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1 Spectral Clustering

We have looked at approaches to extract clusters, including density based approaches that
estimated disconnected components after removing low density regions (or points). Suppose
we are not interested in clusters per se, but lower-dimensional features that “respect” the
clusters. What does that mean? A natural requirement might be that features of points
within a cluster are very similar to each other, and features of points in different clusters
are far.If the features are exactly the same for points within a cluster, then we could simply
read off the cluster labels from the features. And if they are mostly the same, then we can
do so after a simple partitional clustering of the features. One approach to do so is “spectral
clustering,” which refers to a class of representation learning methods that use eigenvectors
of appropriately constructed similarity matrices. An excellent tutorial on spectral clustering,
and on which this section heavily relies on, is von Luxburg (2006). More detail can be found
in Chung (1997). The reason it’s called spectral clustering is that these spectral features can
be used to extract clusters.

Let G be an undirected graph with n vertices. Typically these vertices correspond to obser-
vations X1, . . . , Xn. Let W be an n× n symmetric weight matrix. Say that Xi and Xj are
connected if Wij > 0. The simplest type of weight matrix has entries that are either 0 or 1.
For example, we could define

Wij = I(||Xi −Xj|| ≤ ε).

An example of a more general weight matrix is Wij = e−||Xi−Xj ||2/(2h2).

The degree matrix D is the n×n diagonal matrix with Dii =
∑n

j=1Wij. The graph Laplacian
is

L = D −W. (1)

The graph Laplacian has many interesting properties which we list in the following result.
Recall that a vector v is an eigenvector of L if there is a scalar λ such that Lv = λv in which
case we say that λ is the eigenvalue corresponding to v.

Theorem 1 The graph Laplacian L has the following properties:

1. For any vector f = (f1, . . . , fn)T ,

fTLf =
1

2

n∑
i=1

n∑
j=1

Wij(fi − fj)2.
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2. L is symmetric and positive semi-definite.

3. The smallest eigenvalue of L is 0. When there is a single smallest eigenvalue, the
corresponding eigenvector is (1, 1, . . . , 1)T .

4. L has n non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λk.

5. The number of eigenvalues that are equal to 0 is equal to the number of connected
components of G. That is, 0 = λ1 = . . . = λk where k is the number of connected
components of G. The corresponding eigenvectors v1, . . . , vk are orthogonal and each
is constant over one of the connected components of the graph.

Part 1 of the theorem says that L is like a derivative operator. The last part shows that we
can use the graph Laplacian to find the connected components of the graph.

Proof.

(1) This follows from direct algebra.

(2) Since W and D are symmetric, it follow that L is symmetric. The fact that L is positive
semi-definite folows from part (1).

(3) Let v = (1, . . . , 1)T . Then

Lv = Dv −Wv =

 D11
...

Dnn

−
 D11

...
Dnn

 =

 0
...
0


which equals 0× v.

(4) This follows from parts (1)-(3).

(5) First suppose that k = 1 and thus that the graph is connected. We already know that
λ1 = 0 and v1 = (1, . . . , 1)T . Suppose there were another eigenvector v with eigenvalue 0.
Then

0 = vTLv =
n∑
i=1

n∑
j=1

Wij(v(i)− v(j))2.

It follows that Wij(v(i) − v(j))2 = 0 for all i and j. Since G is connected, for any pair of
nodes i, j, there is a path i0 = i, i1, . . . , im = j, such that Wi`i`+1

> 0, which entails that:
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v(i`) = v(i`′) for all nodes in the path, and consequently that vi = vj. Since this holds for
all i, j, v is constant, and lies in the span of v1.

Now suppose that the graph G has k components. Let nj be the number of nodes in
components j. We can relabel the vertices so that the first n1 nodes correspond to the first
connected component, the second n2 nodes correspond to the second connected component
and so on. Let v1 = (1, . . . , 1, 0, . . . , 0) where the 1’s correspond to the first component.
Let Let v2 = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0) where the 1’s correspond to the second component.
Define v3, . . . , vk similarly. Due to the re-ordering of the vertices, L has block diagonal form:

L =


L1

L2

. . .

