
Deep Neural Networks: A Kernel Viewpoint
10716: Advanced Machine Learning

Pradeep Ravikumar

1 Recap: RKHS Kernel Regression

As we have seen, kernel methods (or kernel machines as they are sometimes called) learn
functions in a Reproducing Kernel Hilbert Space (RKHS). Recall that an RKHS is specified
by a Mercer kernel K : X × X 7→ R, and loosely, consists of functions of the form f(x) =∑

i αiK(xi, x), where {xi} ⊆ X . More formally, consider the function space:

H0 = {f : f(x) =
m∑
j=1

αjK(xj, x), αj ∈ R, xj ∈ X ,m ∈ N}.

Given two such functions f =
∑

i αiK(xi, x) and g(x) =
∑

j βjK(yj, x), we can define the
inner product:

〈f, g〉K =
∑
i

∑
j

αiβjK(xi, yj),

which then defines a norm ‖f‖K =
√
〈f, f〉K . The RKHS HK corresponding to the kernel

K is then the completion of H0 with respect to the inner product ‖ · ‖K .

(Ridge) RKHS regression, also simply called kernel (ridge) regression in the ML literature
(not to be confused with Nadaraya Watson smoothing kernel based non-parametric regres-
sion), then consists of solving:

inf
f∈HK

{
R̂n(f) + λ‖f‖2K

}
,

where R̂n(f) = 1
n

∑n
i=1 L(f(xi), yi) is some empirical risk. A typical loss function is the

squared loss L(f(xi), yi) = 1
2
(f(xi)− yi)2, in which case the estimate can be shown to be:

f̂n(x) = K(x,X)(K + λI)−1y,

where K(x,X) = (K(x, x1), . . . , K(x, xn)) ∈ Rn, and K ∈ Rn×n is the so-called kernel gram
matrix with Kij = K(xi, xj), and y = (y1, . . . , yn) ∈ Rn is the set of responses. In the case

where λ = 0, this yields the estimator: f̂n(x) = K(x,X)K−1y.

2 Random Features: a two-layer NN from kernels

Let us first review the approach of random features which were developed as a way to speed
up kernel machines. As in the previous section, KRR requires inverting the gram matrix

1

K (or more generally, solving a linear system involving K for any test point x), which is
expensive. As we will see we can also view this as distilling a two-layer “neural” network
from the kernel machine.

Our starting point is from a spectral decomposition of the kernel. Our Mercer kernel however
may not always have a discrete spectral decomposition (such an RKHS is called a “separable”
RKHS). More generally, the spectral decompositon might have the form:

K(x, y) =

∫
p(w)φ(w, x)φ(w, y)dw,

where {φ(w, ·)} are the eigenfunctions of the kernel, and {p(w)} the corresponding “spectral
density” (the kernel can be appropriately scaled so that p(w) is a proper density). As before,
this also lends itself to an alternative characterization of the RKHS HK :

HK =

{
f(x) =

∫
θ(w)φ(w, x)dw

∣∣ ∫ θ2(w)

p(w)
<∞

}
.

Example: Shift-invariant kernels As an example of the above decomposition, consider
shift-invariant kernels of the form k(x, y) = k(x − y). A classical harmonic analysis result,
Bochner’s theorem, states that a continuous shift-invariant kernel with domain Rd is the
Fourier transform of a non-negative measure, so that:

k(x, y) = k(x− y) =

∫
Rd
p(w) exp(jwTx),

where with the kernel appropriately scaled, p(w) is a proper density. When both k and p are
real-valued, we can replace the complex exponentials with cosines: φ(w, x) =

√
2 cos(wTx+

b), with b ∼ Unif[0, 2π].

