
Learning and Games
10716: Advanced Machine Learning

Pradeep Ravikumar

1 Online Learning

In online learning, a learner aims to output a sequence of estimates (in contrast to batch
learning, where we aim to output a single estimate), by sequentially interacting with nature,
which however could potentially be adversarial. In each round t, the learner outputs its
estimate xt ∈ X , and the nature/adversary then chooses a loss function ft : X → R, and
the learner suffers loss ft(xt), so that after T rounds, the learner suffers cumulative loss∑T

t=1 ft(xt).

Obviously the learner wants to suffer the least loss possible, but since nature can choose its
loss after seeing the learner’s estimate, this might seem like a hopeless dream. And indeed,
just minimizing the loss is too hard (without any constraint on how the losses can differ from
each other). Accordingly, we ask that the learner choose a sequence of actions {xt}Tt=1 such
that the following notion of regret is small:

T∑
t=1

ft(xt)− inf
x∈X

T∑
t=1

ft(x).

This way if nature picks very bad losses ft, then the baseline to which the learner will be
compared to — the best single action chosen in hindsight — could also be bad, and our
regret would be small. Assuming the loss functions are bounded, we can say any “learning”
is happening only when this regret is o(T), also called sub-linear regret, since the baseline
of some random or constant estimate will achieve O(T) regret. But before we analyze this
further, let’s look at some settings where such online learning naturally crops up.

Examples

Prediction with expert advice: (Freund and Schapire, 97): “A gambler, frustrated by
persistent horse-racing losses and envious of his friends’ winnings, decides to allow a group
of his fellow gamblers to make bets on his behalf. He decides he will wager a fixed sum of
money in every race, but that he will apportion his money among his friends based on how
well they are doing. Certainly, if he knew psychically ahead of time which of his friends
would win the most, he would naturally have that friend handle all his wagers. Lacking
such clairvoyance, however, he attempts to allocate each race’s wager in such a way that his
total winnings for the season will be reasonably close to what he would have won had he bet
everything with the luckiest of his friends.”

1

More generally, suppose there are m experts, and in round t, the i-th expert suffers loss ft[i].
The learner’s action is a distribution xt ∈ ∆m over the experts, for which he will suffer loss
ft(xt) :=

∑m
i=1 xt[i]ft[i]. The goal of the learner is to try to do as well as the best expert

chosen in hindsight, which is exactly the expression above since the baseline of the best
action chosen in hindsight is given as:

min
x∈∆m

∑
t

∑
i

ft[i]x[i] = min
i∈[m]

∑
t

∑
i

ft[i],

which is exactly the best expert chosen in hindsight.

Portfolio Selection (Hazan, 2023): In each round t, the learner allocates their wealth
among m different assets, so that their action is xt ∈ ∆m. The environment, which is the
market, then sets the returns rt ∈ Rm of these assets, where rt[i] is the ratio of asset price in
this round vs previous round: if it’s greater than one, the asset gained in price, otherwise it
fell in price. The ratio of the total wealth of the learner in this round vs previous round is
then given by

∑
i rt[i]xt[i]: the greater this is, the better off the learner. We can thus use as

the loss ft(xt) = − log(
∑

i rt[i]xt[i]). The learner wishes to select portfolio allocations that
do as well as the best portfolio they would have chosen in hindsight, that is, after observing
all the market returns, so that they wish to minimize the regret expression above.

Let’s now look at how to achieve sub-linear regret. A key distinction as we will see is whether
the domain X is bounded or not.

1.1 Compact, Convex domain X

Let us first consider the setting where X is both compact, and convex.

1.1.1 Strongly Convex ft.

Within this setting, the simplest setting is when the adversary loss functions {ft} are strongly
convex.

Myopic. A natural learning strategy is the myopically greedy one, where xt is predicted to
optimize the previous loss:

xt = argmin
x∈X

ft−1(x).

This would be very natural in both of the examples discussed above. Investors commonly
allocate to assets that appreciated in price recently; we might prefer an expert who performed
well recently. Common sense suggests this does not always work. Indeed, this need not

2

achieve sub-linear regret even in this simplest setting. Consider the following example:
Suppose X ⊆ [−10, 10], and that nature sets the following sequence of loss functions

ft(x) =

{
(x− 1)2, if t is even

(x+ 1)2, if t is odd
.

Then, a myopic learning strategy would choose the following actions:

xt =

{
−1, if t is even

1, if t is odd
.

The regret of this algorithm in this case is Ω(T).

Follow the Leader (FTL). Another natural greedy strategy is the so-called Follow the
Leader (FTL), where we choose xt based on not just the previous loss, but the average of
all losses seen so far:

xt = argmin
x∈X

t−1∑
i=1

fi(x).

This FTL strategy is also sometimes called “fictitious play”. This seems a bit more rea-
sonable: we look at a long history to say pick the best performing action. Let κ be the
strong convexity parameter of each ft. Then, it can be shown that the regret is bounded by
O
(

log T
κ

)
, so that we get sub-linear regret when κ is bounded away from zero.

1.1.2 Convex ft

We have a simple FTL strategy that achieves near-optimal sublinear regret with strongly
convex loss functions. Let us now consider the case where the adversary can select loss
functions that are merely convex, and need not be strongly convex. As before, myopic will
not achieve sub-linear regret.

Follow the Leader (FTL). But in this setting, even FTL need not have sub-linear regret.
Consider the following example. Suppose

X = {(x1, x2)|x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0} ⊂ R2.

And suppose the series of loss functions ft are linear in x and satisfy ft(x) = 〈gt,x〉 for some
vector gt ∈ R2. Note that in this setting, xt is either (0, 1) or (1, 0). Suppose the adversary
chooses gt as follows

gt =

{
(1, 0) if xt = (1, 0)

(0, 1) if xt = (0, 1)

3

The cumulative loss is T , and the loss of the best possible action is:

min
x∈X

〈
T∑
t=1

gt,x

〉
= min

{
T∑
t=1

gt[1],
T∑
t=1

gt[2]

}
≤ T

2
,

where the first equality is because the optimum will occur at either (0, 1) or (1, 0), and the
last inequality is because

∑T
t=1 gt[1] +

∑T
t=1 gt[2] = T by the nature of the adversary loss

functions, where each gt is either (0, 1) or (1, 0). The regret is thus at least T/2. The regret
of FTL in this case is thus Ω(T).

The reason FTL failed here is that our consecutive actions were no longer stable: they could
be very far from each other.

Greedy Forecasting. One way in which we might try to fix FTL is a one-step look-forward
by simulating what the environment could do in the worst case:

xt = arg min
xt∈X

sup
ft

(
t−1∑
s=1

fs(xs) + ft(xt)−min
x∈X

t∑
s=1

fs(x)

)
.

It turns out that even this does not work. Hint: consider loss functions f(x) = |x − c|, for
x, c ∈ [0, 1].

