
Dimensionality Reduction, Manifolds
10716, Spring 2020

Pradeep Ravikumar (amending notes by Larry Wasserman)

We consider two related problems: (i) using low dimensional approximations for dimension
reduction and (ii) estimating low dimensional structure.

1 Dimension Reduction

We might not want to estimate lower dimensional structure. Instead, we might just want
to use a low dimensional approximation to the data to make other tasks easier. This is
dimension reduction.

1.1 Principal Component Analysis (PCA)

Principal components analysis (PCA) finds low dimensional approximations to the data by
projecting the data onto linear subspaces.

Let X ∈ Rd and let Lk denote all k-dimensional linear subspaces. The kth principal subspace
is

`k = argmin
`∈Lk

E

(
min
y∈`
‖X̃ − y‖2

)
where X̃ = X − µ and µ = E(X). The dimension-reduced version of X is then Tk(X) =
µ+ π`kX where and π`kX is the projection of X onto `k. To find `k proceed as follows.

Let Σ = E((X−µ)(X−µ)T) denote the covariance matrix, where µ = E(X). Let λ1 ≥ λ2 ≥
· · · ≥ λd be the ordered eigenvalues of Σ and let e1, . . . , ed be the corresponding eigenvectors.
Let Λ be the diagonal matrix with Λjj = λj and let E = [e1 · · · ed]. Then the spectral
decomposition of Σ is

Σ = EΛET =
∑
j

λjeje
T
j .

Theorem 1 The kth principal subspace `k is the subspace spanned by e1, . . . , ek. Further-
more,

Tk(X) = µ+
k∑
j=1

βjej

1

where βj = 〈X − µ, ej〉. The risk satisfies

R(k) = E‖X − Tk(X)‖2 =
d∑

j=k+1

λj.

We can restate the result as follows. To minimize

E‖Xi − α− Aβi‖2,

with respect to α ∈ Rd, A ∈ Rd×k and βi ∈ Rk we set α = µ and A = [e1 e2 · · · ek]. Any
other solution is equivalent in the sense that it corresponds to the same subspace.

We can choose k by fixing some α and then taking

k = min

{
m :

R(m)

R(0)
≤ α

}
= min

{
m :

∑m
j=1 λj∑d
j=1 λj

≥ 1− α

}
.

Let Y = (Y1, . . . , Yd) where Yi = eTi (X − µ). Then Y is the PCA-transformation applied to
X. The random variable Y has the following properties:

Lemma 2 We have:

1. E[Y] = 0 and Var(Y) = Λ.

2. X = µ+ EY .

3.
∑m

j=1 Var(Yj) = Σ11 + · · ·+ Σmm.

Hence, ∑m
j=1 λj∑d
j=1 λj

is the percentage of variance explained by the first m principal components.

The data version of PCA is obtained by replacing Σ with the sample covariance matrix

Σ̂ =
1

n

n∑
i=1

(Xi −Xn)(Xi −Xn)T .

2

Principal Components Analysis (PCA)

1. Compute the sample covariance matrix Σ̂ = n−1
∑n

i=1(Xi −Xn)(Xi −Xn)T .

2. Compute the eigenvalues λ1 ≥ λ2 ≥ · · · and eigenvectors e1, e2, . . . , of Σ̂.

3. Choose a dimension k.

4. Define the dimension reduced data Zi = Tk(Xi) = X +
∑k

j=1 βijej where βij =

〈Xi −X, ej〉.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1: First principal component (red line) in a simple two dimensional example.

Example 3 Figure 1 shows a synthetic two-dimensional data set together with the first
principal component.

Example 4 Figure 2 shows some handwritten digits. The eigenvalues and the first few
eigenfunctions are shown in Figures 3 and 4. A few digits and their low-dimensional recon-
structions are shown in Figure 5.

3

Figure 2: Handwritten digits.

Dimension

V
ar

ia
nc

e

Figure 3: Digits data: eigenvalues

4

Figure 4: Digits: mean and eigenvectors

Figure 5: Digits data: Top: digits. Bottom: their reconstructions.

5

How well does the sample version approximate the population version? For now, assume the
dimensions d is fixed and that n is large.