Lk

 .

Here, each Li corresponds to one of the connected components of the graph. It is easy to
see that for j = 1, . . . , k, Lvj = 0 so that each vj is an eigenvector with zero eigenvalue.
Suppose that v is any eigenvector with 0 eigenvalue. Arguing as before, v must be constant
over each component, so that it lies in the span of {vj}kj=1.

�

Let’s collect these into a Rn×k matrix

V =


1

1
. . .

1

 .

Note that since zero is a repeated eigenvalue, we need not get exactly the vector of ones as
above, but could get set of k orthogonal vectors that span the above subspace. Specifically
consider the matrix V ∈ Rn×k defined as:

V =


v1

v2

. . .

vk

 =


1

1
. . .

1

 R,

where R is some rotation matrix, vi ∈ Rni×k is the sub-matrix with ni rows viz. number of
samples in i-th connected comoonent, and vi is some vector vi ∈ Rk repeated over ni rows.
In general if we have not sorted the matrix as above, how will the matrix V look like? Even
though there are n rows, there are only k distinct vectors, v1, . . . , vk.

When there are distinct connected components, we can then take the clusters to be the
connected components of the graph, which can be found by getting the eigenvectors of the

3



Laplacian L as discussed above. This is also called geometric graph clustering. Thus one
perspective of spectral clustering is a new algorithm to find the connected components of
the graph. In other words, if I get the k eigenvectors collated as a matrix V ∈ Rn×k with
eigenvalue zero, then

Example 2 Consider the graph

X1 X2 X3 X4 X5

and suppose that Wij = 1 if and only if there is an edge between Xi and Xj. Then

W =


0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 0 1 0

 D =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 1


and the Laplacian is

L = D −W =


1 −1 0 0 0
−1 1 0 0 0
0 0 1 −1 0
0 0 −1 2 −1
0 0 0 −1 0

 .

The eigenvalues of W , from smallest to largest are 0, 0, 1, 2, 3. The eigenvectors are

v1 =


1
1
0
0
0

 v2 =


0
0
1
1
1

 v3 =


0
0
−.71

0
.71

 v4 =


−.71
.71
0
0
0

 v5 =


0
0
−.41
.82
−.41


Note that the first two eigenvectors correspond to the connected components of the graph.

How do we get a weighted adajency matrix/graph? One approach is to compute the near
neighbor graph as:

Wij = I(||Xi −Xj|| ≤ ε)

for some ε > 0. Another, and the most commonly used set of weights for this purpose are

Wij = e−||Xi−Xj ||2/(2h2).

Other kernels Kh(Xi, Xj) can be used as well.
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for each point i ∈ [n], I can assign it to the cluster j ∈ [k] s.t. Vj

But more generally, what if the data does not consist of separate disconnected components,
but instead consists of “clusters” that are only loosely connected i.e. very few edges between
clusters. In such a case, the eigenvectors might not correspond exactly to indicator functions
of the clusters. (Ng, Jordan, Weiss 2001) show that in such a case, by appealing to matrix
perturbation theory, one can show that the bottom k eigenvectors of the Laplacian can be
shown to be close to indicator functions of clusters. Now with most procedures to recover the
first k eigenvectors, we usually have stronger guarantees on recovering the subspace spanned
by these eignvectors, so that we are not guaranteed to get indicator vectors per se, but
rotations of these i.e. some set of k orthonormal vectors. And in the case where the clusters
are not fully disconnected, we will likely have each data point “cluster” around its cluster’s
orthonormal vector.

This thus suggests using the Laplacian to transform the data into a new coordinate system
in which clusters are easier to find.

We define the symmetrized Laplacian L = D−1/2WD−1/2 and the random walk Lapla-
cian L = D−1W. These are all very similar.

