
Statistical Decision Theory
10716: Advanced Machine Learning

Pradeep Ravikumar

1 Preliminaries

The field of statistical machine learning broadly seeks to answer the question: how can
we come up with an inductive system, or a “learning procedure” that automatically im-
proves with experience? While this seems like a very broad question, we can formalize this
mathematically using the language of statistical decision theory. Given a suitable statistical
notion of task, a loss function to measure performance in the task, and a suitable statisti-
cal notion of experience, one can then ask for “optimal” procedures, wrt the loss function,
that incorporate finite experience. As we can see, this has a number of degrees of freedom,
and understanding this from first principles is the goal of this lecture; and which forms the
sub-field of statistical decision theory [Berger, 2013].

Let θ ∈ Θ denote the “state of nature”. This state of nature is tied to our formalization of
the “task” we are considering, but for now let us think about this abstractly. We do not
observe this state of nature, instead, we observe a random variable X ∈ X with distribution
P (·; θ) specified by the state of the nature. This random variable represents the data or
“experience” that we observe. Our goal is to figure out some aspect of the state of nature
(or perhaps simply the state of nature itself) just given the random sample X. Let A denote
the set of possible outputs, typically this will simply be Θ when we want to estimate the
entire state of nature.

Let δ : X 7→ A be an estimator. How good is this estimator? To answer this, we need the
notion of a loss function L : Θ × A 7→ R, so that L(θ∗, a) quantifies the cost of estimate
a ∈ A when the state of nature is θ∗. While this quantifies the cost of an estimate a ∈ A,
we can also use this to quantify the cost of an estimator δ as:

R(θ∗, δ) = EX∼P (·;θ∗)L(θ∗, δ(X)).

This quantity is also called the risk of the estimator δ. Now that we can evaluate the
goodness of any estimator, we can then ask: what is the best possible estimator? This is
hard to answer in general, because we may have two estimators δ1, δ2 neither of which is
dominated with respect to risk by the other, so that there exist states of nature θ1, θ2 such
that R(θ1, δ1) < R(θ1, δ2) but R(θ2, δ1) > R(θ2, δ2). Since we don’t know whether θ1 or θ2 is
the true state of nature, which estimator do we pick?

Once we fix a state of nature θ∗, then there is a very simple estimator δ(·) that is optimal,
namely: δ(X) = arg infa L(θ∗, a), which typically incurs zero risk at that state of nature θ∗.
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It of course does very poorly for other states of nature θ′ that are very different from θ∗, but
it is optimal for θ∗.

To circumvent this, we would need to define more global notions of optimality. We shall focus
on three notions: minimax optimality, and Bayesian optimality, and uniform optimality.

Example. Suppose θ∗ ∈ Rp, and X ∼ N(θ∗, σ2I). Consider the loss function L(θ, θ′) =
‖θ − θ′‖2

2. Then, given any estimator δ, we can compute the risk:

R(θ∗, δ) = E[‖δ(X)− θ∗‖2
2],

which is simply the mean squared error.

2 Minimax Risk and Estimators

One global notion of optimality is to take the conservative or worse-case route, which is
called minimax optimality. Let Γ be a set of candidate estimators (perhaps the set of all
possible (measurable) estimators). Then, the minimax risk wrt Γ is specified as:

r(Θ,Γ) := inf
δ∈Γ

sup
θ∗∈Θ

R(θ∗, δ),

and any estimator δMM that achieves this minimax risk is said to be a minimax optimal
estimator. The main caveats with this notion are practical. For one, it is typically difficult
to certify that a given estimator is minimax — indeed, this forms the subject of many 50 page
papers. Moreover is also not practically constructive: it requires solving a min-max problem
over all candidate estimators, which is typically intractable. There are also criticisms of this
notion as being overly conservative: if δ1 is much much better than δ2 for most states of
nature θ, except for one θ′ where it is marginally worse, minimax-optimality might well pick
δ2.

The minimax risk is associated with the so-called minimax principle:

Minimax Principle: An estimator δ1 is preferred to another estimator δ2 if its worst case
risk is lower: maxθ∗∈ΘR(θ∗, δ1) < maxθ∗∈ΘR(θ∗, δ2).