Define the operator norm

||Σ|| = sup

{
||Σv||
||v||

: v 6= 0

}
.

It can be shown that ||Σ̂− Σ|| = OP (1/
√
n). According to Weyl’s theorem

max
j
|λj(Σ̂)− λj(Σ)| ≤ ||Σ̂− Σ||

and hence, the estimated eigenvalues are consistent. We can also say that the eigenvectors
are consistent. We have

||êj − ej|| ≤
23/2||Σ̂− Σ||

min(λj−1 − λj, λj − λj+1)
.

(See Yu, Wang and Samworth, arXiv:1405.0680.)

There is a strong connection between PCA and the singular value decomposition (SVD). Let
X be an n× d matrix. The SVD is

X = UDV T

where U is an n×n matrix with orthonormal columns, V is a d×d matrix with orthonormal
columns, and D is an n× d diagonal matrix with non-negative real numbers on the diagonal
(called singular values). Then

XTX = (V DUT)(UDV T) = V D2V T

and hence the singular values are the square root of the eigenvalues of the sample covariance
matrix.

1.2 Multidimensional Scaling

A different view of dimension reduction is provided by thinking in terms of preserving pair-
wise distances. Suppose that Zi = T (Xi) for i = 1, . . . , n where T : Rd → Rk with k < d.
Define the loss function

L =
∑
i,j

(||Xi −Xj||2 − ||Zi − Zj||2)

which measures how well the map T preserves pairwise distances. Multidimensional scal-
ing find the linear map T to minimize L.

6

Theorem 5 The linear map T : Rd → Rk that minimizes L is the projection onto Span{e1, . . . , ek}
where e1, . . . , ek are the first k principal components.

We could use other measures of distortion. In that case, the MDS solution and the PCA
solution will not coincide.

1.3 Kernel PCA

To get a ninlinear version of PCA, we can use a kernel. Suppose we have a “feature map”
x 7→ Φ(x) and want to carry out PCA in this new feature space. To do so however, would
require given the empirical covariance matrix of these feature vectors: (a) computing the
corresponding eigenvectors, and (b) projecting any feature vector Φ(x) onto these eigenvec-
tors. Using the kernel trick, we will be able to do so tractably even for infinite-dimensional
feature maps.

For the moment, assume that the feature vectors are centered (we return to this point
shortly). Define the empirical covariance matrix

CΦ =
1

n

n∑
i=1

Φ(xi)Φ(xi)
T .

We can define eigenvalues λ1, λ2, . . . and eigenvectors v1, v2, . . . of this matrix.

It turns out that the eigenvectors are linear combinations of the feature vectors Φ(x1), . . . ,Φ(xn).
To see this, note that

λv = CΦv =
1

n

n∑
i=1

Φ(xi)Φ(xi)
Tv

=
1

n

n∑
i=1

〈Φ(xi), v 〉 Φ(xi) =
n∑
i=1

αiΦ(xi)

where

αi =
1

n
〈Φ(xi), v 〉 =

1

nλ
〈Φ(xi), CΦv 〉 .

Estimating weights α. But how to estimate these weights α? Multiplying both sides of
the identity,

λ
n∑
i=1

αiΦ(xi) = Cv,

7

by Φ(xk), we get:

λ
n∑
i=1

αi 〈Φ(xk),Φ(xi) 〉 = λ 〈Φ(xk), Cv 〉

= λ 〈Φ(xk),
1

n

n∑
j=1

Φ(xj)Φ(xj)
Tv 〉

= 〈Φ(xk),
1

n

n∑
j=1

Φ(xj)Φ(xj)
T

n∑
i=1

αiΦ(xi) 〉

=
1

n

n∑
i=1

αi 〈Φ(xk),
n∑
j=1

〈Φ(xj),Φ(xi) 〉 Φ(xj) 〉 .

Define the kernel matrix K by Kij = 〈Φ(xi),Φ(xj) 〉 . Then we can write the above equation
as

λnKα = K2α

Thus, to obtain the weights α, we simply need to solve the kernel eigenvalue problem

Kα = nλα

which requires diagonalizing only an n × n system. We can further show that normalizing
the eigenvectors, 〈 v, v 〉 = 1 leads to the condition λ 〈α, α 〉 = 1.

