Convexity II: Optimization Basics

Lecturer: Aarti Singh Co-instructor: Pradeep Ravikumar

Convex Optimization 10-725/36-725

Last time: convex sets and functions $G_{\rm eff}$ in this inequality means that the line segment between (x, f(x)) and α

"Convex calculus" makes it easy to check convexity. Tools: \mathcal{I} convex and concave is affine.

· Definitions of convex sets and functions, classic examples 24 2 Convex sets

- Key properties (e.g., first- and second-order characterizations for functions) is not convex, since the two points in \mathcal{S} $\frac{1}{2}$. The set shown as dots is not contained in the set of $\frac{1}{2}$
- Operations that preserve convexity (e.g., affine composition)

E.g., is max
$$
\left\{ \log \left(\frac{1}{(a^T x + b)^7} \right), ||Ax + b||_1^5 \right\}
$$
 convex?

Outline

Today:

- Optimization terminology
- Properties and first-order optimality
- Equivalent transformations

Convex optimization problems

Optimization problem:

$$
\min_{x \in D} f(x)
$$
\nsubject to $g_i(x) \leq 0, i = 1, \dots, m$
\n $h_j(x) = 0, j = 1, \dots, p$

Here $D = \text{dom}(f) \cap \bigcap_{i=1}^m \text{dom}(g_i) \cap \bigcap_{j=1}^p \text{dom}(h_j)$, common domain of all the functions

This is a convex optimization problem provided the functions f and $g_i, i=1,\ldots m$ are convex, and $h_j, j=1,\ldots p$ are affine:

$$
h_j(x) = a_j^T x + b_j, \quad j = 1, \dots p
$$

Optimization terminology

Reminder: a convex optimization problem (or program) is

$$
\min_{x \in D} f(x)
$$
\nsubject to $g_i(x) \leq 0, i = 1, \dots, m$
\n $h_j(x) = 0 \, j = 1, \dots, p$

where f and $g_i, \, i=1,\ldots m$ are all convex, $h_j, \, j=1,\ldots, p$ are affine, and the optimization domain is D (often we do not write D) where $D = \text{dom}(f) \cap \bigcap_{i=1}^m \text{dom}(g_i) \cap \bigcap_{j=1}^p \text{dom}(g_j)$

- \bullet f is called criterion or objective function
- \bullet g_i is called inequality constraint function
- h_i is called equality constraint function
- If $x \in D$, $q_i(x) \leq 0$, $i = 1, \ldots, m$, and $h_i(x) = 0$, $i = 1, \ldots, p$ then x is called a feasible point
- The minimum of $f(x)$ over all feasible points x is called the optimal value, written f^{\star}
- If x is feasible and $f(x) = f^*$, then x is called optimal; also called a solution, or a minimizer¹
- If x is feasible and $f(x) \leq f^* + \epsilon$, then x is called ϵ -suboptimal
- If x is feasible and $g_i(x) = 0$, then we say g_i is active at x
- Convex minimization can be reposed as concave maximization

$$
\min_{x} \quad f(x) \quad \max_{x} \quad -f(x)
$$
\nsubject to $g_i(x) \le 0$, \iff subject to $g_i(x) \le 0$, $i = 1, ... m$
\n $Ax = b \quad Ax = b$

Both are called convex optimization problems

 1 Note: a convex optimization problem need not have solutions, i.e., need not attain its minimum, but we will not be careful about this

Convex solution sets

Let X_{opt} be the set of all solutions of convex problem, written

$$
X_{\text{opt}} = \underset{\text{subject to}}{\text{argmin}} \quad f(x)
$$

$$
g_i(x) \le 0, \ i = 1, \dots m
$$

$$
Ax = b
$$

Key property: X_{opt} is a convex set

Proof: use definitions. If x, y are solutions, then for $0 \le t \le 1$,

\n- $$
tx + (1-t)y \in D
$$
\n- $g_i(tx + (1-t)y) \leq tg_i(x) + (1-t)g_i(y) \leq 0$
\n- $A(tx + (1-t)y) = tAx + (1-t)Ay = b$
\n- $f(tx + (1-t)y) < tf(x) + (1-t)f(y) = f^*$
\n

• $f(tx+(1-t)y)\leq tf(x)+(1-t)f(y)=f$

Therefore $tx + (1 - t)y$ is also a solution

Another key property: if f is strictly convex, then the solution is unique, i.e., X_{opt} contains one element

Example: lasso

Given $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$, consider the lasso problem:

min $||y - X\beta||_2^2$ subject to $\|\beta\|_1 \leq s$

Is this convex? What is the criterion function? The inequality and equality constraints? Feasible set? Is the solution unique, when:

- $n > p$ and X has full column rank?
- $p > n$ ("high-dimensional" case)?