The minimax optimal estimator is that which achieves the minimum worst case risk, though
this term is used even for estimators that achieve the minimax risk upto some absolute
constants that do not depend on key quantities such as the sample size, or problem dimension
or complexity parameters.
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3 Bayesian Risk and Estimators

Given a prior π over states of nature, we can define the Bayesian risk:

r(π, δ) =

∫
θ∗∈Θ

R(θ∗, δ) π(θ∗)dθ∗,

and the estimator δπ minimizing this Bayesian risk,

δπ ∈ arg inf
δ
r(π, δ),

is said to be the optimal Bayesian estimator given prior π.

The Bayesian risk is associated with the so-called Bayes risk principle:

Bayes Risk Principle: An estimator δ1 is preferred to another estimator δ2 if its Bayes
risk is lower: r(π, δ1) < r(π, δ2).

The Bayes estimator is that which achieves the Bayes risk. A related principle is the so-called
conditional Bayes principle, which given samples X entails choosing a decision or action
a ∈ A which minimizes

ρ(P (θ∗|X), a) :=

∫
θ∗∈Θ

L(θ∗, a)P (θ∗|X)dθ∗,

where P (θ∗|X) is the posterior distribution of the state of nature θ∗ given the samples X.

It can be seen that the Bayes risk principle and the conditional Bayes principle yield the
same answers since r(π, δ) =

∫
X
ρ(P (θ∗|X), δ(X))P (X)dX, which can be minimized over

estimators δ(·) by, for each sample X, setting δ(X) to the minimizer of ρ(P (θ∗|X), a) which
is precisely the conditional Bayes Principle.

Unlike the minimax case, the Bayes risk is easier to evaluate, or at least approximate, and
moreover it is also easier to compute or at least approximate the optimal Bayesian estimator
δπ, by solving for the conditional Bayesian risk:

δπ(x) ∈ arg inf
a∈A

∫
θ∗∈Θ

L(θ∗, a) π(θ∗|x)dθ∗,

which unlike the minimax optimal case is a more tractable, typically even a finite dimensional
estimation problem. The main caveat is that it requires the specification of a prior π, which
essentially specifies the linear combination weights of how to combine the risks at different
states of nature; and moreover such a linear combination might not capture the true notion
of global risk. Notwithstanding the concerns with the specification of the prior, for medium
to higher dimensional problems, the computations above again get intractable, so that this
is not always a practical estimator for many modern data settings.
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4 Conditionality and Likelihood Principles

So far we have discussed the expected risk R(θ∗, δ) as a very natural object of study. It
will now be instructive to consider the criticism of thos notion of risk itself: that it does not
evaluate an estimator in light of the given set of observations; rather it computes its expected
performance over all possible sample sets. This global performance might not be indicative
of the local performance given the specific set of observations. This is best illustrated by
the following example. Suppose the state of nature is θ ∈ R, given which the observation
X ∈ R has the following distribution: Pθ(X = θ + 1) = Pθ(X = θ − 1) = 1/2. Suppose
we are interested in estimating the state of nature θ∗, so that the action space A = Θ, and
that we have the zero-one loss so that L(θ∗, θ) = I[θ∗ 6= θ]. Suppose we see two samples
X = (X1, X2) from P (·; θ), and that the estimator is given by: δ(X) = 1

2
(X1 + X2)I(X1 6=

X2) + (X1 − 1)I(X1 == X2).

Its risk is then given by R(θ∗, δ) = P[δ(X) 6= θ∗] = 0.25, for all θ∗ ∈ Θ. Let E(X) = I[X1 6=
X2] be the event that the two samples are distinct. It can then be seen that conditioned
on E = 1, the risk of the estimator is zero, since it necessarily is then the case that θ∗ =
(X1 +X2)/2. While conditioned on E = 0, the risk of the estimator is 0.5, since θ∗ could be
either of X1−1 or X1 + 1 with equal chance. Thus, a global or unconditional risk R(θ∗, δ) of
0.25 is is misleading in both these cases, especially so when the observed sample X is such
that E(X) = 1, and the estimator is actually always correct. This leads to the so-called
conditionality principle, a weaker and easier stated version of which is as follows:

(Weak) Conditionality Principle. In order to estimate the state of nature θ, suppose
we can perform two experiments E1 or E2. Suppose J is a binary random variable, such that
J = 1 or 2 with equal probability of 1/2. Consider the mixed experiment, where we first
sample the value of J , and then perform the experiment EJ . Then the information about θ
obtained from the mixed experiment EJ should only depend on the experiment Ej that is
actually performed.