Projecting onto eigenvectors. In order to compute the kernel PCA projection of a new
test point x, it is necessary to project the feature vector Φ(x) onto the principal direction
vm. This requires the evaluation

〈 v,Φ(x) 〉 =
n∑
i=1

αi 〈Φ(xi),Φ(x) 〉

=
n∑
i=1

αiK(xi, x).

Thus, the entire procedure — computing the eigenvectors, as well as projecting onto these
eigenvectors — uses only the kernel evaluations K(x, xi) and never requires actual manip-
ulation of feature vectors, which could be infinite dimensional. This is an instance of the
kernel trick. An arbitrary data point x can then be approximated by projecting Φ(x) onto
the first k vectors. This defines an approximation in the feature space.

One question might be what is the input x̃ that corresponds to this projection. There is an
iterative algorithm for doing this (Mika et al 1998) which turns out to be a weighed version
of the mean shift algorithm.

8

Overall Algorithm. To complete the description of the algorithm, it is necessary to explain
how to center the data in feature space using only kernel operations. This is accomplished
by transforming the kernel according to

K̃ij = (K − 1nK −K1n + 1nK1n)ij

where

1n =
1

n

1 1 · · · 1
1 1 · · · 1
...

... · · · ...
1 1 · · · 1

 =
1

n
11T

where 1 denotes the vector of all ones.

Given a Mercer kernel K and data X1, X2, . . . , Xn

1. Center the kernel

2. Compute Kij = K(Xi, Xj)

3. Diagonalize K

4. Normalize eigenvector weights α(m) so that 〈α(m), α(m) 〉 = 1
λm

5. Compute the projection of a test point x onto an eigenvector vm by

〈 vm,Φ(x) 〉 =
n∑
i=1

α
(m)
i K(Xi, x)

Just as for standard PCA, this selects components of high variance, but in the feature space
of the kernel. In addition, the “feature functions”

fm(x) = 〈 vm,Φ(x) 〉 =
n∑
i=1

α
(m)
i K(Xi, x)

are orthogonal and act as representative feature functions in the reproducing kernel Hilbert
space of the kernel, with respect to the given data. Intuitively, these functions are smooth
with respect to the RKHS norm ‖ · ‖K among all those supported on the data.

Another perspective on kernel PCA is that it is doing MDS on the kernel distances dij =√
2(1−K(Xi, Xj)); see Williams (2002).

9

1.4 Local Linear Embedding

Local Linear Embedding (LLE) (Roweis et al) is another nonlinear dimension rediction
method. The high level idea is to obtain embeddings that preserve local geometry as
captured by local linear regression weights.

The LLE algorithm is comprised of three steps. First, nearest neighbors are computed for
each point Xi ∈ Rd. Second, each point is regressed onto its neighbors, giving weights wij
so that Xi =

∑
j wijXj. Third, the Xi ∈ Rd are replaced by Yi ∈ Rm where typically m� d

by solving a sparse eigenvector problem. The result is a highly nonlinear embedding, but
one that is carried out by optimizations that are not prone to local minima. Underlying the
procedure, as for many “manifold” methods, is a weighted sparse graph that represents the
data.

Step 1: Nearest Neighbors. Here the set of the K nearest neighbors in standard Euclidean
space is constructed for each data point. Using brute-force search, this requires O(n2d) oper-
ations; more efficient algorithms are possible, in particular if approximate nearest neighbors
are calculated. The number of neighbors K is a parameter to the algorithm, but this is the
only parameter needed by LLE.

Step 2: Local weights. In this step, the local geometry of each point is characterized by a
set of weights wij. The weights are computed by reconstructing each input Xi as a linear
combination of its neighbors, as tabulated in Step 1. This is done by solving the least squares
problem

min
w

n∑
i=1

‖Xi −
∑
j

wijXj‖2
2 (1)

The weights wij are constrained so that wij = 0 if Xj is not one of the K nearest neighbors
of Xi. Moreover, the weights are normalized to sum to one:

∑
j wij = 1, for i = 1, . . . , n.

This normalization ensures that the optimal weights are invariant to rotation, translation,
and scaling.