We can then use the Laplacian to transform the data {Xi} to within into a new coordinate

system. Denoting the transformed data as {X̂i}, in this new coordinate system if X̂i and

X̂j are close in Euclidean distance, then they are part of the same cluster in the data i.e.
connected by many high density paths through the data.

The steps are:

Input: n× n similarity matrix W .

1. Let D be the n× n diagonal matrix with Dii =
∑

jWij.

2. Compute the Laplacian L = D−1W.

3. Find first k eigenvectors v1, . . . , vk of L.

4. Project each Xi onto the eigenvectors to get new points X̂i = (
√
λj vj(i))j∈[k].

5. Cluster the points X̂1, . . . , X̂n using any standard clustering algorithm.

The numbers h (bandwidth for kernel) and k (number of eigenvectors) are tuning parameters.
The hope is that clusters are easier to find in the new parameterization.

Example 3 Figure 1 shows a simple synthetic example. The top left plot shows the data.
We apply spectral clustering with Gaussian weights and bandwidth h = 3. The top middle
plot shows the first 20 eigenvalues. The top right plot shows the the first versus the second
eigenvector. The two clusters are clearly separated. (Because the clusters are so separated,
the graph is essentially disconnected and the first eigenvector is not constant. For large h,
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Figure 1: Top left: data. Top middle: eigenvalues. Top right: second versus third eigenvec-
tors. Remaining plots: first six eigenvectors.

the graph becomes fully connected and v1 is then constant.) The remaining six plots show
the first six eigenvectors. We see that they form a Fourier-like basis within each cluster.
Of course, single linkage clustering would work just as well with the original data as in the
transformed data. The real advantage would come if the original data were high dimensional.

Example 4 Figure 2 shows a spectral analysis of some zipcode data. Each datapoint is a 16
x 16 image of a handwritten number. We restrict ourselves to the digits 1, 2 and 3. We use
Gaussian weights and the top plots correspond to h = 6 while the bottom plots correspond to
h = 4. The left plots show the first 20 eigenvalues. The right plots show a scatterplot of the
second versus the third eigenvector. The three colors correspond to the three digits. We see
that with a good choice of h, namely h = 6, we can clearly see the digits in the plot. The
original dimension of the problem is 16 x 16 =256. That is, each image can be represented by
a point in R256. However, the spectral method shows that most of the information is captured
by two eignvectors so the effective dimension is 2. This example also shows that the choice
of h is crucial.
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Figure 2: Spectral analysis of some zipcode data. Top: h = 6. Bottom: h = 4. The plots
on the right show the second versus third eigenvector. The three colors correspond to the
three digits 1, 2 and 3.
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Figure 3: The top shows a simple graph. The remaining plots are the eigenvectors of the
graph Laplacian. Note that the first two eigenvectors correspond to the two connected
components of the graph.

2 Laplacian Eigenmaps

In the spectral clustering approach above, we extracted features that respected “clusters”
corresponding to disconnected components of (level set of) the density. But even if there
are no clear disconnected components, they nonetheless “respect” another intrinsic notion
of structure: namely the manifold structure of the density. To see this, note that fTLf
measures the smoothness of f relative to the graph. This means that the higher order
eigenvectors generate a basis where the first few basis elements are smooth (with respect to
the graph) and the later basis elements become more wiggly.

Example 5 Figure 3 shows a graph and the corresponding eigenvectors. The two eigenvec-
tors correspond two the connected components of the graph. The other eignvectors can be
thought of as forming bases vectors within the connected components.

Example 6 Let us revisit the two concentric circles dataset in Figure 1. The top six eigen-
vectors can be seen to be increasingly less smooth.
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Let y0, y1, . . . , yk ∈ Rn denote the first k eigenvectors corresponding to eigenvalues 0 = λ0 <
λ1, < λ2 < · · · < λk+1 of the Laplacian. This determines an embedding

Xi 7→ (y1i, y2i, . . . , yki) ∈ Rk (2)

into k dimensions.