Follow the Regularized Leader (FTRL). Since we want our iterates to be stable, the
natural approach is to regularize the FTL approach, which thus leads to the so-called Follow
the Regularized Leader (FTRL) strategy:

xt = argmin
x∈X

t−1∑
i=1

fi(x) + ηR(x),

where R is a strongly convex regularizer. Suppose the loss functions are Lipshitz. Let L
denote the Lipschitz constant, and D the diameter of the domain X . Then the regret scales
as O(LD

√
T). The lower bounds for regret in this setting are Ω(LD

√
T) [Abernethy et al.,

2008]. This shows that the Lipschitz assumption on the loss functions cannot in general be
removed.

FTRL-Linearized. Consider the following variant of FTRL where we linearize the previous
losses:

xt = argmin
x∈X

t−1∑
i=1

〈∇fi(xi),x〉+ ηR(x),

4

where as before R is a strongly convex regularizer.

Suppose R(x) = ‖x‖2
2. Then FTRL-linearized can be written as:

xt = argmin
x∈X

t−1∑
i=1

〈∇fi(xi),x〉+ η‖x‖2
2.

These updates can equivalently be written as

xt+1 = ΠX (xt −
1

η
∇ft(xt)).

This is also known simply as Online Gradient Descent (OGD).

Let us now consider the case of a general strongly convex regularizer R(·):

xt = argmin
x∈X

t−1∑
i=1

〈∇fi(xi),x〉+ ηR(x),

where R(x) is a strongly convex and differentiable regularizer. These updates can be equiv-
alently be written as

∇R(yt+1) = ∇R(yt)−
1

η
∇ft(xt), xt+1 = argmin

x∈X
BR(x||yt+1),

where BR is the Bregman divergence associated with R. This is also more commonly known
as Online Mirror Descent (OMD), specifically its lazy variant. This is to be contrasted with
the so-called agile variant of OMD where the updates are given by

∇R(yt+1) = ∇R(xt)−
1

η
∇ft(xt), xt+1 = argmin

x∈X
BR(x||yt+1).

Both these algorithms can achieve O(
√
T) regret under appropriate Lipschitz condition on

ft’s and boundedness assumption on the domain X [Hazan, 2016].

Boundedness of X suffices, even if not compact. In the setting with convex loss func-
tions, compactness is not necessary to achieve sub-linear regret, and it suffices for X to be
bounded. Suppose the domain is open and we are using online projected gradient descent:

xt = ΠX (xt−1 − η∇ft(xt−1))
def
= argmin

x∈X
‖x− xt−1 + η∇ft(xt−1)‖2.

The above problem will not have a minimizer because X is an open set. But all we need
is an approximate minimizer of the above problem to achieve sub-linear regret. If ε is the
approximation error, then we can achieve O(LD

√
T + ε) regret [Suggala and Netrapalli,

2019a].

5

1.2 Compact but Non-convex Domain X , or Non-convex ft

We now consider the general but more complex setting where either the domain X or the loss
functions {ft} are not convex. Under this setting, no deterministic algorithm can achieve
sub-linear regret (i.e., regret which grows slower than T). Consider the following 1D example.
Suppose X = [−D,D]. Suppose the adversary chooses loss functions from the following class
of 1-Lipshitz functions:

F =

{
ga(x) :=

[
D

2
− |x− a|

]
+

: a ∈ [−D,D]

}
,

where [u]+ = max{0, u}. Suppose at each round t, once the learner chooses xt, the adversary
picks the loss function ft = gxt . It can then be seen that

ft(xt) = gxt(xt) = D/2,

so that the loss after T steps is DT/2. Whereas for the best action in hindsight, its loss is
given as:

min
x∈[−D,D]

T∑
t=1

ft(x) = min
x∈[−D,D]

T∑
t=1

[
D

2
− |x− xt|

]
+

≤ DT

4
.

To see this: suppose WLOG more than T/2 xt are non-negative. For all such xt, gxt(−D) =
0. For all the remaining xt, gxt(−D) ≤ D/2. So

∑T
i=1 gxt(−D) ≤ DT/4. So the loss of best

action is bounded by DT/4. The regret is thus bounded by DT/4 = Ω(T).

Thus, when losses are non-convex, any deterministic strategy can suffer linear regret. A
natural strategy in this case is thus to consider a relaxed convex variant of the problem
by lifting the domain X to the convex domain PX consisting of distributions over X , and
corresponding linear loss functions: `ft(P) = Ex∼P [ft(x)]. For this linearized setting, we are
thus interested in the regret:

T∑
t=1

Ex∼Pt [ft(x)]− inf
P∈PX

Ex∼P

[∑
i

fi(x)

]
.

Note that in this case, the baseline estimate with respect to which we measure regret remains
the same since:

inf
P∈PX

Ex∼P

[∑
i

fi(x)

]
= inf

x∈X

∑
i

fi(x),

due to the linearity of the objective on the LHS. We can thus rewrite the objective as:

T∑
t=1

Ex∼Pt [ft(x)]− inf
x∈X

∑
i

fi(x).

6

An alternative interpretation of the linearized setting above is that the learner plays ran-
domized actions xt ∼ Pt, so that the above linearized regret could then be viewed as the
expected regret of a sequence of randomized actions by the learner. Note that we have merely
linearized the problem, so that while it is convex, it is not strongly so. It is thus natural to
resort to an FTRL strategy for sub-linear regret; except that the learner would be choosing
distributions rather than individual points in X .

Let 〈P, f〉 def
= Ex∼P [f(x)] . Then FTRL in the space of probability distributions is given by

Pt = argmin
P∈PX

t−1∑
i=1

〈P, fi〉+ ηR(P),

where R is a strongly convex regularizer. This instantiation of mirror descent on PX can be
shown to achieve sub-linear regret. A canonical choice for R is negative entropy, for which
the updates can be written as

∇R(Pt+1) = ∇R(Pt)−
1

η
ft.

Letting pt+1 be the density function of Pt+1, the updates can be further rewritten as

pt+1(x) ∝ exp

(
−1

η

t∑
i=1

fi(x)

)
.

Krichene et al. [2015] showed that such mirror descent on PX with the entropic regular-
izer achieves O(

√
dT log T) expected regret. Note however that when {ft} are non-convex,

computing randomized actions via sampling from the distributions Pt+1(·) above might be
computationally challenging.

Finite Domain: Multiplicative Weights It is instructive to consider the entropic regular-
ization approach when the action space X is finite. Suppose WLOG X = {1, . . . ,m}. In
that case, the updates above can be written as:

Pt+1(i) ∝ Pt(i) exp

(
−1

η
ft(i)

)
, i ∈ [m].

This learning algorithm is called Multiplicative Weights, and has reappeared and been re-
invented across different recastings of the online learning problem, ranging over solving
sequential games (e.g. boosting as we will see in a few sections), and optimization (devising
fast algorithm for LPs and SDPs) among others.