Step 3: Linearization. In this step the points Xi ∈ Rd are mapped to Yi ∈ Rm, where
m selected by the user, or estimated directly from the data. The vectors Yi are chosen to
minimize the reconstruction error under the local linear mappings constructed in the previous
step. That is, the goal is to optimize the functional

Ψ(y) =
n∑
i=1

‖Yi −
∑
j

wijYj‖2
2 (2)

where the weights wij are calculated in Step 2. To obtain a unique solution, the vectors are
“centered” to have mean zero and unit covariance:∑

i

Yi = 0
1

n

∑
i

YiY
T
i = Im (3)

10

Carrying out this optimization is equivalent to finding the lower (m+ 1) eigenvectors of the
n× n matrix G = (I −W)T (I −W). The lowest eigenvector has eigenvalue 0, and consists
of the all ones vector (1, 1 . . . , 1)T .

Locally Linear Embedding (LLE). Given n data vectors Xi ∈ Rd,

1. Compute K nearest neighbors for each point;

2. Compute local reconstruction weights wij by minimizing

Φ(w) =
n∑
i=1

‖Xi −
∑
j

wijXj‖2 (4)

subject to
∑
j

wij = 1; (5)

3. Compute outputs Yi ∈ Rm by computing the first m eigenvectors with nonzero eigen-
values for the n × n matrix G = (I − W)T (I − W). The reduced data matrix is
[u1 · · ·um] where uj are the eigenvectors corresponding to the first (smallest) nonzero
eigenvalues of G.

Note that the last step assumes that the underlying graph encoded by the nearest neighbor
graph is connected. Otherwise, there may be more than one eigenvector with eigenvalue
zero. If the graph is disconnected, then the LLE algorithm can be run separately on each
connected component. However, the recommended procedure is to choose K so that the
graph is connected.

Using the simplest algorithms, the first step has time complexity O(dn2), the second step
requires O(nK3) operations, and the third step, using routines for computing eigenvalues
for sparse matrices, requires O(mn2) operations (and O(n3) operations in the worse case if
sparsity is not exploited and the full spectrum is computed). Thus, for high dimensional
problems, the first step is the most expensive. Since the third step computes eigenvectors,
it shares the property with PCA that as more dimensions are added to the embedding, the
previously computed coordinates do not change.

11

Figure 6: Each data set has n = 1, 000 points in d = 3 dimensions, and LLE was run with
K = 8 neighbors.

12

1.5 Isomap

Isomap is a technique that is similar to LLE, intended to provide a low dimensional “mani-
fold” representation of a high dimensional data set. Isomap differs in how it assesses similarity
between objects, and in how the low dimensional mapping is constructed.

The first step in Isomap is to constructed a graph with the nodes representing instances
Xi ∈ Rd to be embedded in a low dimensional space. Standard choices are a k-nearest
neighbors, and ε-neighborhoods. In the k-nearest neighborhood graph, each point Xi is
connected to its closest k neighbors Nk(Xi), where distance is measured using Euclidean
distance in the ambient space Rd. In the ε-neighborhood graph, each point Xi is connected
to all points Nε(Xi) within a Euclidean ball of radius ε centered at Xi. The graph G = (V,E)
by taking edge set V = {x1, . . . , xn} and edge set

(u, v) ∈ E if v ∈ N (u) or u ∈ N (v) (6)

Note that the node degree in these graphs may be highly variable. For simplicity, assume
that the graph is connected; the parameters k or ε may need to be carefully selected for this
to be the case.

The next step is to form a distance between points by taking path distance in the graph. That
is d(Xi, Xj) is the shortest path between node Xi and Xj. This distance can be computed
for sparse graphs in time O(|E| + |V | log |V |). The final step is to embed the points into a
low dimensional space using metric multi-dimensional scaling.

Isomap. Given n data vectors Xi ∈ Rd,

1. Compute k nearest neighbors for each point, forming the nearest neighbor graph G =
(V,E) with vertices {Xi}.

2. Compute graph distances d(Xi, Xj) using Dijkstra’s algorithm

3. Embed the points into low dimensions using metric multidimensional scaling

Isomap and LLE both obtain nonlinear dimensionality reduction by mapping points into a
low dimensional space, in a manner that preserves the local geometry. This local geometry
will not be preserved by classical PCA or MDS, since far away points on the manifold will
be, typically, be mapped to nearby points in the lower dimensional space.