We can draw further intuitions from the basic properties of Rayleigh quotients and Lapla-
cians. In particular, we have that the first nonzero eigenvector satisfies

y1 = arg min yT1 Ly1 = arg min
∑
i,j

wij (y1i − y1j)2 (3)

such that yT1Dy1 = 1 (4)

Thus, the eigenvector minimizes the weighted graph L2 norm; the intuition is that the
vector changes very slowly with respect to the intrinsic geometry of the graph. This analogy
is strengthened by consistency properties of the graph Laplacian. In particular, if the data
lie on a Riemannian manifold M , and f : M → R is a function on the manifold,

fTLf ≈
∫
M

‖∇f(x)‖2 dM(x) (5)

where on the left hand side we have evaluated the function on n points sampled uniformly
from the manifold.

As before, we could use the standard Laplacian L = D−W , or the symmetrized Laplacian
L = D−1/2WD−1/2 or random walk Laplacian L = D−1W. These are all very similar.

The random walk Laplacian L has a nice probabilistic interpretation (Coifman, Lafon, Lee
2006). Consider a Markov chain onX1, . . . , Xn where we jump fromXi toXj with probability

P(Xi → Xj) = L(i, j) =
Kh(Xi, Xj)∑
sKh(Xi, Xs)

.

The random walk Laplacian L(i, j) captures how easy it is to move from Xi to Xj. This
Markov chain is a discrete version of a continuous Markov chain with transition probability:

P (x→ A) =

∫
A
Kh(x, y)dP (y)∫
Kh(x, y)dP (y)

.

The corresponding linear operator Â : f → f̃ is

(Âf)(i) =

∑
j f(j)Kh(Xi, Xj)∑
jKh(Xi, Xj)

is in turn an estimate of the population linear operator A : f → f̃ where

Af =

∫
A
f(y)Kh(x, y)dP (y)∫
Kh(x, y)dP (y)

.
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Figure 4: A portion of the similarity graph for actual scanned digits (1s and 2s), projected
to two dimensions using Laplacian eigenmaps. Each image is a point in R256, as a 16 × 16
pixel image; the graph suggests the data has lower dimensional “manifold” structure

Given the form of this linear operator, it can be seen that the lower order eigenvectors of
L are vectors that are smooth relative to the density P . Thus, projecting onto the first few
eigenvectors parameterizes in terms of closeness with respect to the underlying density.

3 Reconstruction Error

Another approach to feature learning would be to specify coordinates in a different repre-
sentation system, ideally in a near lossless fashion. We can capture this via a reconstruction
error that arises from reconstructing the input given these new coordinates. Another way to
view this is that we have a simpler space, and the projection of any input onto this simpler
space is its new representation, and the projection error is simply the reconstruction error.

The simplest setting of this is where the simple space consists of linear manifolds, and the
resulting representation learning approach is Principal components analysis (PCA).
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Let X ∈ Rd and let Lk denote all k-dimensional linear subspaces. The kth principal subspace
is

`k = argmin
`∈Lk

E

(
min
y∈`
‖X − µ− y‖2

)
where µ = E(X). The dimension-reduced version of X is then Tk(X) = µ+π`kX where and
π`kX is the projection of X onto `k. To find `k proceed as follows.

Let Σ = E((X−µ)(X−µ)T ) denote the covariance matrix, where µ = E(X). Let λ1 ≥ λ2 ≥
· · · ≥ λd be the ordered eigenvalues of Σ and let e1, . . . , ed be the corresponding eigenvectors.
Let Λ be the diagonal matrix with Λjj = λj and let E = [e1 · · · ed]. Then the spectral
decomposition of Σ is

Σ = EΛET =
∑
j

λjeje
T
j .

Theorem 7 The kth principal subspace `k is the subspace spanned by e1, . . . , ek. Further-
more,

Tk(X) = µ+
k∑
j=1

βjej

where βj = 〈X − µ, ej〉. The risk satisfies

R(k) = E‖X − Tk(X)‖2 =
d∑

j=k+1

λj.

