC = 0].

But there are other interpretations as well, since the potential outcomes literature focuses
on individual subjects. Pearl (2009) thus suggests that any individual subject u can be
associated with some noise variables Nu, so that we can consider the resulting counterfactual
SCM CN=Nu . The potential outcomes for subject u can then be specified as:

Y0(u) = Y CN=Nu ;do(X=0)

Y1(u) = Y CN=Nu ;do(X=1),

but specializes our earlier specification to an individual for whom treatment outcomes for
instance could be deterministic.

But even if you find this specific connection convoluted, it is instructive to look at how
potential outcomes are measured given data.

One approach is to use a randomized trial, where we ensure that X ⊥⊥ (Y0, Y1): since
who gets treatment is chosen completely independently (for instance by uniformly random
assignment) of how they may fare given the treatment. We can then simply write: P (Y1) =
P (Y1|X = 1) = P (Y |X = 1). And similarly, P (Y0) = P (Y |X = 1), so that we could
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estimate the potential outcome probabilities just from conditionals over the observed RVs.
This is why randomized control trials are used for measuring causal effects.

But suppose X was not chosen independent of Y0, Y1, for instance, we only had access to
observational data. But suppose we knew all the “confounding” variables Z such that:

X ⊥⊥ (Y0, Y1) |Z
(Z0,Z1) ∼d Z

Thus conditioned on the confounding variables, the treatment outcomes are independent of
who gets the treatment. An example of such confounding variables could be age, or socio-
economic status. We also assume that intervening on the treatment would not have affected
the distribution of the confounding variables (e.g. we would not affect the age by deciding
to give somebody the treatment!). Given such a confounding set, we then have:

P (Y1) =
∑
z

P (Y1|Z1 = z)P (Z1 = z)

=
∑
z

P (Y1|X = 1,Z1 = z)P (Z = z)

=
∑
z

P (Y |X = 1, Z = z)P (Z = z),

where the second equality used the independence of X, as well as that Z1 ∼d Z, while the last
equality simply used the definition of potential outcomes. This can be seen to be precisely
the computation using a valid adjustment set, and the conditions above are precisely those
specifying valid adjustment sets. Thus, causal SCMs and potential outcomes result in the
same calculations under the same assumptions.

One can even show that theorems that hold in one framework also hold under equivalent
assumptions in the other framework. Nonetheless, they might be easier to prove in one
framework vs the other. Potential outcomes seem preferable for a smaller set of discrete
variables, while SCMs might be preferable for larger scale settings. Potential outcomes also
focus on assumptions that relate interventional quantities to observed conditionals, while
SCMs allow for more complex causal reasoning.

11 Algorithmic Notion of Causality

So far we have discussed conditional independence properties among random variables. But
if we are to ask that causal mechanisms i.e. conditional distributions of nodes given their
parents are to be “independent,” it might seem we lack the technical tools to define what
we mean when we say that two conditional distributions (in contrast to random variables)
are independent.
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Consider objects (not necessarily random variables) from some set Ω. And assume that we
have access to an “information” functional:

R : 2Ω 7→ R,

that given a set of objects, can quantify the amount of information in this set. For any two
sets x,y ⊆ Ω, we would have that: R(x,y) ≥ R(y), so that R is monotone. We could thus
interpret: R(x |y) = R(x,y)− R(y) as the conditional information in x given y. Similarly
we can define a counterpart of mutual information:

I(x; y) = R(x) +R(y)−R(x,y),

as well as conditional mutual information:

I(x; y | z) = R(x, z) +R(y, z)−R(x,y, z)−R(z).

We can also define generalized SCMs over a set of objects (x1, . . . , xp) by requiring that a
node xj not contain more information than its parents paj and an unobserved independent
noise object nj:

R(xj,paj, nj) = R(paj, nj),

and further that the noise objects are independent:

R(n1, . . . , np) =

p∑
j=1

R(nj).

This can also be stated simply as:

I(n1, . . . , np) = 0.

Janzing and Scholkopf (2010) suggest the use of Kolmogorov complexity as the notion of
information above, to derive an “algorithmic model of causality”. This might be suitable to
cases where the data consists of non-stationary perhaps even deterministic time-series, for
which such algorithmic notions of dependence might be better suited.

11.1 Algorithmic Independence of Conditionals

Given such an algorithmic notion of dependence, we can now formalize one notion of “in-
dependence” of causal mechanisms. We say that an SCM has algorithmically independent
conditionals if:

I(PX1 |PA1 , . . . , PXp |PAp) = 0.
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