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Last time: convex sets and functions

“Convex calculus” makes it easy to check convexity. Tools:

• Definitions of convex sets and functions, classic examples
24 2 Convex sets

Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary (shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

Figure 2.3 The convex hulls of two sets in R2. Left. The convex hull of a
set of fifteen points (shown as dots) is the pentagon (shown shaded). Right.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

Roughly speaking, a set is convex if every point in the set can be seen by every other
point, along an unobstructed straight path between them, where unobstructed
means lying in the set. Every affine set is also convex, since it contains the entire
line between any two distinct points in it, and therefore also the line segment
between the points. Figure 2.2 illustrates some simple convex and nonconvex sets
in R2.

We call a point of the form θ1x1 + · · · + θkxk, where θ1 + · · · + θk = 1 and
θi ≥ 0, i = 1, . . . , k, a convex combination of the points x1, . . . , xk. As with affine
sets, it can be shown that a set is convex if and only if it contains every convex
combination of its points. A convex combination of points can be thought of as a
mixture or weighted average of the points, with θi the fraction of xi in the mixture.

The convex hull of a set C, denoted conv C, is the set of all convex combinations
of points in C:

conv C = {θ1x1 + · · · + θkxk | xi ∈ C, θi ≥ 0, i = 1, . . . , k, θ1 + · · · + θk = 1}.

As the name suggests, the convex hull conv C is always convex. It is the smallest
convex set that contains C: If B is any convex set that contains C, then conv C ⊆
B. Figure 2.3 illustrates the definition of convex hull.

The idea of a convex combination can be generalized to include infinite sums, in-
tegrals, and, in the most general form, probability distributions. Suppose θ1, θ2, . . .

Chapter 3

Convex functions

3.1 Basic properties and examples

3.1.1 Definition

A function f : Rn → R is convex if dom f is a convex set and if for all x,
y ∈ dom f , and θ with 0 ≤ θ ≤ 1, we have

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y). (3.1)

Geometrically, this inequality means that the line segment between (x, f(x)) and
(y, f(y)), which is the chord from x to y, lies above the graph of f (figure 3.1).
A function f is strictly convex if strict inequality holds in (3.1) whenever x ̸= y
and 0 < θ < 1. We say f is concave if −f is convex, and strictly concave if −f is
strictly convex.

For an affine function we always have equality in (3.1), so all affine (and therefore
also linear) functions are both convex and concave. Conversely, any function that
is convex and concave is affine.

A function is convex if and only if it is convex when restricted to any line that
intersects its domain. In other words f is convex if and only if for all x ∈ dom f and

(x, f(x))

(y, f(y))

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) be-
tween any two points on the graph lies above the graph.• Key properties (e.g., first- and second-order characterizations

for functions)

• Operations that preserve convexity (e.g., affine composition)

E.g., is max

{
log

(
1

(aTx+ b)7

)
, ‖Ax+ b‖51

}
convex?
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Outline

Today:

• Optimization terminology

• Properties and first-order optimality

• Equivalent transformations
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Convex optimization problems

Optimization problem:

min
x∈D

f(x)

subject to gi(x) ≤ 0, i = 1, . . .m

hj(x) = 0, j = 1, . . . p

Here D = dom(f) ∩⋂m
i=1 dom(gi) ∩

⋂p
j=1 dom(hj), common

domain of all the functions

This is a convex optimization problem provided the functions f
and gi, i = 1, . . .m are convex, and hj , j = 1, . . . p are affine:

hj(x) = aTj x+ bj , j = 1, . . . p
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Optimization terminology
Reminder: a convex optimization problem (or program) is

min
x∈D

f(x)

subject to gi(x) ≤ 0, i = 1, . . .m

hj(x) = 0 j = 1, . . . p

where f and gi, i = 1, . . .m are all convex, hj , j = 1, . . . , p are
affine, and the optimization domain is D (often we do not write
D) where D = dom(f) ∩⋂m

i=1 dom(gi) ∩
⋂p
j=1 dom(gj)

• f is called criterion or objective function

• gi is called inequality constraint function

• hj is called equality constraint function

• If x ∈ D, gi(x) ≤ 0, i = 1, . . .m, and hj(x) = 0, j = 1, . . . , p
then x is called a feasible point

• The minimum of f(x) over all feasible points x is called the
optimal value, written f?
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• If x is feasible and f(x) = f?, then x is called optimal; also
called a solution, or a minimizer1