This is also illustrated by the following example. Suppose that an engineer uses a voltmeter
that makes 5 observations each ranging from 75 to 99 volts. He then asks the statistician
to estimate the true voltage. The next day, the engineer says, by the way, it seems the
voltmeter truncates voltages at 100, but that should not matter since all measured voltages
were below 100. The statistician however is worried: not so fast, he says. This changes the
distribution of the observations (since it is a truncated random variable), and hence the risk
measure computations, and therefore he will have to redo his calculations. Wait, says the
engineer, I should let you know I always carry a backup bulkier voltmeter that I use when
I see observations equal to 100 (which might indicate truncation), but since I didn’t see any
values that were equal to 100, I didn’t use it. Phew, says the statistician, I don’t have to
redo my calculations after all. The next day the engineer says, sorry again, it seems the
backup bulkier voltmeter is not working, likely for the past many months, but if I had had
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to use it and find out that it was broken I would have fixed it. Oh, says the Statistician with
a sigh, we now have a truncated distribution again, so I have to redo the calculations after
all.

In this example, the statistician with his focus on computing the expected risk is violating
the conditionality principle, but also our common sense or rationality intuitions that the
estimator should not have to worry about the observations being truncated at 100 conditioned
on the fact that the observations were all lower than 100.

But how to operationalize this conditionality principle? The biggest advance towards this
was the likelihood principle. Recall the definition of the likelihood function `(θ) = P (X|θ),
which is the density of the observed samples given state of nature θ, as a function of θ ∈ Θ.

Likelihood Principle. In making inferences about the state of nature θ after observing
X, all relevant information is contained in the likelihood function `(θ) = P (X|θ).

The likelihood principle was advocated in the 1950s by R. A. Fisher, and G. A. Barnard.
Its importance has been bolstered by technical arguments such as Birnbaum [Berger and
Wolpert, 1988], who show that it is implied by the weak conditionality principle, and the
sufficiency principle (which requires that estimators should be functions of sufficient statistics
of the state of nature or parameters thereof). It is to be noted that the likelihood principle
by itself is not actionable: in the sense that it is not clear how to construct an estimator
that satisfies the likelihood principle. The Bayes estimator is one estimator that does follow
the likelihood principle. When we wish to estimate the state θ itself, then the MLE also
satisfies the likelihood principle, as we will see presently. But for more general parameters,
is is not clear how to satisfy the likelihood principle, and in particular, how to reconcile the
likelihood function with the loss function L(θ∗, a).

5 Uniform Optimality/PAC Principle

While the minimax and Bayesian optimality notions seem the most natural global optimality
notions, and indeed occupy most of the mind-space of statistical decision theorists, as noted
above, these are typically not practical. Moreover, these are not the typical class of estimators
used in practice in statistical ML. What are the classes of estimators typically used in
statistical ML, and are they principled from a statistical decision theory standpoint?

Towards this, let us first define a simple if seemingly impossible notion of uniform opti-
mality. We say that a decision rule δ̂ is uniformly optimal if ∀θ∗ ∈ Θ,∀a ∈ A,

L(θ∗, δ̂) ≤ L(θ∗, a).

The reason this impossible as is because we know that the constant rule: δ(X) = arg infa L(θ∗, a)
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would incur minimum typically zero loss. So the above entails, that a uniformly optimal rule
should have loss L(θ∗, δ̂) = 0, for all θ∗, which is obviously too strong. This is even more so
since δ(X) is random, and hence at most we could expect this to hold with some probability.
But also due to information theoretic reasons, we also expect to incur a small amount of
non-zero error, so that we would expect to have probably approximately uniformly optimal
(correct) estimators. We say that an estimator δ is ε− γ probably approximately uniformly
optimal if with probability at least 1− γ, ∀θ∗ ∈ Θ,

L(θ∗, δ̂) ≤ inf
a
L(θ∗, a) + ε.

This is simply the PAC (Probably Approximately Correct) formalism, for general decision
theoretic settings. These are also called distribution-free bounds, because ε, γ do not de-
pend on the specific θ∗. More generally, we might expect distribution-specific bounds: with
probability 1− γθ∗ , it holds that:

L(θ∗, δ̂) ≤ inf
a
L(θ∗, a) + εθ∗ ,

We will revisit these bounds later on, but for now, how can we expect to get such bounds for
arbitrary loss functions L? Is there an estimation principle that is guaranteed to do so? We
could use the “generative model” approach, where we first fit a statistical model to estimate
the state of nature θ̂, for instance via the MLE, and then estimate arg infa L(θ̂, a). When
using the MLE, this does yield tight bounds for reasonable loss functions, but this has a
couple of caveats. The bounds are tight only for reasonable loss functions, and for small
enough statistical models. It also requires that we know the statistical model P (X|θ). As
we will see it is be possible to completely eschew the generative model approach, and come
up with “distribution-free” decision rules that make no assumptions on the generative model
P (X|θ). This is particularly useful for complex modern data where we do not necessarily
want to make stringent assumptions on the statistical model. Another crucial caveat is that
it might be computationally more expensive to first estimate the entire state of nature, rather
than directly predict the optimal action.