• Gaussian kernels: k(x, y) = k(x−y) = exp(−‖x−y‖2/2), have p(w) = (2π)−d exp(−‖w‖2/2)

• Laplacian kernels: k(x, y) = k(x− y) = exp(−‖x− y‖1), have p(w) =
∏d

j=1
1

π(1+w2
j)

• Cauchy kernels: k(x, y) = k(x− y) =
∏d

j=1
2

π(1+(xj−yj)2) , has p(w) = exp(−‖w‖1)

So in many such cases the eigenfunctions are a known class of functions such as the Fourier
basis for shift-invariant kernels. But when they are not enumerable, how do we extract a
finite-dimensional eigenspace? Suppose we draw m random samples W := {wj}mj=1 iid from
p(w). This then specifies the following finite-dimensional feature map:

ΦW (x) =

(
1√
m
φ(w1, x), . . . ,

1√
m
φ(wm, x)

)
,

2

that is indexed by the random draw W. Thus, the feature map ΦW (x) itself is random. In
contrast to learning a function in the RKHS corresponding to K, one can then simply learn
a linear function of these random features, an approach which naturally, is called “random
features” (Rahimi & Recht 2008, 2009). But would doing so approximate the RKHS, and
would the Euclidean inner product of the random feature map approximate the kernel?

2.1 Approximating the kernel

Consider the empirical kernel K̂(x, y) = 1
m

∑m
j=1 φ(wj, x)φ(wj, y), which is simply the Eu-

clidean dot product of the feature maps ΦW (x) and ΦW (y). Rahimi & Recht (2008) then
showed that for any compact set M,

P

[
sup

(x,y)∈M
(K̂(x, y)−K(x, y)) ≥ ε

]
� diam2(M)

ε2
exp(−mε2).

2.2 Approximating the RKHS

Consider the sub-class HC ⊂ HK given by:

HC =

{∫
θ(w)φ(w, x)dw

∣∣ |θ(w)| < Cp(w)

}
,

for some constant C > 0. Consider its empirical counterpart:

HW ;C =

{
f(x) =

m∑
j=1

θjφ(wj, x)
∣∣ |θj| ≤ C/

√
m

}
.

Consider the estimator
f̂W ∈ arg inf

f∈HW ;C

R̂n(f).

Rahimi & Recht (2009) then showed that with probability at least 1− δ:

R(f̂W)− min
f∈HC

R(f) �
(

1√
m

+
1√
n

)√
log

1

δ
.

In particular, they showed that with probability at least 1−δ, the approximation error scales
as:

inf
f∈HW ;C

R(f)− inf
f∈HC

R(f) � 1

m
,

3

and that the estimation error scales as:

sup
f∈HW ;C

(R̂(f)−R(f)) � 1

n
.

Rahimi & Recht (2009) moreover showed that linear combinations of such randomly weighted
features {φ(wj, x)} often outperform approaches that also aim to learn these weights, such
as in additive boosting.

2.3 Random Features as a Kernel Machine.

The previous results show that random features i.e. a linear machine on top of a random
feature map drawn from the spectral decomposition of the kernel, would approximate a kernel
machine (i.e. learning a function from the corresponding RKHS) with the kernel K. It is
of course also the case that random features are also a kernel machine, just with a “random
features kernel” K̂(x, y) = 〈ΦW (x),ΦW (y)〉, and which is an approximation of the kernel K.

2.4 Random Features as a 2 layer network

It can be seen that the RF model has the form:

fRF(x) =
m∑
j=1

θjφ(wj, x).

In many settings, for instance, with the Fourier basis for shift-invariant kernels, this further
has the form:

fRF(x) =
m∑
j=1

θjφ(wTj x),

so that this can be viewed as a 2 layer NN, with activations φ, and m hidden neurons in the
1st layer.

3 Extracting kernels from DNNs

Suppose we have a generic random feature map, ΦW (X), that is indexed by a random vector
W , but that is not necessarily derived via a spectral decomposition of a Mercer Kernel. Sup-
pose we learn linear functions of this feature map, fθ(x) =

∑m
j=1 θjΦW ;j(x). We could then

consider this as a kernel machine with the random kernel K̂(x, y) = 〈ΦW (x),ΦW (y)〉, which
could be viewed as a randomized approximation of the kernel K(x, y) = EW 〈ΦW (x),ΦW (y)〉.

4

This broadened perspective of random features can be used to connect DNNs and kernels: if
we can approximate a DNN (or any similar complex model) via a linear function of a random
feature map, then we could in turn connect it to kernel machines with some specific kernel.