• If x is feasible and f(x) ≤ f?+ ε, then x is called ε-suboptimal

• If x is feasible and gi(x) = 0, then we say gi is active at x

• Convex minimization can be reposed as concave maximization

min
x

f(x)

subject to gi(x) ≤ 0,

i = 1, . . .m

Ax = b

⇐⇒

max
x

− f(x)
subject to gi(x) ≤ 0,

i = 1, . . .m

Ax = b

Both are called convex optimization problems

1Note: a convex optimization problem need not have solutions, i.e., need
not attain its minimum, but we will not be careful about this
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Convex solution sets

Let Xopt be the set of all solutions of convex problem, written

Xopt = argmin f(x)

subject to gi(x) ≤ 0, i = 1, . . .m

Ax = b

Key property: Xopt is a convex set

Proof: use definitions. If x, y are solutions, then for 0 ≤ t ≤ 1,

• tx+ (1− t)y ∈ D
• gi(tx+ (1− t)y) ≤ tgi(x) + (1− t)gi(y) ≤ 0

• A(tx+ (1− t)y) = tAx+ (1− t)Ay = b

• f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) = f?

Therefore tx+ (1− t)y is also a solution

Another key property: if f is strictly convex, then the solution is
unique, i.e., Xopt contains one element
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Example: lasso

Given y ∈ Rn, X ∈ Rn×p, consider the lasso problem:

min
β

‖y −Xβ‖22
subject to ‖β‖1 ≤ s

Is this convex? What is the criterion function? The inequality and
equality constraints? Feasible set? Is the solution unique, when:

• n ≥ p and X has full column rank?

• p > n (“high-dimensional” case)?

How do our answers change if we changed criterion to Huber loss:

n∑
i=1

ρ(yi − xTi β), ρ(z) =

{
1
2z

2 |z| ≤ δ
δ|z| − 1

2δ
2 else

?
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Example: support vector machines

Given y ∈ {−1, 1}n, X ∈ Rn×p with rows x1, . . . xn, consider the
support vector machine or SVM problem:

min
β,β0,ξ

1

2
‖β‖22 + C

n∑
i=1

ξi

subject to ξi ≥ 0, i = 1, . . . n

yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . n

Is this convex? What is the criterion, constraints, feasible set? Is
the solution (β, β0, ξ) unique?
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Local minima are global minima

For convex optimization problems, local minima are global minima

Local minimum: If x is feasible (x ∈ D, and satisfies all
constraints) and minimizes f in a local neighborhood, i.e. for some
ρ > 0

f(x) ≤ f(y) for all feasible y, ‖x− y‖2 ≤ ρ

For convex problems, x is also a global minimum

f(x) ≤ f(y) for all feasible y

This is a very useful
fact and will save us
a lot of trouble!
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Convex Nonconvex
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Rewriting constraints

The optimization problem

min
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . .m

Ax = b

can be rewritten as

min
x

f(x) subject to x ∈ C

where C = {x : gi(x) ≤ 0, i = 1, . . .m, Ax = b}, the feasible set.
Hence the above formulation is completely general

With IC the indicator of C, we can write this in unconstrained form

min
x

f(x) + IC(x)
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First-order optimality condition

For a convex problem

min
x

f(x) subject to x ∈ C

and differentiable f , a feasible point x is optimal if and only if

∇f(x)T (y − x) ≥ 0 for all y ∈ C

This is called the first-order condition
for optimality

In words: all feasible directions from x
are aligned with gradient ∇f(x)

Important special case: if C = Rn (unconstrained optimization),
then optimality condition reduces to familiar ∇f(x) = 0
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Example: quadratic minimization

Consider minimizing the quadratic function

f(x) =
1

2
xTQx+ bTx+ c

where Q � 0. The first-order condition says that solution satisfies

∇f(x) = Qx+ b = 0

Cases:

• if Q � 0, then there is a unique solution x = −Q−1b
• if Q is singular and b /∈ col(Q), then there is no solution (i.e.,
minx f(x) = −∞)

• if Q is singular and b ∈ col(Q), then there are infinitely many
solutions

x = −Q+b+ z, z ∈ null(Q)

where Q+ is the pseudoinverse of Q
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Example: projection onto a convex set

Consider projection onto convex set C:

min
x

1

2
‖a− x‖22 subject to x ∈ C

First-order optimality condition says that the solution x satisfies

∇f(x)T (y − x) = (x− a)T (y − x) ≥ 0 for all y ∈ C

Equivalently, this says that

a− x ∈ NC(x)

where recall NC(x) is the normal
cone to C at x

●

●

●

●
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Partial optimization

Reminder: g(x) = miny∈C f(x, y) is convex in x, provided that f
is convex in (x, y) and C is a convex set