As we will see in the next section, there is a very simple estimator, frequently used in modern
statistical machine learning that does not have these drawbacks of the MLE.

6 Decomposable Losses and ERMs

So the critical question is how to construct an estimator that is near uniformly optimal with
respect to a given decision theoretic loss? One approach is to approximate the loss function
L(θ∗, a) just using samples from Pθ∗ , to get a surrogate L̂(θ∗, a) and then find the optimal
action with respect to this. But how to compute such a surrogate function, given that we do
not know θ∗, and without explicitly fitting a generative model (e.g. via the MLE) to fit θ∗?
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As it turns out, there is a specific sub-class of decision-theoretic loss functions, that we will
call decomposable loss functions, which are indeed simple to estimate given samples.

Definition 1 A loss function L : Θ×A 7→ R is said to be decomposable iff:

L(θ∗, a) = EX∼P (·;θ∗)`(X, a),∀θ∗ ∈ Θ, a ∈ A,

for some loss function ` : X ×A 7→ R.

Thus, for decomposable decision-theoretic loss functions, we can express the loss L(θ∗, a) as
the expectation of a term `(X, a) that is entirely as a function of the sample X rather than
the unknown state of nature θ∗. A key advantage to this is that we could then compute the
so-called empirical loss:

L̂n(θ∗, a) =
1

n

n∑
i=1

`(X(i), a),

entirely using samples {X(i)}ni=1 ∼ P(·; θ∗).

In what might perhaps be confusing terminology from a statistical decision theory standpoint,
this empirical loss is typically called empirical risk in ML. Which then leads to the class of
empirical risk minimizers:

δ̂erm := arg min
a∈A

L̂n(θ∗, a)

= arg min
a∈A

1

n

n∑
i=1

`(X(i), a).

We term such “empirical risk minimizers” that point-wise minimize an empirical surrogate
of the loss as satisfying the empirical loss principle. This is to distinguish from other
estimation principles such as the likelihood, minimax, or Bayesian estimation principles.

The caveat of course is that they are only applicable to decomposable decision-theoretic loss
functions. We next look at some examples of decomposable loss functions, and empirical
risk minimizers.

6.1 Examples

MLE. Consider a family of distributions {Pθ}θ∈Θ. Suppose we are given samples {Xi}ni=1 ∼
Pθ∗ for some θ∗ ∈ Θ, and we wish to estimate θ∗ given the n samples. Here the decision or
action space A = Θ. Suppose L(θ∗, θ) = KL(Pθ∗ , Pθ). This can be seen to be decomposable
since: KL(Pθ∗ , Pθ) = EX∼Pθ∗ logPθ∗(X)/Pθ(X).
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The corresponding empirical risk minimizer with respect to this loss is then given by:

θ̂n = arg inf
θ

1

n

n∑
i=1

logPθ∗(Xi)/Pθ(Xi)

= arg inf
θ

1

n

n∑
i=1

− logPθ(Xi),

which is the Maximum Likelihood Estimator or MLE. This estimator thus satisfies the
empirical loss principle as well as clearly, the likelihood principle. This example also makes
clear that the likelihood principle, which entails that estimators only use the likelihood
function as a summary of the data, is a special case of the empirical loss principle.

Binary Classification. Let X ∈ X denote the so-called input random variable, and
Y ∈ {−1,+1} a binary output random variable, jointly distributed as (X, Y ) ∼ P ∈ P .
Given observations {(Xi, Yi)}ni=1 ∼ P , we wish to obtain a classifier f : X 7→ {−1,+1} that
minimizes the so-called mis-classification error: L(P, f) = P[f(X) 6= Y ].
Let `(f, (X, Y )) = I[f(X) 6= Y ]. It can then be seen that L(P, f) = E(X,Y )∼P `(f, (X, Y )),
so that the mis-classification error is a decomposable decision-theoretic loss function. The
corresponding empirical risk minimizer would then be given as:

f̂n = arg inf
f∈F

1

n

n∑
i=1

`(f, (Xi, Yi))

= arg inf
f∈F

1

n

n∑
i=1

I[f(Xi) 6= Yi].