We can restate the result as follows. To minimize

E‖Xi − α− Aβi‖2,

with respect to α ∈ Rd, A ∈ Rd×k and βi ∈ Rk we set α = µ and A = [e1 e2 · · · ek]. Any
other solution is equivalent in the sense that it corresponds to the same subspace.

We can choose k by fixing some α and then taking

k = min

{
m :

R(m)

R(0)
≤ α

}
= min

{
m :

∑m
j=1 λj∑d
j=1 λj

≥ 1− α

}
.

Let Y = (Y1, . . . , Yd) where Yi = eTi (X − µ). Then Y is the PCA-transformation applied to
X. The random variable Y has the following properties:

Lemma 8 We have:

11



1. E[Y ] = 0 and Var(Y ) = Λ.

2. X = µ+ EY .

3.
∑m

j=1 Var(Yj) = Σ11 + · · ·+ Σmm.

Hence, ∑m
j=1 λj∑d
j=1 λj

is the percentage of variance explained by the first m principal components.

The data version of PCA is obtained by replacing Σ with the sample covariance matrix

Σ̂ =
1

n

n∑
i=1

(Xi −Xn)(Xi −Xn)T .

Principal Components Analysis (PCA)

1. Compute the sample covariance matrix Σ̂ = n−1
∑n

i=1(Xi −Xn)(Xi −Xn)T .

2. Compute the eigenvalues λ1 ≥ λ2 ≥ · · · and eigenvectors e1, e2, . . . , of Σ̂.

3. Choose a dimension k.

4. Define the dimension reduced data Zi = Tk(Xi) = X +
∑k

j=1 βijej where βij =

〈Xi −X, ej〉.

Example 9 Figure 5 shows a synthetic two-dimensional data set together with the first
principal component.

Example 10 Figure 6 shows some handwritten digits. The eigenvalues and the first few
eigenfunctions are shown in Figures 7 and 8. A few digits and their low-dimensional recon-
structions are shown in Figure 9.
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Figure 5: First principal component (red line) in a simple two dimensional example.

Figure 6: Handwritten digits.
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Figure 7: Digits data: eigenvalues

Figure 8: Digits: mean and eigenvectors

Figure 9: Digits data: Top: digits. Bottom: their reconstructions.
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How well does the sample version approximate the population version? For now, assume the
dimensions d is fixed and that n is large.

Define the operator norm

||Σ|| = sup

{
||Σv||
||v||

: v 6= 0

}
.

It can be shown that ||Σ̂− Σ|| = OP (1/
√
n). According to Weyl’s theorem

max
j
|λj(Σ̂)− λj(Σ)| ≤ ||Σ̂− Σ||

and hence, the estimated eigenvalues are consistent. We can also say that the eigenvectors
are consistent. We have

||êj − ej|| ≤
23/2||Σ̂− Σ||

min(λj−1 − λj, λj − λj+1)
.

(See Yu, Wang and Samworth, arXiv:1405.0680.)

There is a strong connection between PCA and the singular value decomposition (SVD). Let
X be an n× d matrix. The SVD is

X = UDV T

where U is an n×n matrix with orthonormal columns, V is a d×d matrix with orthonormal
columns, and D is an n× d diagonal matrix with non-negative real numbers on the diagonal
(called singular values). Then

XTX = (V DUT )(UDV T ) = V D2V T

and hence the singular values are the square root of the eigenvalues of the sample covariance
matrix.

3.1 Principal Curves and Manifolds

We can replace linear subspaces with more general manifolds.

Let X ∈ Rd and let F be a set of functions from [0, 1]k to Rd. The principal manifold (or
principal curve) is the function f ∈ F that minimizes

R(f) = E

(
min
z∈[0,1]k

‖X − f(z)‖2
)
. (6)

To see how general this is, note that we recover principal components as a special case by
taking F to be linear mappings. We recover k-means by taking F to be all mappings from
{1, . . . , k} to Rd.
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Define the projection coordinates of any point x ∈ Rd onto f as Zf (x) = arg minz∈[0,1]k ‖x−
f(z)‖2, and the corresponding projection as TF(x) = f(Zf (x)).