Therefore we can always partially optimize a convex problem and
retain convexity

E.g., if we decompose x = (x1, x2) ∈ Rn1+n2 , then

min
x1,x2

f(x1, x2)

subject to g1(x1) ≤ 0

g2(x2) ≤ 0

⇐⇒
min
x1

f̃(x1)

subject to g1(x1) ≤ 0

where f̃(x1) = min{f(x1, x2) : g2(x2) ≤ 0}. The right problem is
convex if the left problem is

15



Example: hinge form of SVMs

Recall the SVM problem

min
β,β0,ξ

1

2
‖β‖22 + C

n∑
i=1

ξi

subject to ξi ≥ 0, yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . n

Rewrite the constraints as ξi ≥ max{0, 1− yi(xTi β + β0)}. Indeed
we can argue that we have = at solution

Therefore plugging in for optimal ξ gives the hinge form of SVMs:

min
β,β0

1

2
‖β‖22 + C

n∑
i=1

[
1− yi(xTi β + β0)

]
+

where a+ = max{0, a} is called the hinge function

16



Transformations and change of variables

If h : R→ R is a monotone increasing transformation, then

min
x

f(x) subject to x ∈ C
⇐⇒ min

x
h(f(x)) subject to x ∈ C

For example, maximizing log likelihood instead of maximizing
likelihood

If φ : Rn → Rm is one-to-one, and its image covers feasible set C,
then we can change variables in an optimization problem:

min
x

f(x) subject to x ∈ C
⇐⇒ min

y
f(φ(y)) subject to φ(y) ∈ C
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Introducing slack variables

Simplifying inequality constraints. Given the problem

min
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . .m

Ax = b

we can transform the inequality constraints via

min
x,s

f(x)

subject to si ≥ 0, i = 1, . . .m

gi(x) + si = 0, i = 1, . . .m

Ax = b

Note: this is no longer convex unless gi, i = 1, . . . , n are affine
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Example: SVM derivation (hard margin constraint)

The hard-margin SVM problem is originally cast as:

min
β,β0

1

2
‖β‖22

subject to yi(x
T
i β + β0) ≥ 1, i = 1, . . . n

Introducing slack variables ξi, we get

min
β,β0,ξ

1

2
‖β‖22

subject to ξi ≥ 0, yi(x
T
i β + β0) = 1− ξi, i = 1, . . . n
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Relaxing nonaffine equality constraints

Given an optimization problem

min
x

f(x) subject to x ∈ C

we can always take an enlarged constraint set C̃ ⊇ C and consider

min
x

f(x) subject to x ∈ C̃

This is called a relaxation and its optimal value is always smaller or
equal to that of the original problem

Important special case: relaxing nonaffine equality constraints, i.e.,

hj(x) = 0, j = 1, . . . r

where hj , j = 1, . . . r are convex but nonaffine, are replaced with

hj(x) ≤ 0, j = 1, . . . r
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Example: principal components analysis

Given X ∈ Rn×p, consider the low rank approximation problem:

min
R
‖X −R‖2F subject to rank(R) = k

Here ‖A‖2F =
∑n

i=1

∑p
j=1A

2
ij , the entrywise squared `2 norm, and

rank(A) denotes the rank of A. Also called principal components
analysis or PCA problem.

This problem is not convex. Why?

Given X = UDV T , singular value decomposition or SVD, the
solution is

R = UkDkV
T
k

where Uk, Vk are the first k columns of U, V and Dk is the first k
diagonal elements of D. I.e., R is reconstruction of X from its first
k principal components
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We can recast the PCA problem in a convex form. First rewrite as

min
Z∈Sp

‖X −XZ‖2F subject to rank(Z) = k, Z is a projection

⇐⇒ max
Z∈Sp

tr(SZ) subject to rank(Z) = k, Z is a projection

where S = XTX. Hence constraint set is the nonconvex set

C =
{
Z ∈ Sp : λi(Z) ∈ {0, 1}, i = 1, . . . p, tr(Z) = k}

where λi(Z), i = 1, . . . n are the eigenvalues of Z. Solution in this
formulation is

Z = VkV
T
k

where Vk gives first k columns of V
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Now consider relaxing constraint set to Fk = conv(C), its convex
hull. Note

Fk = {Z ∈ Sp : λi(Z) ∈ [0, 1], i = 1, . . . p, tr(Z) = k}
= {Z ∈ Sp : 0 � Z � I, tr(Z) = k}

Recall this is called the Fantope of order k

Hence, the linear maximization over the Fantope, namely

max
Z∈Fk

tr(SZ)

is convex. Remarkably, this is equivalent to the nonconvex PCA
problem (admits the same solution)!

(Famous result: Fan (1949), “On a theorem of Weyl conerning
eigenvalues of linear transformations”)

23