The most natural approach to extract such a random feature map from a DNN is implicit
in the common approach of freezing all but the top layer of some pre-trained DNN, and just
fitting the top layer. Let ΦW (x) denote the mapping from the inputs to the penultimate
layer: this is random because the pre-trained DNN weights (in this case, of all but the last
layer) depend on random training points, and some random initialization. They thus provide

a generic random feature map, that in turn specify the random kernel K̂, with expectation
K as detailed above. A simpler instance of this is where we simply randomly initialize all
but the top layer, and then just fit the top layer. The corresponding kernel K̂ in that case
can be shown to converge to a specific compositional kernel that we will discuss in the next
section.

4 Randomly Wired DNNs and Gaussian Processes

We have just seen that just training the top layer of a DNN, while freezing the rest of the
layers to some random initialization, or some pre-trained random weights, can be connected
to a corresponding kernel machine. But what if we do not train even the top layer, and
simply consider a DNN with randomly set weights. Would this still compute something
useful? As it turns out, it still serves as a very useful Gaussian Process prior over possible
functions (Lee et al. 2017).

Consider an L layer DNN, with n` units in the `-th layer, for ` ∈ {0, . . . , L}, where we have
n0 = d features in the input layer. Denote the pre-activation output of the `-th layer as z[`],
and the output of the `-th layer as x[`] = φ(z[`]).

Let x[0] = x. Then, for ` = 1, . . . , L, the pre-activation computation at the `-th layer is given
as

z
[`]
i = b[`] +

n`−1∑
j=1

W
[`]
ij x

[`−1]
j ,

where b[`] is the scalar bias term, and W (`) ∈ Rn`×n`−1 . Denote the set of all parameters by
θ, and the final DNN output as fθ(x) = x[L](x).

Consider the random initialization of the parameters as: W
[`]
ij ∼ N (0, σw/n`−1), and b[`] ∼

N (0, σb). Since we have that z
[1]
i = b[1] +

∑d
j=1W

[1]
ij xj, it follows that {z[1](x)} are Gaussian

distributed, and moreover, any collection (z
[1]
i (x1), . . . , z

[1]
i (xm)) is also multivariate Gaussian

distributed. It thus follows that z
[1]
i (x) is a Gaussian Process with mean µ1(x) = E[z[1](x)] =

5

0, and covariance:

K [1](x, x′) = E[z
[1]
i (x)z

[1]
i (x′)] = σ2

b + σ2
w

xTx′

d
,

where d is the dimensionality of the inputs x.

Let us build this up by induction. Suppose that z
[`−1]
i is a Gaussian Process. Unfortu-

nately, this does not entail that x
[`−1]
j is a Gaussian process. But consider the next layer:

z
[`]
i = b[`] +

∑n1

j=1W
[`]
ij x

[`−1]
j . In the limit of infinite width, with n`−1 → ∞, by the Cen-

tral Limit Theorem, it follows that z
[`]
i (x) is Gaussian distributed. Moreover, any collec-

tion (z
[`]
i (x1), . . . , z

[2]
i (xm)) is also multivariate Gaussian distributed. It thus follows that

z
[`]
i (x) is a Gaussian Process with mean µ`(x) = E[z[`](x)] = 0, and covariance K [`](x, x′) =

σ2
b + σ2

wEz[`−1]
i ∼GP(0,K[`−1])

[φ(z
[`−1]
i (x)), φ(z

[`−1]
i (x′))].

Since the expectation is over some functional of only two zero mean Gaussian variables, we
can rewrite as a functional of the covariance entries:

K [`](x, x′) = σ2
b + σ2

wFφ(K [`−1](x, x), K [`−1](x, x′), K [`−1](x′, x′)),

for some function Fφ(·).

Note that in the base case, K [1](x, x′) = E[z
[1]
i (x)z

[1]
i (x′)] = σ2

b + σ2
w
xT x′

d
, where d is the

dimensionality of the inputs x.

It thus follows that at initialization, infinite width DNNs are Gaussian Processes with a
specific “deep” or compositional kernel that is as specified by the compositional recurrence
above.