In (Hastie & Stuetzle, Principal Curves, 1989), they propose the self-consistency constraint :

E[X|Zf (X) = Z] = f(Z),

and propose an iterative algorithm to learn one-dimensional self-consistent principal curves
by solving for the fixed point:

f (t)(z) = E[X|Zf (t−1)(X) = z].

Smola et al (2001) consider an RKHS version. They take

F =

{
f : ‖f‖2k ≤ C2

}
where ‖f‖K is the norm for a reproducing kernel Hilbert space (RKHS) with kernel K. A
common choice is the Gaussian kernel

K(z, u) = exp

{
−‖z − u‖

2

2h2

}
.

To approximate the minimizer, we can proceed as in (Smola, Mika, Schölkopf, Williamson
2001). Fix a large number of points z1, . . . , zM and approximate an arbitrary f ∈ F as

f(z) =
M∑
j=1

αjK(zj, z)

which depends on parameters α = (α1, . . . , αM), where αi ∈ Rd. The minimizer can be
found as follows. Define latent variables ξ = (ξ1, . . . , ξn) where ξi ∈ Rk and

ξi = argminξ∈[0,1]k‖Xi − f(ξ)‖2.

For fixed α we find each ξi by standard nonlinear function minimization. Given ξ we then
find α by minimizing

1

n

n∑
i=1

‖Xi −
M∑
j=1

αjK(zj, ξi)‖2 +
λ

2

M∑
i=1

M∑
j=1

αiαjK(zi, zj).

The minimizer is

α =

(
λn

2
Kz +KT

ξ Kξ

)−1
KT
ξ X

where (Kz)ij = K(zi, zj) is M × M and (Kξ)ij = K(ξi, zj) is n × M . Now we iterate,
alternately solving for ξ and α.

Example 11 Figure 10 shows some data and four principal curves based on increasing de-
grees of regularization.
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Figure 10: Principal curve with increasing amounts of regularization.

3.2 Autoencoders

The manifolds in the previous sections were represented as {f(z) : z ∈ Rk}. The caveat
with these is that we need to solve a separate optimization problem to find the coordinates z
corresponding to each data point. This is not scalable to large datasets. A simpler approach
would be to have a fixed function, called an encoder z = g(x), that corresponds to the
projection onto the manifold and learn this as a function, simultaneously with the decoder
x = f(z) as in the earlier principal manifolds section. This results in what is known as an
auto-encoder, since we are learning both an encoder and a decoder so that x ≈ f ◦ g(x).

Let’s first consider the linear setting, with linear encoders E(X) = WX, and linear decoders
D(Z) = MZ where Z ∈ RK and M ∈ Rd×K . Then, the composition of the encoder and

decoder results in a so-called auto-encoder that computes X̂ = D(E(X)) = MWX. We
would ideally like this to as close to X as possible. Suppose we care about the expected `2
error, so that we wish the optimal auto-encoder matrices to solve for:

inf
W,M

E[‖X −MWX‖2].

[?] showed that the optimal encoder matrix W = CU , and M = UTC−1, where U =
[u1, . . . , uk] is the matrix obtained by row-stacking the top K eigenvectors of Σ = Cov(X),
and C ∈ RK×K is any invertible orthonormal matrix. Thus, the optimal linear auto-encoder
results in the PCA transform.
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Let us see why this might be the case. Suppose we fix the encoder E(X) = WX, for some
orthonormal W . Given such an encoder, the optimal decoder with respect to the `2 error
can be written as

D(Z) = arg inf
X
‖E(X)− Z‖2 =: ‖WX − Z‖2,

which is an under-determined problem for k < p, Under the additonal restriction that we
desire for smallest `2 norm X̂ such that WX̂ = Z, we recover D(Z) = X̂ = (W TW )+W TZ =
W TZ, under the assumption that the encoder matrix W is orthonormal.