A slightly simpler technique to solve the linearized problem over the space of distributions is
via the Follow the Perturbed Leader (FTPL) algorithm [Agarwal et al., 2018, Suggala and

7

Netrapalli, 2019b]. In this algorithm, the learner predicts

xt ∈ arg min
x∈X

t−1∑
i=1

fi(x)− 〈σ,x〉 ,

where σ ∈ Rd is a random perturbation such that

{σj}dj=1
i.i.d∼ Exp(η),

and Exp(η) is the exponential distribution with parameter η. Recall that X is an exponential
random variable with parameter η if P (X ≥ s) = exp(−ηs). When the domain X is bounded
and loss functions {ft}Tt=1 are Lipschitz (not necessarily convex), FTPL achieves O(

√
d3T)

expected regret, for appropriate choice of η [Suggala and Netrapalli, 2019b]. Note that
in this case as well, when {ft} are non-convex, solving for the FTPL objective requires
solving a non-convex problem, which is computationally challenging in general (though from
a practical standpoint, potentially easier than its FTRL counterpart involving sampling).
It can be shown that FTPL can also be cast as FTRL for a regularization function that
depends on the noise distribution [Suggala and Netrapalli, 2019b].

1.3 Without any assumptions on X or the loss functions ft.

When the domain X is not bounded, note that none of the results above are useful. In
particular, regret bounds of FTRL and FTPL scale with the diameter of the domain, and
hence would be vacuous for unbounded domains. But there is a very simple strategy, that
is applicable without making any assumptions on the domain whatsoever, but under the
provision that ft was known to the learner ahead of round t: an optimal strategy for the
learner then is to simply predict

xt ∈ arg min
x∈X

ft(x).

It is easy to see that this algorithm, known as Best Response (BR), has 0 regret. This
is however an impractical algorithm in the general online learning setup, since ft is not
known to the learner at step t prior to making its decision. It can however be used to solve
two-player games, as we will see in the sequel.

2 How can we achieve sub-linear regret?

Consider the general online learning setup, where in each round, the learner plays action
xt ∈ X , and nature provides a loss ft(·), and the goal is to minimize the cumulative regret

8

with respect to the best possible action:

T∑
t=1

ft(xt)− inf
x∈X

T∑
t=1

ft(x).

It seems amazing that we are able to achieve sub-linear regret even when nature can specify
the losses after observing our actions. Why are we able to achieve this? And how do we
approach this methodologically from first principles: the methods above work, but can we
derive the methods above from first principles?

2.1 Stability Viewpoint

For simplicity, consider convex losses and online gradient descent. We have that the difference
in loss suffered by learner compared to that of any action x is given by:

ft(xt)− ft(x) ≤ gTt (xt − x),

where we use the shorthand gt = ∇ft(xt). If we are able to bound the sum of the RHS
terms over T rounds sub-linearly in T then we would be done, but how are we supposed to
do so when the environment can pick ft adversarially after looking at our action xt? This
is where the online gradient descent steps come in handy: this allows us to bound the RHS
via a difference of how close xt+1 and xt are to x: which in turn we can uniformly bound via
the diameter of X . Following (Hazan, 2023); if:

xt+1 = xt − ηtgt,

then:

‖xt+1 − x‖2 = ‖xt − x‖2 + η2
t ‖gt‖2 − 2ηtg

T
t (xt − x)

2ηtg
T
t (xt − x) ≤ 1

ηt

(
‖xt − x‖2 − ‖xt+1 − x‖2

)
+ ηtG

2,

9

where sup ‖∇f(x)‖ ≤ G. Summing above over T rounds we get:

2
T∑
t=1

(ft(xt)− ft(x)) ≤ 2
T∑
t=1

gTt (xt − x)

≤
T∑
t=1

1

ηt

(
‖xt − x‖2 − ‖xt+1 − x‖2

)
+ ηtG

2

≤
T∑
t=1

‖xt − x‖2

(
1

ηt
− 1

ηt−1

)
+G2

T∑
t=1

ηt

≤ D2

T∑
t=1

(
1

ηt
− 1

ηt−1

)
+G2

T∑
t=1

ηt

≤ 3DG
√
T ,

where D = supx 6=x′ ‖x− x′‖, and by setting ηt = D
G
√
t

and using
∑T

t=1 1/
√
t ≤ 2

√
T .

2.2 Potential function viewpoint

Let rt(x) = ft(xt) − ft(x) be the instantaneous regret wrt action x at time t, and let the
cumulative regret be: Rt(x) =

∑t
s=1 rt(x). Let Φ : RX 7→ R be some potential functional,

that quantifies any given cumulative regret R(·), via a real-valued scalar. Suppose the
learner, at round t plays the randomized action Pt ∈ PX specified as Pt(x) ∝ ∇Φ(Rt−1)(x).
We then have that that the instantaneous regret at time t is given as:

rt(x) =

∫
x′
Pt(x

′)ft(x
′)dx− ft(x),

so that: ∫
x

rt(x)Pt(x)dx = 0,

which in turn entails that: ∫
x

rt(x)∇Φ(Rt−1)(x)dx = 0.

Thus, the instantaneous rt is orthogonal to Φ(Rt−1), which is an instantiation of the more
general so-called Blackwell condition. Loosely, this indicates that no matter what loss func-
tion ft might picked in round t, a randomized strategy based on P (x) ∝ ∇Φ(Rt−1)(x) will
not increase the potential, so that the actions of the learner will likely to regret that is at
a local minimum of Φ. In particular, a goal of these online learning algorithms is to satisfy
the Blackwell condition: ∫

x

rt(x)∇Φ(Rt−1)(x)dx ≤ 0.

10

The Blackwell condition, together with some other regularity conditions on Φ(·) entail that
Φ(Rt−1 + rt) < Φ(Rt−1), which in turn entail a bound on the regret. Consider the broad
class of potential functions:

Φ(R) = ψ(

∫
x

φ(R(x))dx),

where φ : R→ R is nonnegative, increasing, and ψ : R→ R is nonnegative, increasing, and
concave. Then:

ψ(φ(max
x

R(x)) = ψ(max
x

φ(R(x))

≤ ψ(

∫
x

φ(R(x))dx)

= Φ(R).

We thus get:
max
x

R(x) ≤ φ−1ψ−1(Φ(R)),

so that if we can bound the potential Φ(R), we can also bound the max regret.

But the algorithms we have studied so far based on FTRL rather than setting weights
proportional to some potential function. But FTRL can be connected to the potential based
viewpoint via simple duality based arguments. In FTRL, we select the next action via:

min
P∈∆X

∑
x

R(x)P (x) + ηreg(P).