Consider the Gaussian Process regression model y = f(x) + ε, where f ∼ GP(0, K [L]), and
ε ∼ N(0, σ2

ε). Then, given data {(xi, yi)}ni=1, as our Bayesian predictor at a test point x, we
can simply output the posterior mean:

K(x,X)(K(X,X) + σ2
ε I)−1y,

where we have used the shorthand K(x,X) = (K(x, x1), . . . , K(x, xn)).

5 Fully trained DNNs, Linearized Models

So far, we have seen that either just training the top layer, freezing the rest, or not training
any layer, just using a fully randomly wired DNN, can both be connected to kernel machines.
But what if we trained all the DNN layers. Could this still be connected to a kernel machine?

6

5.1 Kernel Gradient Descent

Suppose we fit a linear model with features Φ(·), and learn the linear functions fθ(·) given
training data {(xi, yi)}ni=1 by solving the objective:

inf
θ

1

n

n∑
i=1

L(fθ(xi), yi),

via gradient descent. The gradient descent path is then given by:

dθ

dt
= −η 1

n

∑
i

∂L(fθ(xi), yi)

∂fθ
Φ(xi).

It thus follows that:

dfθ(x)

dt
= −η 1

n

∑
i

∂L(fθ(xi), yi)

∂fθ

〈
∂fθ(xi)

∂θ
,
∂fθ(x)

∂θ

〉
= −η 1

n

∑
i

∂L(fθ(xi), yi)

∂fθ
〈Φ(xi),Φ(x)〉

= −η 1

n

∑
i

∂L(fθ(xi), yi)

∂fθ
K(xi, x),

where we use K(x, x′) = 〈Φ(x),Φ(x′)〉. But of course we could perform the above calculation
with any kernel K, and perform what is known as “kernel gradient descent”:

df(x)

dt
= −η 1

n

∑
i

∂L(fθ(xi), yi)

∂fθ
K(xi, x).

This has as its limit point precisely the unregularized RKHS regression estimate with the
kernel K. For instance, for the squared loss L(f(x), y) = 1

2
(f(x) − y)2, the limit point is

preciselyK(x,X)K−1y. If we can revisit this kernel gradient descent by mapping the gradient
descent dynamics when training general non-linear functions (not just linear functions of a
given feature map as above) to kernel gradient descent, this can allow us to “extract” a
kernel from gradient descent dynamics. This kernel will be referred to as a Neural Tangent
Kernel.

Consider training a complex parametric function fθ(x) (for instance a DNN) via gradient
descent:

dθ

dt
= −η 1

n

∑
i

∂L(fθ(xi), yi)

∂fθ

∂fθ(xi)

∂θ
,

7

so that it follows that:

dfθ(x)

dt
= −η 1

n

∑
i

∂L(fθ(xi), yi)

∂fθ

〈
∂fθ(xi)

∂θ
,
∂fθ(x)

∂θ

〉
= −η 1

n

∑
i

∂L(fθ(xi), yi)

∂fθ
K̂t(xi, x),

where

K̂t(x, y) =

〈
∂fθ(x)

∂θ
,
∂fθ(y)

∂θ

〉
.

When fθ is a DNN, Jacot et al. (2018) termed the corresponding kernel K̂t as the Neural
Tangent Kernel at the current iterate θt. Jacot et al. (2018) moreover showed the following
two results: (a) as the widths of the layers sequentially approach infinity (so-called infinitely

wide DNNs), the random NTKs at the initialization K̂0 converge to a deterministic compo-
sitional kernel, which can be derived via a recurrence similar to that of the Gaussian Process
kernel above; and (b) uniformly over t ∈ [0, T] for some finite time horizon T > 0, the
random NTKs at the iterates θt also converge to that same limit determinsitic NTK.