1.6 Laplacian Eigenmaps

A similar approach is based on the use of the graph Laplacian. Recall that if wij =

Kh

(
Xi−Xj

h

)
is a weighting between pairs of points determined by a kernel K, the graph

13

Laplacian associated W is given by

L = D −W (7)

where D = diag(di) with di =
∑

j wij the sum of the weights for edges emanating from node
i. In Laplacian eigenmaps, the embedding is obtained using the spectral decomposition of
L.

In particular, let y0, y1, . . . , yk ∈ Rn denote the first k eigenvectors corresponding to eigen-
values 0 = λ0 < λ1, < λ2 < · · · < λk+1 of the Laplacian. This determines an embedding

Xi 7→ (y1i, y2i, . . . , yki) ∈ Rk (8)

into k dimensions.

The intuition behind this approach can be seen from the basic properties of Rayleigh quo-
tients and Laplacians. In particular, we have that the first nonzero eigenvector satisfies

y1 = arg min yT1 Ly1 = arg min
∑
i,j

wij (y1i − y1j)
2 (9)

such that yT1 Dy1 = 1 (10)

Thus, the eigenvector minimizes the weighted graph L2 norm; the intuition is that the
vector changes very slowly with respect to the intrinsic geometry of the graph. This analogy
is strengthened by consistency properties of the graph Laplacian. In particular, if the data
lie on a Riemannian manifold M , and f : M → R is a function on the manifold,

fTLf ≈
∫
M

‖∇f(x)‖2 dM(x) (11)

where on the left hand side we have evaluated the function on n points sampled uniformly
from the manifold.

1.7 Diffusion Distances

As we saw when we discussed spectral clustering, there are other versions of graph Laplacians
such as D−1/2WD−1/2 and D−1W that can have better behavior. In fact, let us consider the
matrix L = D−1W which, as we shall now see, has a nice interpretation. We can view L as
the transition matrix for a Markov chain on the data. This has a population analogue: we
define the diffusion (continuous Markov chain) with transition density

q(y|x) =
K(x, y)

s(x)

where s(x) =
∫
K(x, y)dP (y). The stationary distribution has density π(y) = s(y)/

∫
s(u)dP (u).

Then L is just the discrete version of this transition probability. Suppose we run the chain

14

●

●

●

●

●
●

●●

●

●

●

●●

●

●

● ●●
●

● ● ●

●

●

●

●

●

●●

●

●
●

●

●
●

●●

●

●
●

●

●●
●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●●

●

●

●

●
●

●
●

●●●

● ●●

●●

●

●
●

●
●

●
●●●●

●
●

●
●

●

●

●
●

● ●

●

●

●
●

●

●

●
●

●

●
●

●●
●

●
●

●

●

● ●
●

●

●
●
●

●

●

●
●

●

●
●

●

●

●

−2 −1 0 1 2

−
1.

5
−

0.
5

0.
5

1.
5

x

y

Figure 7: Diffusion maps. Top left: data. Top right: Transition matrix for t = 1. Botom
left: Transition matrix for t = 3. Bottom right: Transition matrix for t = 64.

for t steps. The transition matrix is Lt. The properties of this matrix give information on
the larger scale structure of the data (the diffusion process). We define the diffusion distance
by

Dt(x, y) =

∫
(qt(u|x)− qt(u|y))2 p(u)

π(u)
du

which is a measure of how har it is to get from x to y in t steps (Coifman and Lafon, 2006).
It can be shown that

Dt(x, y) =

√∑
j

λ2t
j (ψj(x)− ψj(y))2

where λj and ψj are the eigenvalues and eigenvectors of q. We can now reduce the dimension
of the data by applying MDS to Dt(x, y). Alternatively, they suggest mapping a point x to

Ψt(x) = (λt1ψ1(x), . . . , πtlψk(x))

for some k. An example is shown in Figure 7.

15

1.8 Principal Curves and Manifolds

A nonparametric generalization of principal components is principal manifolds. The idea
is to replace linear subspaces with more general manifolds. There are many approaches. We
will consider an approach due to Smola et al (2001). Ridge estimation, which will see shortly,
might be a better way to do this.