We can then define:

Φ(R) := min
P∈∆X

∑
x

R(x)P (x) + ηreg(P),

By pushing the regularization term to a constraint set, we see that the objective is linear.
By Danskin’s theorem, we then get that the minimizer of the optimization problem is given
by the normalized gradient of Φ(R) as required.

Example: With the entropy regularization reg(P) =
∑

x P (x) logP (x) we get:

Φ(R) = η log
∑
x

exp(R(x)/η).

It can be seen that FTRL and potential gradients both yield the exponential weights algo-
rithm.

11

2.3 Mixability Loss

The loss incurred by the learner when playing Pt is:
∑

x Pt(x)ft(x). But suppose instead
the learner suffers a loss, termed mixability loss:

Φη(Pt, ft) = −1

η
ln(
∑
x

Pt(x) exp(−ηft(x))).

When choosing exponential weights Pt, we have:∑
x

Pt(x) exp(−ηft(x))) =

∑
x

∑
s≤t exp(−ηfs(xs))∑

x

∑
s<t exp(−ηfs(xs))

=
Wt

Wt−1

,

so that

t∑
s=1

Φη(Pt, ft) = −1

η
ln

(
t∏

s=1

Ws

Ws−1

)
= −1

η
ln
Wt

W0

= −1

η
ln

∑
x exp(−ηFt(x))

|X |

≤ min
x
Ft(x) +

1

η
ln |X |,

where Ft(x) is the cumulative loss of action x through the t-th round. Thus denoting the
cumulative Φ loss by Mt, we can thus see that:

min
x
Ft(x) ≤Mt ≤ min

x
Ft(x) +

1

η
ln |X |.

Thus, if the learner were to suffer the mixability loss Φη(Pt, ft) instead of the actual loss
(
∑

x Pt(x)ft(x)), then we can easily guarantee that the cumulative loss suffered would be
atmost 1

η
ln |X | away from that suffered by the best action. But of course the learner does

not suffer the mixability loss per se. From here on, there are two ways to proceed; one to
bound the true loss as a multiplicative factor of the mixability loss, and one by an additive
factor.

Suppose the losses ft that the environment chooses are drawn from a set F that satisfies the
following “mixability” condition: for all ft ∈ F , Pt, η, let c(η) be the smallest number c > 0
such that: ∑

x

Pt(x)ft(x) ≤ c(η)Φη(ft, Pt).

12

By summing these up over T rounds we get:

T∑
t=1

∑
x

Pt(x)ft(x) ≤ c(η) min
x
Ft(x) +

c(η)

η
ln |X |,

so that we would get a multiplicative factor guarantee. See Cesa-Bianchi and Lugosi [2006],
Section 3.5 for an instantiation of the above analysis for the learning from expert advice
setting.

We can also ask for additive approximation guarantees:

∑
x

Pt(x)ft(x) ≤ Φη(ft, Pt) + δt.

We then get that:

T∑
t=1

∑
x

Pt(x)ft(x) ≤ min
x
Ft(x) +

1

η
ln |X |+

T∑
t=1

δt.

One can show (Cesa-Bianchi and Lugosi, 2006, Lemma A.1) that

δt ≤ η/8,

so that we get
T∑
t=1

∑
x

Pt(x)ft(x) ≤ min
x
Ft(x) +

1

η
ln |X |+ Tη

8
,

so that setting η =
√

8 ln |X |
T

, we get sub-linear regret scaling as
√

0.5T ln |X |. But it is pos-

sible to obtain better bounds for δT for specific losses (i.e. by constraining the environment
appropriately). See also (Adahedge) where they set the learning rate adaptively as

ηt =
ln |X |∑
s≤t δs

,

to obtain a tighter bound both theoretically as well as in practice.

3 Two-player Games

Consider the following game between two players. One so-called “row player” playing actions
x ∈ X , and the other “column player” playing actions y ∈ Y . Suppose that when the two

13

players play actions x,y respectively, the row player incurs a loss of `(x,y) ∈ R, while the
column player incurs a loss of −`(x,y). The sum of the losses for the two players can be
seen to be equal to zero, so that such a game is known a two-player zero-sum game. It is
common in such settings to refer to gain `(x,y) of the column player, rather than its loss of
−`(x,y).

A popular example of such a zero-sum game is Rock-Papers-Scissors, where the loss function
is given as:

Rock Paper Scissors
Rock 1

2
1 0

Paper 0 1
2

1
Scissors 1 0 1

2

where the rows correspond to row actions x, the columns correspond to column actions y,
and the entries correspond to the loss of the row player `(x,y).

Suppose the row player plays action x. The worst loss the row player would then incur is
given as: maxy∈Y `(x,y). Here, it is as if the column player could select their optimal action
after seeing the row player action. Accordingly, a conservative approach for the row player
is to select an action that minimizes this worst case loss:

xminmax = argmin
x

max
y

`(x,y). (1)

The action xminmax is called the minimax action, and its corresponding worst case loss is
called the minmax value of the game.

Now let us consider the game from the perspective of the column player. Suppose the
column player plays action y. The least gain the column player would then attain is given
as: minx∈X `(x,y). Accordingly, a conservative approach for the column player is to select
an action that maximizes this worst case gain:

ymaxmin = argmax
y

min
x
`(x,y). (2)

The action ymaxmin is called the maximin action, and its corresponding worst case gain is
called the maxmin value of the game.

In general, the two quantities — minmax and maxmin values of the game — are not equal,
but the following relationship always holds:

max
y∈Y

min
x∈X

`(x,y) ≤ min
x∈X

max
y∈Y

`(x,y). (3)

Intuitively, in the LHS, the row player gets to choose their action after seeing the column
player action, so could achieve a lower loss, compared to the RHS. Indeed, here is a common

14

setting: suppose the loss is non-negative, and for any y ∈ Y , there exists x ∈ X s.t.
`(x,y) = 0. Then, it is clear that the maxmin value of the game is zero, whereas the
minmax value of the game could well be non-zero.

A key caveat with computing minmax or maxmin values of zero-sum games is that without
any additional structure such as convexity, it is computationally difficult in general.

So it is common in game theory to consider a linearized game in the space of probability
measures, which is in general better-behaved. To set up some notation, for any probability
distributions Px over X , and Py over Y , define:

`(Px, Py) = Ex∼Px,y∼Py`(x,y).

The minmax and maxmin values of the linearized game and the original game are related as
follows:

max
y∈Y

min
x∈X

`(x,y)
(a)
= max

y∈Y
min
Px∈PX

`(Px,y)

≤ max
Py∈PY

min
Px∈PX

`(Px, Py) ≤ min
Px∈PX

max
Py∈PY

`(Px, Py)

(b)
= min

Px∈PX
max
y∈Y

`(Px,y) ≤ min
x∈X

max
y∈Y

`(x,y),

where (b) holds because for any row player action Px ∈ PX , maxPy∈PY `(Px, Py) is equal to
maxy∈Y `(Px,y), and correspondingly for (a). One sufficient condition for the values of the
linearized and original games to be same is when X ,Y are convex and compact, and `(x,y)
is convex in x and concave in y, which can be shown using Jensen’s inequality.