Similarly, suppose we fix the decoder as D(Z) = W TZ for some orthonormal matrix W .
The optimal encoder with respect to the `2 error is then given as:

E(X) = arg inf
Z
‖X −D(Z)‖ =: ‖X −W TZ‖,

which can be seen to be given by E(X) = (WW T )−1WX = WX, under the assumption
that the decoder matrix W is orthonormal.

We thus see that even if we just specify a linear decoder or linear encoder, the optimal
encoder or decoder respectively is also linear, and under the assumption that one of the linear
transformations is orthonormal, the optimal other transformation is simply its transpose.

Thus, the overall `2 error of a linear auto-encoder is given by:

E[X −W TWX] = E[‖X −
K∑
j=1

wj(w
T
j X)‖2,

so that we get the following objective comprising the minimum mean-squared error between
X and its projection onto rows of W :

min
W

E[‖X −W TWX‖2

s.t. WW T = I.

This can be seen to be equivalent to the earlier PCA objective.

More generally, we can train non-linear auto-encoders f, g so that:

min
f,g

E‖X − f(g(X))‖22,

which are called non-linear or simply auto-encoders, and where the families for the encoders
and decoders are typically neural networks. When using such highly flexible families, one
pitfall is that they can simply learn invertible maps f, g so that fog = Id. To prevent this,
one can use k � d, and also have denoising auto-encoders that have to reconstruct the input
given noisy versions of the input:

min
f,g

E‖X − f(g(n(X)))‖22,
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where n(X) is a noisy version of the input. Another approach for regularization would be
variational auto-encoders that we studied in the context of deep density estimation.

But notwithstanding such regularizations, the non-linear setting however is horribly ill-posed:
for any invertible function h : Rk 7→ Rk, we have that f(g(X)) = (foh)(h−1og)(X).

4 Information

We can also ask for features that preserve the most information. But how do we quantify
information? One crude approach might be to use variance. Let us consider the linear
setting.

Let X ∈ Rd be a zero mean random vector, and consider the linear encoder E(X) = WX =:
Z which maps X ∈ Rd to the latent Z = WX ∈ Rk. Setting the objective to be the sum
of individual variances of the latent variables, subject to orthogonality of the rows of W , we
get theobjective:

max
W

K∑
j=1

E(Z2
j ) = E‖WX‖2

s.t. WW T = I,

where the constraint states that the rows of W are orthonormal. This can be seen to be the
PCA objective, and as before solved by an eigendecomposition of Σ = E[XXT ]. To see this,
expand the mean-squared error objective as:

E[‖X‖2]− 2E[XTW TWX] + E[XTW TWW TWX]

= E[‖X‖2]− E[XTW TWX]

= E[‖X‖2]− E[‖WX‖2]

where the second equality is due to orthonormality of rows of W , where WW T = I.

What about the non-linear case with Zj = gj(X), for j ∈ [k]? We could maximize the
variance

∑
j Var(gj(X)), but this is ill-posed without additional constraints on {gj}. In the

absence of such constraints, note that the variance can be made very large by scaling gj.
Note that even in the linear case above, we imposed orthonormality of the different linear
gj, and it is not exactly clear how to translate that to the non-linear case.

Let X ∼ N (0,Σ). Then, Z = WX ∼ N (0,WΣW T ). Given Z, we could then decode X
via the conditional distribution X|Z = z, which can be seen to be Gaussian as well. We
could thus ask for an encoding with minimum “decoding” uncertainty as specified by the
conditional entropy H(X|Z):

min
W

H(X|Z := WX).

19



It can be shown [?] that the optimal W = CU as earlier. This can also be alternatively stated
as maximizing mutual information between X and Z since I(X,Z) = H(X) − H(X|Z).
Thus, an alternative characterization of PCA is as a linear map that maximizes mutual
information with original input, but under the strong proviso that the input is Gaussian
distributed. When implemented for general non-linear maps, this is known as the Infomax,
and together with approximations such as InfoNCE, have been some of the pre-cursors of
modern self-supervised representation learning.
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