Let X ∈ Rd and let F be a set of functions from [0, 1]k to Rd. The principal manifold (or
principal curve) is the function f ∈ F that minimizes

R(f) = E

(
min
z∈[0,1]k

‖X − f(z)‖2

)
. (12)

To see how general this is, note that we recover principal components as a special case by
taking F to be linear mappings. We recover k-means by taking F to be all mappings from
{1, . . . , k} to Rd.

But our focus in this section is on smooth curves. We will take

F =

{
f : ‖f‖2

k ≤ C2

}

where ‖f‖K is the norm for a reproducing kernel Hilbert space (RKHS) with kernel K. A
common choice is the Gaussian kernel

K(z, u) = exp

{
−‖z − u‖

2

2h2

}
.

To approximate the minimizer, we can proceed as in (Smola, Mika, Schölkopf, Williamson
2001). Fix a large number of points z1, . . . , zM and approximate an arbitrary f ∈ F as

f(z) =
M∑
j=1

αjK(zj, z)

which depends on parameters α = (α1, . . . , αM), where αi ∈ Rd. The minimizer can be
found as follows. Define latent variables ξ = (ξ1, . . . , ξn) where ξi ∈ Rk and

ξi = argminξ∈[0,1]k‖Xi − f(ξ)‖2.

For fixed α we find each ξi by standard nonlinear function minimization. Given ξ we then
find α by minimizing

1

n

n∑
i=1

‖Xi −
M∑
j=1

αjK(zj, ξi)‖2 +
λ

2

M∑
i=1

M∑
j=1

αiαjK(zi, zj).

16

Figure 8: Principal curve with increasing amounts of regularization.

The minimizer is

α =

(
λn

2
Kz +KT

ξ Kξ

)−1

KT
ξ X

where (Kz)ij = K(zi, zj) is M × M and (Kξ)ij = K(ξi, zj) is n × M . Now we iterate,
alternately solving for ξ and α.

Example 6 Figure 8 shows some data and four principal curves based on increasing degrees
of regularization.

1.9 Random Projections: Part I

A simple method for reducing the dimension is to do a random projection. Surprisingly, this
can actually preserve pairwise distances. This fact is known as the Johnson-Lindenstrauss
Lemma, and this section is devoted to an elementary proof of this result.1

Let X1, . . . , Xn be a dataset with Xi ∈ Rd. Let S be a m× d matrix filled with iid N(0, 1)
entries, where m < d. Define

L(x) =
Sx√
m
.

1In this section and the next, we follow some lecture notes by Martin Wainwright.

17

The matrix S is called a sketching matrix. Define Yi = L(Xi) and note that Yi ∈ Rm. The
projected dataset Y1, . . . , Yn is lower dimensional.

Theorem 7 (Johnson-Lindenstrauss) Fix ε > 0. Let m ≥ 32 log n/ε2. Then, with prob-
ability at least 1− e−mε2/16 ≥ 1− (1/n)2, we have

(1− ε)||Xi −Xj||2 ≤ ||Yi − Yj||2 ≤ (1 + ε)||Xi −Xj||2 (13)

for all i, j.

Notice that the embedding dimension m, does not depend on the original dimension d.

Proof. For any j 6= k,

||Yj − Yk||2

||Xi −Xj||2
− 1 =

||S(Xj −Xk)||2

m||Xi −Xj||2
− 1 =

1

m

m∑
i=1

Z2
i − 1

where

Zi =

〈
Si,

Xj −Xk

||Xj −Xk||

〉
where Si is the ith row of S. Note that Zi ∼ N(0, 1) and so Z2

i ∼ χ2
1 and E[Z2

i] = 1. The
moment generating function of Z2

i is m(λ) = (1− 2λ)−1/2 (for λ < 1/2). So, for λ > 0 small
enough,

E[eλ(Z2
i −1)] =

e−λ√
1− 2λ

≤ e2λ2 .

Hence,

E

[
exp

(
λ
∑
i

(Z2
i − 1)

)]
≤ e2mλ2 .