3.1 Nash Equilibrium

Directly solving for the minmax or maxmin values of the (linearized) min-max games is in
general computationally hard, in large part because: (a) these values need not be equal,
which limits the set of possible optimization algorithms, and (b) the optimal solutions need
not be stable, which makes it difficult for simple optimization problems. It is thus preferable
that the two values are equal, and the solutions be stable, which is formalized by the game-
theoretic notion of a Nash equilibrium (NE). John Von Neumann, a founder of game theory,
had noted that he could not foresee there even being a theory of games without a theorem
that equates the maxmin and minmax values of the game.

For the original zero-sum game in Equation (1), a pair (x∗,y∗) ∈ X × Y is called a pure
strategy NE, if the following holds

max
y∈Y

`(x∗,y) = `(x∗,y∗) = min
x∈X

`(x,y∗).

15

Intuitively, this says that there is no incentive for any player to change their strategy while
the other player keeps hers unchanged. Note that whenever a pure strategy NE exists, the
minmax and maxmin values of the game are equal to each other:

min
x∈X

max
y∈Y

`(x,y) ≤ max
y∈Y

`(x∗,y) ≤ `(x∗,y∗) ≤ min
x∈X

`(x,y∗) ≤ max
y∈Y

min
x∈X

`(x,y).

Since the RHS is always upper bounded by the LHS from (3), the inequalities above are all
equalities.

As we discussed above, the minmax and maxmin values of the original game in Equation (1)
are in general not equal to each other, and when that is the case, from the above, a pure
strategy NE will then not exist for the original game (1).

Instead what often exists is a mixed strategy NE, which is precisely a pure strategy NE of
the linearized game. That is, (Px

∗, Py
∗) ∈ PX × PY is called a mixed strategy NE of the

zero-sum game (1), if

max
Py∈PY

`(Px
∗, PY) = `(Px

∗, Py
∗) = min

Px∈PX
`(Px, Py

∗).

As with the original game, if (Px
∗, Py

∗) is a pure strategy NE of the linearized game, aka,
a mixed strategy NE of the original game, then the minmax and maxmin values of the
linearized game are equal to each other, and, moreover Px

∗ is a minimax action and Py
∗ is

a maximin action of the linearized game.

Two critical facets of the linearized game are: (a) linearized game NE (aka mixed strategy
NE of original game) exist under less stringent conditions, and (b) are computationally easier
to compute or approximate.

3.2 Existence of NE

From an optimization standpoint, a NE is a saddle-point of the minmax objective. And it
is known that saddle-points exist when the domains X ,Y are compact, and the objective
`(·, ·) is convex-concave. If either of these conditions do not hold, then saddle-points need
not exist. As an example where the first condition does not hold, consider the game where
X = Y = (−1, 1), and `(x, y) = x − y. The game is convex-concave, but a saddle point
does not exist. This is because the domains are non-compact. As an example where the
second condition does not hold, consider the following game where X = Y = [−1, 1], and
`(x, y) = (x− y)2. The above game is non-convex non-concave, and does not have a saddle-
point.

When X ,Y are compact, the loss function is Lipshitz in at least one of its arguments, then
one can show that the minmax and maxmin values of the linearized game in Equation (??)
are equal to each other (Suggala et al, 2020). Such results are known as minimax theorems,

16

and studied at length in game theory [Von Neumann et al., 2007, Yanovskaya, 1974, Wald,
1949]. Most classical minimax theorems rely on fixed point theorems, whereas Cesa-Bianchi
and Lugosi [2006], (Suggala et al, 2020) present constructive learning-style proofs to prove
the minimax theorem, where they present an algorithm which outputs an approximate NE.
Under the additional condition that the loss function is bounded, they additionally show
that linearized game has a minimax and maximum action. We present one such result in
the sequel.

3.3 Algorithms to Compute NE

3.3.1 Online Learning

A popular and widely used approach for solving min-max games is to rely on online learning
algorithms [Hazan, 2016, Cesa-Bianchi and Lugosi, 2006]. In this approach, the row (mini-
mization) player and the column (maximization) player play a repeated game against each
other. Both the players rely on online learning algorithms to choose their actions in each
round of the game, with the objective of minimizing their respective regret. The following
proposition shows that this repeated game play converges to a NE.

Proposition 1 (Suggala et al, 2020) Consider a repeated game between the minimization
and maximization players in the linearized game. Let (Pxt, Pyt) be the actions chosen by the
players in iteration t. Suppose the actions are such that the regret of each player satisfies

T∑
t=1

`(Pxt, Pyt)−min
x∈X

T∑
t=1

`(x, Pyt) ≤ ε1(T),

max
y∈Y

T∑
t=1

`(Pxt,y)−
T∑
t=1

`(Pxt, Pyt) ≤ ε2(T).

Let PxAVG, PyAVG denote the mixture distributions 1
T

∑T
i=1 Pxi and 1

T

∑T
i=1 Pyi. Then (PxAVG, PyAVG)

is an approximate mixed strategy NE of the original game:

`(PxAVG, PyAVG) ≤ min
x∈X

`(x, PyAVG) +
ε1(T) + ε2(T)

T
,

`(PxAVG, PyAVG) ≥ max
y∈Y

`(PxAVG,y)− ε1(T) + ε2(T)

T
.

Note that the above proposition doesn’t specify an algorithm to generate the iterates (Pxt, Pyt).
All it shows is that as long as both the players rely on algorithms which guarantee sub-linear
regret, the iterates converge to a NE. As discussed earlier, there exist several algorithms such
as FTRL, FTPL, Best Response (BR), which guarantee sub-linear regret. It is important to

17

choose these algorithms appropriately, given the domains X ,Y as our choices impact the rate
of convergence to a NE and also the computational complexity of the resulting algorithm.
For the setting of convex-concave games, online gradient descent-ascent techniques were
classically studied in the optimization community [Nedić and Ozdaglar, 2009, Nemirovski,
2004], and which could also be seen as sub-linear regret online learning procedures for the
convex-concave game setting.

For the setting where one of the domains is unbounded, FTRL, FTPL are no longer feasible
strategies for the corresponding player, since they have regret bounds that scale with the size
of the domain, and can not guarantee sub-linear regret for unbounded domains. However,
unlike the general online learning setup, BR is a feasible strategy for such a player, and in
fact, likely the only feasible strategy when the corresponding domain is unbounded, since it
has 0 regret, without any assumptions on the domain. Recall, in order to use BR, the player
requires the knowledge of the future action of the opponent. This can be made possible in
the context of min-max games by letting the player choose her action after the other player
reveals her action.