Arora et al. (2019) further refined this analysis providing non-asymptotic deviation bounds.
Specifically, they showed that:

Theorem 1 ∀ε > 0, δ ∈ (0, 1), suppose that min`∈[L] n` � log(1/δ)/ε4. Then for any inputs
x, x′ ∈ Rd, such that ‖x‖ ≤ 1, ‖x′‖ ≤ 1, with probability at least 1 − δ, there exists a
deterministic limit kernel K∞ such that:

|K̂t(x, x
′)−K∞(x, x′)| � ε.

5.2 Linearization

The results above essentially show that in infinite width limit, DNNs are essentially behave
similar to the generalized random features machines as in the previous section: linear ma-
chines of some random feature maps, which in turn specify some random kernels, which are
close to their deterministic expectations. But why do they have such linear behavior?

Consider a complex parametric function fθ (for instance a DNN). When this function is
highly overparameterized, and we take relatively fewer descent steps, then it is likely that
each individual parameter moves only slightly away from its initial value, to have the overall
function value with its hundreds of millions of parameters to move sufficiently far from its
initial value, and in particular to fit the data well. In such cases, where each individual
parameter only moves a small amount even with full training, we can approximate the
learning of fθ to simply learning the coefficients of a linearization (Lee et al. 2019):

fLIN
w (x) = fθ0(x) +

〈
w,
∂fθ(x)

∂θ

∣∣
θ=θ0

〉
.

8

Denote φθ0(x) = ∂fθ(x)
∂θ

∣∣
θ=θ0

. Suppose we initialize θ0 randomly, for instance via iid standard

Gaussians: [θ0]i ∼ N(0, 1). It can then be seen that training this linear model is essentially
random features regression corresponding to the kernel:

KNTK(x, x′) = Covθ0 (〈φθ0(x), φθ0(x
′)〉) .

In the case of DNNs, this can be seen to be precisely the Neural Tangent Kernel (NTK) at
initialization.

5.3 Lazy Training

Chizat et al. (2019) recently argued that such linearization (or what they call “lazy training”)
is not due to overparameterization per se, but rather due to a particular scaling of the
parameters relative to the gradient descent step size. Their high level insight is that if the
step size is too small relative to the scale of the parameters, we might naturally expect to
be in the “lazy training” or linearized regime where the parameters inividually do not move
too far from the initial parameters.

Towards formalizing this, consider the rescaled risk function:

Rα(θ) =
1

α2
R(α fθ),

as well as its linearization:

RLIN
α (θ) =

1

α2
R(α fLIN

θ),

where

fLIN
θ (x) = fθ0(x) +

〈
θ,
∂fθ(x)

∂θ

∣∣
θ=θ0

〉
,

is the linearization of fθ around some initial parameter θ0. Now consider both gradient
descent on the full rescaled risk:

dθα
dt

= −∇Rα(θ),

as well as gradient descent on the linearized rescaled risk:

dθLINα

dt
= −∇RLIN

α (θ).

Chizat et al. (2019) then showed that given a finite time horizon T > 0:

sup
t∈[0,T]

‖θα(t)− θ0‖ = O(1/α) (1)

sup
t∈[0,T]

‖θα(t)− θLIN(t)‖ = O(1/α2) (2)

9

so that the gradient descent iterates remain close to the initial parameter, and the gradient
descent path for the linearized function remains close to the path for the original function
itself.

6 The representational power of (compositional) kernel meth-
ods

The previous sections showed that at least in some over-parameterized or parameter scaling
regimes, learning complex functions such as DNNs is essentially similar to kernel machines
for some fixed, if a deep or compositionally specified kernel function. But how good are such
kernel machines? Do we actually get the flexibility of arbitrary DNNs?

Chizat et al. (2019) empirically showed that lazy training (such as in learning linearized
models in overparameterized settings) is much worse empirically than “non-lazy” training
where the parameters are no longer in the “lazy training” regimes. Ghorbani et al. (2019)
bolstered this with a very powerful set of theoretical results that rigorously analyzed the
approximation and generalization errors of such kernel machines, ranging over both random
as well as deterministic kernel machines discussed above.

Specifically, they considered the setting where the inputs xi ∼ Unif(Sd−1(
√
d)), where

Sd−1(r) denotes the sphere with radius r in d dimensions. And the responses yi = f ∗(xi),
for some arbitrary f ∗ : Sd−1(

√
d) 7→ R.