Example: lasso

Given $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$, consider the lasso problem:

 \min_{β} $||y - X\beta||_2^2$ β subject to $\|\beta\|_1 \leq s$

Is this convex? What is the criterion function? The inequality and equality constraints? Feasible set? Is the solution unique, when:

- $n > p$ and X has full column rank?
- $p > n$ ("high-dimensional" case)?

How do our answers change if we changed criterion to Huber loss:

$$
\sum_{i=1}^{n} \rho(y_i - x_i^T \beta), \quad \rho(z) = \begin{cases} \frac{1}{2} z^2 & |z| \le \delta \\ \delta |z| - \frac{1}{2} \delta^2 & \text{else} \end{cases}
$$

Example: support vector machines

Given $y \in \{-1,1\}^n$, $X \in \mathbb{R}^{n \times p}$ with rows $x_1, \ldots x_n$, consider the support vector machine or SVM problem:

$$
\min_{\beta, \beta_0, \xi} \qquad \frac{1}{2} \|\beta\|_2^2 + C \sum_{i=1}^n \xi_i
$$
\n
$$
\text{subject to} \quad \xi_i \ge 0, \ i = 1, \dots n
$$
\n
$$
y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i, \ i = 1, \dots n
$$

Is this convex? What is the criterion, constraints, feasible set? Is the solution (β, β_0, ξ) unique?

Local minima are global minima

For convex optimization problems, local minima are global minima

Local minimum: If x is feasible $(x \in D)$, and satisfies all constraints) and minimizes f in a local neighborhood, i.e. for some $\rho > 0$

 $f(x) \leq f(y)$ for all feasible $y, \|x - y\|_2 \leq \rho$

Local minima are global minima

For convex optimization problems, local minima are global minima

Local minimum: If x is feasible $(x \in D)$, and satisfies all constraints) and minimizes f in a local neighborhood, i.e. for some $\rho > 0$

$$
f(x) \le f(y) \text{ for all feasible } y, ||x - y||_2 \le \rho
$$

For convex problems, x is also a global minimum $f(x) < f(y)$ for all feasible y

This is a very useful fact and will save us a lot of trouble!

Rewriting constraints

The optimization problem

$$
\min_{x} \qquad f(x)
$$
\nsubject to $g_i(x) \le 0, \ i = 1, \dots m$ \n
$$
Ax = b
$$

can be rewritten as

$$
\min_{x} f(x) \text{ subject to } x \in C
$$

where $C = \{x : q_i(x) \leq 0, i = 1, \ldots m, Ax = b\}$, the feasible set. Hence the above formulation is completely general

Rewriting constraints

The optimization problem

$$
\min_{x} \qquad f(x)
$$
\nsubject to $g_i(x) \leq 0, \ i = 1, \dots m$ \n
$$
Ax = b
$$

can be rewritten as

$$
\min_{x} f(x) \text{ subject to } x \in C
$$

where $C = \{x : q_i(x) \leq 0, i = 1, \ldots m, Ax = b\}$, the feasible set. Hence the above formulation is completely general

With I_C the indicator of C, we can write this in unconstrained form

$$
\min_{x} f(x) + I_C(x)
$$

First-order optimality condition

For a convex problem

 $\min_{x} f(x)$ subject to $x \in C$

and differentiable f , a feasible point x is optimal if and only if

$$
\nabla f(x)^T (y - x) \ge 0 \quad \text{for all } y \in C
$$

This is called the first-order condition for optimality

In words: all feasible directions from x are aligned with gradient $\nabla f(x)$

First-order optimality condition

For a convex problem

 $\min_{x} f(x)$ subject to $x \in C$

and differentiable f , a feasible point x is optimal if and only if

$$
\nabla f(x)^T (y - x) \ge 0 \quad \text{for all } y \in C
$$

This is called the first-order condition for optimality

In words: all feasible directions from x are aligned with gradient $\nabla f(x)$

Important special case: if $C = \mathbb{R}^n$ (unconstrained optimization), then optimality condition reduces to familiar $\nabla f(x) = 0$