We note that even if we could recover the mixed strategy NE, recovering global optima can
be NP-hard [see Theorem 9 of Chen et al., 2017].

3.3.2 Myopic Play/Alternating Optimization

When X ,Y are compact, and the loss function is convex-concave, are there are simpler
algorithms can sub-linear regret online learning algorithms? One such algorithm is myopic
play, which as we saw does not achieve sub-linear regret in a general online learning setup.
In the context of a zero-sum game, when both players play myopically, it need not in general
converge to an NE. As a simple example, consider the following game:

min
x∈[−a,b]

max
y∈[−a,b]

xy,

for some b > a > 0. Suppose the row player starts the myopic play at x0 = −a, then we get
the following iterates from the algorithm: y0 = −a, x1 = b, y1 = b, x2 = −a, y2 = −a . . .
Clearly, we can not have last-iterate convergence here: limt→∞(xt, yt) doesn’t converge to

a NE. Even the average of the iterates
(

1
T

∑T
t=1 xt,

1
T

∑T
t=1 yt

)
does not converge to a NE.

Interestingly, if only one of the players plays myopically, while the other uses a sub-linear
regret online learning strategy, then it suffices for the plays to converge to an NE [Cesa-
Bianchi and Lugosi, 2006]. When the loss function is additionally strongly convex, it is
possible for dual myopic play to converge to an NE. Indeed, such dual myopic play is often
called “alternating optimization”, and these have been shown to converge to NE for specific
losses [REFs].

18

3.3.3 FTL

Another simple strategy that does not lead to sub-linear regret in a general online learning
setup is FTL. Interestingly, when both players play FTL, it can be shown that they converge
to an NE [Brown, 1951, Berger, 2007]. But very little is known about the rate of convergence
even in simple linear games of the form minx∈∆d

maxy∈∆d
xTAy, where ∆d is the probability

simplex in Rd [Abernethy et al., 2019]. In some cases, it is known that the algorithm can be
exponentially slow to converge [Daskalakis and Pan, 2014].

4 Sequential Game Play

There are a number of caveats with the standard game-theoretic setup above:

• The rules of the game i.e. the loss function in general is unknown

• The column player may not be truly adversarial, and may actually allow for the row
player to incur a much smaller loss than the minimax game value

With respect to the latter, think about a poker tournament with expert and rookie poker
players. We expect the expert poker players to win much more against rookie players, then
in a tournament with only other expert poker players. As another example, going back to
the rock-paper-scissors game, in one episode of Simpsons, Bart always thinks that Rock is
the best action to take, while Lisa knows that Bart will always pick Rock. The minimax
optimal strategy — useful against a worst-case adversary — is to randomize over all actions,
which will incur a loss of 1/2. Whereas Lisa should actually take advantage of the fact that
Bart is not a truly adversarial player, and choose Paper, which will incur a loss of zero.

To model such a setting, it is instructive to consider a sequential variant of the one-shot zero-
sum game above. As before, suppose the row player, which we will also term the learner,
chooses actions in X , and the column player, which we will also term the environment,
chooses actions in Y . Suppose there is a fixed loss ` : X ×Y 7→ R capturing the rules of the
game that is to be played sequentially (e.g. rock-paper-scissors). On round t = 1, . . . , T :

1. The learner chooses their mixed strategy Pt

2. The environment chooses their mixed strategy Qt

3. Learner observes `(x, Qt) for all x ∈ X

4. Learner suffers loss `(Pt, Qt)

19

The goal of the learner is to minimize regret with respect to best action chosen in hindsight
i.e. after having observed the sequence of column actions and losses:

T∑
t=1

`(Pt, Qt)−min
P

T∑
t=1

`(P,Qt).

We could use any sublinear regret online learning algorithm to choose the learner mixed
strategies in each round. If we were to use the entropic regularization/multiplicative weights
algorithm, this would entail solving:

Pt+1(x) ∝ Pt(x) exp (−η`(x, Qt)) .

With this entropic FTRL algorithm, it can be shown that:

T∑
t=1

`(Pt, Qt) ≤ min
P

[
aη

T∑
t=1

`(P,Qt) + cηKL(P, P1)

]
,

where P1 is the first mixed strategy chosen by the learner before seeing anything from the
environment, and

aη =
η

1− exp(−η)

cη =
1

1− exp(−η)
.

Suppose |X | = m, and suppose P1 is set to the uniform distribution over {1, . . . ,m}. The
above guarantee then reduces to:

T∑
t=1

`(Pt, Qt) ≤ min
P

[
aη

T∑
t=1

`(P,Qt) + cη lnm

]
.

In all the bounds above, η can be any constant; optimizing the bound wrt η yields the

optimal value η = ln
(

1 +
√

2 lnm
T

)
. Substituting above, we get the guarantee:

T∑
t=1

`(Pt, Qt) ≤ min
P

[
T∑
t=1

`(P,Qt) + ∆T

]
,

where

∆T =

√
2 lnm

T
+

lnm

T
= O

(√
lnm

T

)
.

20

4.1 Online Prediction

Let us consider one application of the general sequential game play framework above for
the setting of online prediction. Let X be a finite set of inputs, and let H be a finite set
of hypotheses h : X 7→ {−1,+1}. Let f ∗ : X 7→ {−1,+1} denote a target classifier, not
necessarily in H defining the correct labels for each instance. The learner then plays the
following sequential game of online prediction:

1. Learner observes an instance xt ∈ X chosen arbitrarily.

2. Learner makes randomized predictions ŷt ∈ {−1,+1}

3. Learner observes the correct label f ∗(xt)

The goal of the learner is to minimize regret wrt number of mistakes i.e. with respect to
zero-one loss, when compared to best baseline in H:

T∑
t=1

P [ŷt 6= f ∗(xt)]−min
h∈H

T∑
t=1

I(h(xt) 6= f ∗(xt)).

When using entropic FTRL/multiplicative weights, the learner would play a mixed strategy
Pt over the set of hypotheses in H, where:

Pt+1(h) ∝ Pt(h) exp(−ηI(h(xt) 6= f ∗(xt))),

so that at round t, it would make a randomized prediction by picking h ∼ Pt, and predicting
h(xt). By a direct application of the guarantee above, we have that:

T∑
t=1

P [ŷt 6= f ∗(xt)] ≤ min
h∈H

T∑
t=1

I(h(xt) 6= f ∗(xt)) +O

(√
ln |H|
T

)
,

so that as T becomes large, the number of mistakes made by the algorithm will be very close
to that of the best hypothesis chosen in hindsight after seeing all of the environment inputs,
and correct labels!