The classifier

f ∗ = arg inf
f
L(P, f)

= sign(P (Y = 1|·)− 1/2)

that minimizes the loss L(P, f) directly is called the Bayes optimal classifier. This might
again seem like a terminological mis-step in ML, since this does not seem Bayesian at all:
f ∗ is just minimizing the pointwise loss L(P, f), where the state of nature is P ∈ P , and the
decision or action is f ∈ F .

What might a fully Bayesian treatment look like? Suppose we have some prior π over
distributions in P , and given the samples (X, Y ) = ((Xi, Yi))

n
i=1, we could then compute the

posterior π(·|(X, Y )), and compute the Bayes optimal estimate as:

fBayes = arg min
f
ρ(π(·|(X, Y )), f),
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which can be seen to be much more complicated than what is called the Bayes optimal
classifier in ML.

But there is a natural reason why f ∗ above is called the Bayes classifer. Instead of taking
P ∈ P to be the state of nature, we will consider Y ∈ {−1, 1} to be the random state of
nature, and set the action space as A = {−1, 1}. The observations X ∈ X , given the state
Y , are then distributed as PX|Y (·|Y ). The decision rule δ : X 7→ {−1,+1} is then precisely
a binary classifier that maps the inputs in X to outputs in {−1,+1}. The decision theoretic
loss is then set to L(Y, a) = I[Y 6= a]. The corresponding risk for a decision rule δ(·) is then
given as:

R(Y, δ) = EX∼P (·|Y )L(Y, δ(X))

= EX∼P (·|Y )I(Y 6= δ(X))

so that with a prior distribution PY (·) over the state Y , we get the Bayes risk:

r(PY , δ) = EY∼PY EX∼PX|Y (·|Y )I(Y 6= δ(X)

= E(X,Y )∼P I(Y 6= δ(X), where P (X, Y ) = PY (Y )PX|Y (X|Y ),

which is precisely the mis-classification error L(P, δ). Thus, the classifier minimizing the
mis-classification error f ∗ above is precisely the Bayes optimal classifier under this decision
theoretic setup. Unlike typical Bayesian estimation settings however, both the prior PY , as
well as the observation distribution PX|Y is unknown here, so that this is not actually action-
able, but rather provides a characterization of the ideal classifier (i.e. assuming knowledge
of P (X, Y )).

We note that there exist many other popular loss functions for binary classification that
are not decomposable; see Koyejo et al. [2014] for a study of such non-decomposable loss
functions. For instance, consider the precison loss function which is the fraction of true
positives to the total number of predicted positives, so that

L(P, f) = P (Y = 1|f(X) = 1) =
P (Y = 1, f(X) = 1)

P (f(X) = 1)
,

which is not of the form E(X,Y )∼P `(f, (X, Y )) for any `(·).

6.2 Plugin estimators

A close cousin of empirical risk minimization based estimators are so-called plugin estimators.
We can distinguish between two classes of plugin estimators. In the first, we compute a
plugin estimate of the loss itself, so that we approximate L(P, f) by L(Pn, f), where Pn is
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the empirical distribution given samples {Xi}ni=1 ∼ P . This then allows us to compute:

f̂PLUGIN;I = arg inf
f∈F

L(Pn, f). (1)

Note that this does not require that the loss function be decomposable. For instance, for
the precision loss above, this would entail solving for:

arg inf
f∈F

∑n
i=1 I[f(Xi = Yi = 1)]∑n

i=1 I[f(Xi = 1)]
.

For decomposable losses, it can be seen that Eqn (1) directly reduces to empirical risk
minimizers (ERMs).

The second class of plugin estimators is to first characterize the ideal estimator f ∗(P ) =

arg inff L(P, f), and then directly compute the plugin estimate: f̂PLUGIN;II = f ∗(Pn). This
is not always a good idea in this exact form. For instance, with the zero-one loss function,
we get f̂PLUGIN;II = sign(Pn(Y = 1|·) − 1/2), where Pn(Y = 1|X) is simply the empirical
conditional distribution, but which for continuous inputs X, will thus likely reduce to random
guessing. Much more common is a related variant of computing a smoothed variant P̃n (or
for instance, fitting some statistical model such as logistic regression), and then using the

plugin estimate f ∗(P̃n).