Example: quadratic minimization

Consider minimizing the quadratic function

$$
f(x) = \frac{1}{2}x^T Q x + b^T x + c
$$

where $Q \succeq 0$. The first-order condition says that solution satisfies

$$
\nabla f(x) = Qx + b = 0
$$

Cases:

- if $Q \succ 0$, then there is a unique solution $x = -Q^{-1}b$
- if Q is singular and $b \notin col(Q)$, then there is no solution (i.e., $\min_x f(x) = -\infty$
- if Q is singular and $b \in col(Q)$, then there are infinitely many solutions

$$
x=-Q^+b+z,\ \ \, z\in \mathrm{null}(Q)
$$

where Q^+ is the pseudoinverse of Q

Example: projection onto a convex set

Consider projection onto convex set C:

$$
\min_{x} \frac{1}{2} \|a - x\|_2^2 \text{ subject to } x \in C
$$

First-order optimality condition says that the solution x satisfies

$$
\nabla f(x)^T (y - x) = (x - a)^T (y - x) \ge 0 \quad \text{for all } y \in C
$$

Equivalently, this says that

$$
a - x \in \mathcal{N}_C(x)
$$

where recall $\mathcal{N}_C(x)$ is the normal cone to C at x

Partial optimization

Reminder: $g(x) = \min_{y \in C} f(x, y)$ is convex in x, provided that f is convex in (x, y) and C is a convex set

Therefore we can always partially optimize a convex problem and retain convexity

E.g., if we decompose $x = (x_1, x_2) \in \mathbb{R}^{n_1+n_2}$, then

$$
\min_{x_1, x_2} \qquad f(x_1, x_2) \qquad \min_{x_1} \qquad \tilde{f}(x_1)
$$
\n
$$
\text{subject to} \quad g_1(x_1) \le 0 \qquad \Longleftrightarrow \qquad \text{subject to} \quad g_1(x_1) \le 0
$$
\n
$$
g_2(x_2) \le 0
$$

where $\tilde{f}(x_1) = \min\{f(x_1, x_2) : g_2(x_2) \leq 0\}$. The right problem is convex if the left problem is

Example: hinge form of SVMs

Recall the SVM problem

$$
\min_{\beta, \beta_0, \xi} \qquad \frac{1}{2} ||\beta||_2^2 + C \sum_{i=1}^n \xi_i
$$
\n
$$
\text{subject to} \quad \xi_i \ge 0, \ y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i, \ i = 1, \dots n
$$

Rewrite the constraints as $\xi_i \ge \max\{0, 1 - y_i(x_i^T \beta + \beta_0)\}\.$ Indeed we can argue that we have $=$ at solution

Therefore plugging in for optimal ξ gives the hinge form of SVMs:

$$
\min_{\beta, \beta_0} \frac{1}{2} ||\beta||_2^2 + C \sum_{i=1}^n \left[1 - y_i (x_i^T \beta + \beta_0) \right]_+
$$

where $a_+ = \max\{0, a\}$ is called the hinge function

Transformations and change of variables

If $h : \mathbb{R} \to \mathbb{R}$ is a monotone increasing transformation, then

$$
\min_{x} f(x) \text{ subject to } x \in C
$$

$$
\iff \min_{x} h(f(x)) \text{ subject to } x \in C
$$

For example, maximizing log likelihood instead of maximizing likelihood

If $\phi:\mathbb{R}^n\rightarrow\mathbb{R}^m$ is one-to-one, and its image covers feasible set C , then we can change variables in an optimization problem:

$$
\min_{x} f(x) \text{ subject to } x \in C
$$

$$
\iff \min_{y} f(\phi(y)) \text{ subject to } \phi(y) \in C
$$

Introducing slack variables

Simplifying inequality constraints. Given the problem

$$
\min_{x} \qquad f(x)
$$
\nsubject to $g_i(x) \le 0, \ i = 1, \dots m$ \n
$$
Ax = b
$$

we can transform the inequality constraints via

$$
\min_{x,s} f(x)
$$
\nsubject to $s_i \geq 0, i = 1, \dots m$
\n
$$
g_i(x) + s_i = 0, i = 1, \dots m
$$
\n
$$
Ax = b
$$

Note: this is no longer convex unless $g_i, \, i=1,\ldots,n$ are affine

Example: SVM derivation (hard margin constraint)

The hard-margin SVM problem is originally cast as:

$$
\min_{\beta,\beta_0} \qquad \frac{1}{2} ||\beta||_2^2
$$
\n
$$
\text{subject to} \quad y_i(x_i^T \beta + \beta_0) \ge 1, \ i = 1, \dots n
$$