4.2 Application to Mind-Reading

There are official rock-paper-scissors tournaments, where players face off against each other
over rounds of rock paper scissors. This might seem silly, since the NE is known: just
randomize over the three actions! But the problem is that humans don’t have access to a
very good source of randomness within our heads, and in practice behave very non-randomly

21

even when they try their hardest to behave randomly. Here is how we could use the sequential
game play above to beat your friends in a repeated rock-paper-scissors game. Decide on a
small set of hypotheses H that only use the last two rounds of game play to decide the next
action. For instance, one hypothesis could pick the action that would be equal to one from
the last two plays. And another could imagine that the next action would be different from
those in the last two plays. And so on. You can pick the hypothesis class H to the size that
you can keep track of without pen or paper. Then all we have to do is play a regret optimal
strategy such as multiplicative weights over this finite hypothesis class. You will then be
guaranteed to be close to the best possible hypothesis from H chosen in hindsight. For even
simpler games with just two actions, and with hypotheses classes just over the last two game
plays, some have found the strategy above to beat 90% of humans in practice.

5 Boosting

The online prediction game above serves as warm-up for a very important game: boosting.
As with the online prediction game, we let X be a finite set of inputs, typically these are the
training inputs from your training data. Suppose we use a labeling function c(x) to denote
the labels for the inputs in X . And letH be a space of “weak” hypotheses h : X 7→ {−1,+1}.
By weak all we mean is that these hypotheses individually need not be very good. Let us
recall the general boosting setup:

1. The booster constructs a distribution Qt on X

2. There is a weak learner that picks a hypothesis ht ∈ H with error at most 1/2− γ:

Px∼Qt [ht(x) 6= c(x)] ≤ 1/2− γ.

At the end of T rounds, the booster combines the hypotheses via a weighted ensemble:
sign(

∑T
t=1 αtht).

How do we relate this to a game as in the previous sections? Similar to the online prediction,
consider a zero-sum game, where the learner picks mixed strategies P over H, and the
environment picks distributions Q over the inputs X . And suppose we use the zero-one loss
`(h,x) = I[h(x) 6= c(x), with the mixed-strategy extension `(P,Q) = Eh∼P,x∼QI[h(x) 6=
c(x)]. Applying the min-max theorem to the zero-sum game we get:

min
P

max
x∈X

`(P, x) = min
P

max
Q

`(P,Q)

= max
Q

min
P
`(P,Q)

= max
Q

min
h∈H

`(P,Q).

22

Suppose the hypothesis class satisfies the following “weak learning” condition: for any dis-
tribution Q over X , there exists a hypothesis h ∈ H with error at most 1/2−γ. This entails
that:

max
Q

min
h∈H

`(h,Q) ≤ 1/2− γ.

From above, this in turn entails that:

min
P

max
x∈X

`(P,x) ≤ 1/2− γ < 1/2.

Since `(P,x) = Eh∼P I[h(x) 6= c(x)], the above can be stated as: for any input x ∈ X , the
weighted majority of hypotheses in H, weighted wrt P , have the correct label. This in turn
entails that the weighted majority vote would have the correct label for all x ∈ X :

sign

(∑
h∈H

P (h)h(x)

)
= c(x).

Such a hypothesis class H where some weighted ensemble has zero error is said to be boost-
able.

Thus the min-max theorem is just a restatement of the equivalence between the weak learning
condition and boostability of a set of hypotheses. Moreover the margin for this weighted
majority is:

(1/2 + γ)− (1/2− γ) = 2γ,

so that the weak learning “edge” parameter γ also characterizes the margin on the resulting
boosted classifier.

Now that we have the zero-sum game, we could then use online learning strategies to solve
for the NE of this game. There is however one caveat: strategies such as FTRL would require
that we maintain a distribution P over the set of hypotheses, and keep track of losses suffered
by each of the hypotheses. This would be very expensive for a large, typically infinite set of
hypotheses! It is also not how boosting algorithms such as Adaboost proceed, which track
a distribution over the finite training data instances instead.

Since we have an algorithm that tracks distributions for the row player, and we instead care
about the action space of the column player, a natural approach is to consider the dual
game, with loss:

`′(x, h) = 1− `(h,x) = I[h(x) = c(x)].

The row player now chooses a distribution over training instances. And a minimax strategy
for the row player is equivalent to a maximin strategy of the original game. When the
row player applies the entropic FTRL/multiplicative weights algorithm, we get: On round
t = 1, . . . , T :

1. Compute new distribution over training instances:

Qt ∝ Qt−1 exp(−ηI(ht−1(x) = c(x))).

23

2. Obtain the weak classifier ht that solves for:

min
h∈H

`(h,Qt),

which corresponds to the “best response” strategy.

We know from earlier that if both the row and column players play sub-linear regret strate-
gies, then P̄ = 1

T

∑T
t=1 δht is an (asympotitic) maximin strategy for the dual game, and hence

an (asympotitic) minimax strategy for original game.

There is one caveat: we would need the column player to play a regret optimal strategy, such
as best response, which might be difficult. But we don’t actually need to do that thanks to
the weak learnability, and so long as the row player plays a regret optimal strategy (such as
entropic FTRL as above). Here’s how that plays out. Since the row player plays entropic
FTRL, we have that for any choices of {ht}:

1

T

T∑
t=1

`′(Qt, ht) ≤ min
x∈X

1

T

T∑
t=1

`′(x, ht) + ∆T .

But by the weak learning condition, we have that the choices of {ht} satisfy:

`′(Qt, ht) = Px∼Qt [ht(x) = c(x)] ≥ 1/2 + γ.

We thus have that:

min
x∈X

1

T

T∑
t=1

`′(x, ht) ≥ 1/2 + γ −∆T > 1/2,

for T large enough so that ∆T < γ. Since
∑T

t=1 `
′(x, ht) is the number of hypotheses that

agree with c on x, the above entails that a simple majority vote: H(x) = sign(
∑T

t=1 ht(x))
would be equal to c(x) for all x ∈ X .

In the algorithm above, the multiplicative weights η are all the same. This variant is also
called α-boost or ε-boost. The Adaboost algorithm further optimizes the weights to minimize
the misclassification error, but wasn’t fully understood till seminal work by [Breiman, 1999,
Friedman et al., 2000] that connected it to coordinate descent of smoothed objectives.

5.1 Smoothed Objectives & Adaboost

We use the short hand notation L(P,Q) to denote Eh∼P,(x,y)∼Q [I(h(x) 6= y)]. Letting Ψ(P) =
supQ∈PD L(P,Q), the above optimization problem can be written as

inf
P∈PH

Ψ(P).

24

Thus, rather than use iterative game play strategies as earlier, we could simply use more
standard optimization algorithms to solve the program above. A natural way to minimize
Ψ(P) is to rely on coordinate descent. However, since Ψ(P) is not a smooth function, such
algorithms are not guaranteed to converge to an optimizer. A better technique to use in such
cases is to smooth Ψ and perform coordinate descent on the smoothed function [Nesterov,

2005, Abernethy et al., 2014]. Let Ψ̃(P) be a smoothed approximation of Ψ(P). A natural

technique for constructing Ψ̃(P) relies on strongly convex regularizers

Ψ̃(P) = sup
Q∈PD

L(P,Q)− ηR(Q),

where R(Q) is a strongly convex function. Following duality between strong convexity and

smoothness, it is easy to show that Ψ̃(P) is η−1 smooth whenever R(Q) is η strongly convex.