7 Characterization of Decomposable Losses

A natural question then is: what classes of loss functions L(θ∗, a) are decomposable, and
hence amenable to ERM like estimators? Note that in its general form, this loss could
depend arbitrarily on the state of nature θ∗, and the action a. For instance, the `p loss:
L(θ∗, a) = ‖θ∗ − a‖p does not seem decomposable at all.

Denote the distribution over the observations given the state of nature by Pθ∗ , and fix the
action a. Assuming that the observation distributions are identifiable (i.e. we can recover θ
from Pθ), the loss L(θ∗, a) could then be viewed as a functional of the distribution Pθ∗ . For
the loss to be decomposable as defined earlier, it would entail that:

L(θ∗, a) ≡ La(Pθ∗) = EZ∈Pθ∗ `a(Z),

where we have used the overloaded notation `a(Z) := `(a, Z).

Generalizing this requirement, we can ask the following general question: given any distri-
bution P , what loss functionals L(P ) can be expressed as the expectation of some auxiliary
loss evaluated at a random variable with distribution P? In other words, when can we write:

L(P ) = EZ∼P (`(Z)), (2)
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for some auxiliary loss function `(·) of a random variable with the same distribution as
the argument to the loss function L(·). As we saw earlier, not all possible loss functionals
can have this form, but classical results from Utility Theory [Berry, 1982] state some very
reasonable sufficient conditions under which any loss functional will necessarily have the
above form.

Let P be some class of distributions, and some loss functional L : P 7→ R

Axiom A. If L(P1) < L(P2), then L(αP1 + (1 − α)P3) < L(αP2 + (1 − α)P3), for any
α ∈ (0, 1), and P3 ∈ P .

This states that if P1 has lower loss than P2, then given two random situations which are
identical except that in one P1 occurs with probability α, while in the other P2 occurs with
probability alpha; the first random situation has lower loss.

Axiom B. If L(P1) < L(P2) < L(P3), there exist α, β ∈ (0, 1) s.t.

L(αP1 + (1− α)P3) < L(P2), and L(P2) < L(βP1 + (1− β)P3).

This axiom loosely states that there are no infinitely bad or good distributions. A sufficient
condition for this Axiom to hold is that the loss functional be bounded over P .

Theorem 2 (Degroot, 76 (adapted to our loss functional setting)) Suppose the loss
functional L : P 7→ R, over distributions in some set of distributions P, satisfies the two
axioms above. Then, the loss functional has the form L(P ) = EZ∼P `(Z), for all P ∈ P.

Thus the class of decomposable loss functionals encompasses all “rational” loss functionals
that satisfy the very reasonable axioms above.

7.1 Uniform Optimality Bounds via Uniform Laws, Generaliza-
tion Bounds

Recall the goal of uniform optimality bounds. For the specific class of ERM estimators, there
is a particular technical tool that helps us obtain such pointwise bounds, namely, so-called
uniform laws. These provide uniform guarantees of the deviation of the empirical loss (risk
in ML terminology) from the true loss (risk):

rn;θ∗ := sup
a∈A
|L̂n(θ∗, a)− L(θ∗, a)|,
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that hold with high probability. When we can uniformly bound these:

rn,θ∗ ≤ rn;unif,

for all θ∗ ∈ Θ, we can thus make these “distribution-free” (so that they do not depend on
the model θ).

Given such a uniform law bound, we could then provide guarantees on the empirical risk
minimizer (ERM):

âerm := arg min
a∈A

L̂n(θ∗, a),

by a simple chaining argument:

L(θ∗, âerm)− L(θ∗, a∗) ≤ L(θ∗, âerm)− L̂n(θ∗, âerm)

+ L̂n(θ∗, âerm)− L̂n(θ∗, a∗)

+ L̂n(θ∗, a∗)− L(θ∗, a∗)

≤ 2rn;unif,

since the first and third terms are bounded by the uniform bound, and the second term is
bounded by zero, since by construction, âerm is the minimizer of the empirical risk.

Another class of bounds are so-called generalization bounds, where we bound the differ-
ence between empirical risk and true risk (note that we use the ML terminology here, and
mean the losses rather than the expectation of these over the dataset) for the ERM estimator
specifically, so that:

L(θ∗, âerm) ≤ L̂n(θ∗, âerm) + rn;θ∗;gen,

where it can be seen that rn;θ∗,gen ≤ rn;θ∗,unif, so that these are always tighter.
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