Introducing slack variables ξ_i , we get

$$
\min_{\beta,\beta_0,\xi} \frac{1}{2} ||\beta||_2^2
$$
\nsubject to $\xi_i \geq 0$, $y_i(x_i^T \beta + \beta_0) = 1 - \xi_i$, $i = 1,...,n$

Relaxing nonaffine equality constraints

Given an optimization problem

 $\min_{x} f(x)$ subject to $x \in C$

we can always take an enlarged constraint set $\tilde{C} \supset C$ and consider

 $\min_{x} f(x)$ subject to $x \in \tilde{C}$

This is called a relaxation and its optimal value is always smaller or equal to that of the original problem

Relaxing nonaffine equality constraints

Given an optimization problem

 $\min_{x} f(x)$ subject to $x \in C$

we can always take an enlarged constraint set $\tilde{C} \supset C$ and consider

 $\min_{x} f(x)$ subject to $x \in \tilde{C}$

This is called a relaxation and its optimal value is always smaller or equal to that of the original problem

Important special case: relaxing nonaffine equality constraints, i.e.,

$$
h_j(x) = 0, \ j = 1, \ldots r
$$

where h_i , $j = 1, \ldots r$ are convex but nonaffine, are replaced with

$$
h_j(x) \leq 0, \ j = 1, \dots r
$$

Example: principal components analysis

Given $X \in \mathbb{R}^{n \times p}$, consider the low rank approximation problem:

$$
\min_{R} \|X - R\|_{F}^{2} \text{ subject to } \text{rank}(R) = k
$$

Here $\|A\|_F^2 = \sum_{i=1}^n \sum_{j=1}^p A_{ij}^2$, the entrywise squared ℓ_2 norm, and $rank(A)$ denotes the rank of A. Also called principal components analysis or PCA problem.

This problem is not convex. Why?

Example: principal components analysis

Given $X \in \mathbb{R}^{n \times p}$, consider the low rank approximation problem:

$$
\min_{R} \|X - R\|_{F}^{2} \text{ subject to } \text{rank}(R) = k
$$

Here $\|A\|_F^2 = \sum_{i=1}^n \sum_{j=1}^p A_{ij}^2$, the entrywise squared ℓ_2 norm, and $rank(A)$ denotes the rank of A. Also called principal components analysis or PCA problem.

This problem is not convex. Why?

Given $X = U D V^T$, singular value decomposition or SVD, the solution is

$$
R = U_k D_k V_k^T
$$

where U_k , V_k are the first k columns of U, V and D_k is the first k diagonal elements of D . I.e., R is reconstruction of X from its first k principal components

We can recast the PCA problem in a convex form. First rewrite as

$$
\min_{Z \in \mathbb{S}^p} \|X - XZ\|_F^2 \text{ subject to } \text{rank}(Z) = k, \ Z \text{ is a projection}
$$
\n
$$
\iff \max_{Z \in \mathbb{S}^p} \text{tr}(SZ) \text{ subject to } \text{rank}(Z) = k, \ Z \text{ is a projection}
$$

where $S = X^T X$. Hence constraint set is the nonconvex set

$$
C = \left\{ Z \in \mathbb{S}^p : \lambda_i(Z) \in \{0, 1\}, i = 1, \dots p, \text{ tr}(Z) = k \right\}
$$

where $\lambda_i(Z)$, $i = 1, \ldots n$ are the eigenvalues of Z. Solution in this formulation is

$$
Z = V_k V_k^T
$$

where V_k gives first k columns of V

Now consider relaxing constraint set to $\mathcal{F}_k = \text{conv}(C)$, its convex hull. Note

$$
\mathcal{F}_k = \{ Z \in \mathbb{S}^p : \lambda_i(Z) \in [0, 1], \ i = 1, \dots, p, \ \text{tr}(Z) = k \} \n= \{ Z \in \mathbb{S}^p : 0 \le Z \le I, \ \text{tr}(Z) = k \}
$$

Recall this is called the Fantope of order k

Hence, the linear maximization over the Fantope, namely

 $\max_{Z \in \mathcal{F}_k}$ tr (SZ)

is convex. Remarkably, this is equivalent to the nonconvex PCA problem (admits the same solution)!

(Famous result: Fan (1949), "On a theorem of Weyl conerning eigenvalues of linear transformations")