Moreover, Ψ̃(P) is pointwise close to Ψ(P)

sup
P∈PH

|Ψ̃(P)−Ψ(P)| ≤ η sup
Q∈PD

R(Q).

Suppose R(Q) =
∑

iQi logQi, then

Ψ̃(P) = η log
n∑
i=1

e
L(P,i)
η ,

where L(P, i) = Eh∼P [I(h(xi) 6= yi)]. Now consider solving the following optimization prob-
lem

inf
P∈PH

Ψ̃(P).

AdaBoost can be viewed as performing greedy coordinate descent on the following objec-
tive [Breiman, 1999, Friedman et al., 2000] where the minimization is over the set of all
signed (i.e. unnormalized) measures on H.

Suppose we use coordinate descent with exact line search to minimize Ψ̃(P). Then the
updates of the algorithm are given by

ht ∈ arg min
h∈H

〈
eh,∇Ψ̃ (Pt−1)

〉
, Pt = Pt−1 + ηtht,

where eh is the standard basis vector corresponding to hypothesis h and ηt is chosen using
exact line search

ηt = argmin
α∈R

Ψ̃(Pt−1 + αht).

A simple calculation shows that the above updates can be written as

ht ∈ arg min
h∈H

E(x,y)∼Qt [−yh(x)] , Qt(i) ∝ e−
∑t−1
s=1 η

−1ηsyihs(xi),

25

where ηt = η
2

log
∑
i:ht(xi)=yi

Qt−1(i)∑
i:ht(xi)6=yi

Qt−1(i)
. This is exactly the AdaBoost algorithm. Note that this

is not exactly a coordinate descent algorithm. This is because in greedy coordinate descent
one chooses direction ht as follows

ht ∈ arg max
h∈H

∣∣∣ 〈eh,∇Ψ̃ (Pt−1)
〉 ∣∣∣.

The AdaBoost algorithm presented above instead solves arg minh∈H

〈
eh,∇Ψ̃ (Pt−1)

〉
. How-

ever, both the updates are equivalent if we assume that −h ∈ H whenever h ∈ H.

Breiman [1999] further distinguished between two classes of algorithms. Their so-called Type
I algorithms consider unnormalized P , and solve for:

min
P∈RH

∑
z∈D

ρ(L(P, z))− C‖P‖1),

for some constant C > 0, and some univariate function ρ : R 7→ R s.t. ρ(t)→∞ as t→∞.

Examples. Adaboost is a Type I algorithm using ρ(t) = exp(t) and C = 1/2.

Their so-called Type II algorithms minimize the above surrogate objective:

G(P) =
∑
z∈D

ρ(L(P, z)),

for some function ρ : R 7→ R where ρ′(t) ≥ 0, and continuous ρ′′ s.t. supt∈[0,1] ρ
′′(t) ≥ 0.

Type II algorithms aim more to minimize L(P,UD) where U is the uniform distribution over
D, rather than the minimax objective maxQ∈PD L(P,Q).

Examples. Arc-x4 [Breiman, 1996] is a Type II algorithm with ρ(t) = t5.

References

Jacob Abernethy, Peter L Bartlett, Alexander Rakhlin, and Ambuj Tewari. Optimal strate-
gies and minimax lower bounds for online convex games. Tech. Report, 2008.

Elad Hazan. Introduction to online convex optimization. Foundations and Trends® in
Optimization, 2(3-4):157–325, 2016.

Arun Sai Suggala and Praneeth Netrapalli. Online non-convex learning: Following the
perturbed leader is optimal. arXiv preprint arXiv:1903.08110, 2019a.

26

Walid Krichene, Maximilian Balandat, Claire Tomlin, and Alexandre Bayen. The hedge
algorithm on a continuum. In International Conference on Machine Learning, pages 824–
832, 2015.

Naman Agarwal, Alon Gonen, and Elad Hazan. Learning in non-convex games with an
optimization oracle. arXiv preprint arXiv:1810.07362, 2018.

Arun Sai Suggala and Praneeth Netrapalli. Online non-convex learning: Following the
perturbed leader is optimal. CoRR, abs/1903.08110, 2019b. URL http://arxiv.org/

abs/1903.08110.

Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, learning, and games. Cambridge univer-
sity press, 2006.

John Von Neumann, Oskar Morgenstern, and Harold William Kuhn. Theory of games and
economic behavior (commemorative edition). Princeton university press, 2007.

EB Yanovskaya. Infinite zero-sum two-person games. Journal of Soviet Mathematics, 2(5):
520–541, 1974.

Abraham Wald. Statistical decision functions. The Annals of Mathematical Statistics, pages
165–205, 1949.

Angelia Nedić and Asuman Ozdaglar. Subgradient methods for saddle-point problems. Jour-
nal of optimization theory and applications, 142(1):205–228, 2009.

Arkadi Nemirovski. Prox-method with rate of convergence o (1/t) for variational inequalities
with lipschitz continuous monotone operators and smooth convex-concave saddle point
problems. SIAM Journal on Optimization, 15(1):229–251, 2004.

Robert S Chen, Brendan Lucier, Yaron Singer, and Vasilis Syrgkanis. Robust optimization
for non-convex objectives. In Advances in Neural Information Processing Systems, pages
4705–4714, 2017.

George W Brown. Iterative solution of games by fictitious play. Activity analysis of production
and allocation, 13(1):374–376, 1951.

Ulrich Berger. Brown’s original fictitious play. Journal of Economic Theory, 135(1):572–578,
2007.

Jacob D. Abernethy, Kevin A. Lai, and Andre Wibisono. Fictitious play: Convergence,
smoothness, and optimism. ArXiv, abs/1911.08418, 2019.

Constantinos Daskalakis and Qinxuan Pan. A counter-example to karlin’s strong conjecture
for fictitious play. In 2014 IEEE 55th Annual Symposium on Foundations of Computer
Science, pages 11–20. IEEE, 2014.

27

Leo Breiman. Prediction games and arcing algorithms. Neural computation, 11(7):1493–1517,
1999.

Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. Additive logistic regression: a
statistical view of boosting (with discussion and a rejoinder by the authors). The annals
of statistics, 28(2):337–407, 2000.

Yu Nesterov. Smooth minimization of non-smooth functions. Mathematical programming,
103(1):127–152, 2005.

Jacob Abernethy, Chansoo Lee, Abhinav Sinha, and Ambuj Tewari. Online linear optimiza-
tion via smoothing. In Conference on Learning Theory, pages 807–823, 2014.

Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

28