Consider RF machines:

fRF(x) =
N∑
j=1

ajσ(wTj x),

where wj ∼ p(w), for j ∈ [N], and the spectral density p of some fixed kernel. They also
consider the NTK kernel of a 2 layer NN. Such a 2 layer NN is given by:

fNN(x) =
N∑
j=1

ajσ(wTj x).

Suppose the weights are initialized given the spectral density p. It can be seen that the NTK
feature map (obtained by gradients with respect to a and w, is the concatenation of the RF
feature map and the NTK-specific features:

fNTK(x) =
N∑
j=1

θjσ(wTj x) +
N∑
j=1

(θ′
T
j x)σ′(wTj x).

For the RF machines, let N be the dimensionality of finite-dimensional random feature
maps. They then showed that if d`+δ ≤ N ≤ d`+1−δ, then the RF machines have the same

10

approximation error as degree ` polynomial in x, while the NTK kernel machines have the
same approximation error as degree `+ 1 polynomial in x.

But what if we use the full kernel (rather than just N random features), which might
have zero or negligible approximation error. But they might nonetheless incur estimation
error given finite n samples. They considered this for general deterministic kernels that are
rotationally invariant over the sphere Sd−1(

√
d). In such a setting, when d`+δ ≤ n ≤ d`+1−δ,

the generalization error of these kernel machines scales as the approximation error of a degree
` polynomial in x.

They also coupled this with a very simple separation result to show that this does not entail
that DNNs itself have large approximation or generalization error. Specifically, consider the
case where the target function f ∗ = σ(w∗ · x) is a single neuron. In such a case, under
the distributional assumptions on the training inputs above, it can be shown that gradient
descent over the empirical mean squared error recovers the true parameter w∗. But using
say the NTK kernel machine with d`+δ ≤ N ≤ d`+1−δ would have approximation error of
linear regression over all monomials of degree `+ 1 in x, which could be large if σ cannot be
approximated well by polynomials of degree atmost `.

Their results thus provide a neat separation result between general NNs on the one hand, and
fixed kernel machines (the full kernel machine i.e. KRR, as well as RF and NTK machines)
on the other hand, which are more akin to polynomial regression. Together with the lazy
training result, this suggests that fixed kernels that do not use the data distribution might
not be a good explanation for DNN performance. In later lectures, we will thus revisit this
question of connecting DNNs to (surprisingly simple) kernels, but ones that depend on the
data distribution.

11

References

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R. R. & Wang, R. (2019), On exact com-
putation with an infinitely wide neural net, in ‘Advances in Neural Information Processing
Systems’, pp. 8139–8148.

Chizat, L., Oyallon, E. & Bach, F. (2019), On lazy training in differentiable programming,
in ‘Advances in Neural Information Processing Systems’, pp. 2933–2943.

Ghorbani, B., Mei, S., Misiakiewicz, T. & Montanari, A. (2019), ‘Linearized two-layers neural
networks in high dimension’, arXiv preprint arXiv:1904.12191 .

Jacot, A., Gabriel, F. & Hongler, C. (2018), Neural tangent kernel: Convergence and gen-
eralization in neural networks, in ‘Advances in neural information processing systems’,
pp. 8571–8580.

Lee, J., Bahri, Y., Novak, R., Schoenholz, S. S., Pennington, J. & Sohl-Dickstein, J. (2017),
‘Deep neural networks as gaussian processes’, arXiv preprint arXiv:1711.00165 .

Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R., Sohl-Dickstein, J. & Pennington, J.
(2019), Wide neural networks of any depth evolve as linear models under gradient descent,
in ‘Advances in neural information processing systems’, pp. 8570–8581.

Rahimi, A. & Recht, B. (2008), Random features for large-scale kernel machines, in ‘Ad-
vances in neural information processing systems’, pp. 1177–1184.

Rahimi, A. & Recht, B. (2009), Weighted sums of random kitchen sinks: Replacing mini-
mization with randomization in learning, in ‘Advances in neural information processing
systems’, pp. 1313–1320.

12