Thus

P

(
1

m

m∑
i=1

Z2
i − 1 ≥ ε

)
= P

(
eλ

∑m
i=1 Z

2
i −1 ≥ eλmε

)
≤ e−λmεE

(
eλ

∑m
i=1 Z

2
i −1
)
≤ e2mλ2−mελ

≤ e−mε
2/8

where, in the last step, we chose λ = ε/4. By a similar argument, we can bound P
(

1
m

∑m
i=1 Z

2
i − 1 ≤ −ε

)
.

Hence,

P
(∣∣∣∣ ||S(Xj −Xk)||2

m||Xj −Xk||2
− 1

∣∣∣∣ ≥ ε

)
≤ 2e−mε

2/8.

By the union bound, the probability that (13) fauls for some pair is at most

n22e−mε
2/8 ≤ e−mε

2/16

where we used the fact that m ≥ 32 log n/ε2. �

18

1.10 Random Projections: Part II

The key to the Johnson-Lindenstrauss (JL) theorem was applying concentration of measure
to the quantity

Γ(K) = sup
u∈K

∣∣∣∣ ||Su||2m
− 1

∣∣∣∣
where

K =

{
Xj −Xk

||Xj −Xk||
: j 6= k

}
.

Note that K is a subset of the sphere Sd−1.

We can generalize this to other subsets of the sphere. For example, suppose that we take
K = Sd−1. Let Σ̂ = m−1STS. Note that each row of Si has mean 0 and variance matrix I
and Σ̂ is the estimate of the covaraince matrix. Then

sup
u∈K

∣∣∣∣ ||Su||2m
− 1

∣∣∣∣ = sup
||u||=1

∣∣∣∣ ||Su||2m
− 1

∣∣∣∣
= sup
||u||=1

∣∣uT (m−1STS − I)u
∣∣ = ||Σ̂− I||

which is the operator norm of the difference between the sample covariance and true covari-
ance.

Now consider least squares. Suppose we want to minimize ||Y −Xβ||2 where Y is an n× 1
vector and X is a n × d matrix. If n is large, this may be expensive. We could try to
approximate the solution by minimizing ||S(Y − Xβ)||2. Since the least squares solution
lies in the column space of X, to show that projection via S is a reasonable approximation,
suggests taking

K =
{
u ∈ Sd−1 : u = Xv for some v ∈ Rd

}
.

It can be shown that, if Γ(K) is small, then the solution to the reduced problem approximates
the original problem.

How can we bound Γ(K)? To answer this, we use the Gaussian width which is defined by

W (K) = E
[
sup
u∈K
〈u, Z〉

]
where Z ∼ N(0, I) and I is the d× d identity matrix.

Theorem 8 Let S be a m×d Gaussian projection matrix. Let K be any subset of the sphere
and suppose that m ≥ W 2(K). Then, for any ε ∈ (0, 1/2),

P
(

Γ(K) ≥ 4

(
W (K)√

m
+ ε

))
≤ 2e−mε

2/2.

In particular, if m ≥ W 2(K)/δ2, then Γ(K) ≤ 8δ with high probability.

19

Let us return to the JL theorem. In this case,

K =

{
Xj −Xk

||Xj −Xk||
: j 6= k

}
.

In this case K is finite. The number of elements is N =
(
n
2

)
. Note that logN ≤ 2 log n.

Since the set is finite, we know from our previous results on expectations of maxima, that

W (K) ≤
√

2 logN ≤
√

4 log n.

According to the above theorem, we need to take m ≥ W 2/δ2 � log n/δ2 which agrees with
the JL theorem.

The proof of the theorem is quite long but it basically uses concentration of measure ar-
guments to control the maximum fluctuations as u varies over K. When applied to least
squares, if we want to approximate ||Y − Xβ||2 it turns out that the Gaussian width has

constant order. But if we are interested in approximating β̂, we need to set δ ≈ 1/
√
n,

so that we need m ≈ n which is not useful. However, there is an improvement that uses
iterative sketching that only requires m = O(log n) observations. A good reference is:

M. Pilanci and M. J. Wainwright. Iterative Hessian Sketch: Fast and accurate solution
approximation for constrained least-squares. arXiv:1411.0347.

2 Estimating Low Dimensional Structure

Let Y1, . . . , Yn ∼ P . We can think of the structure we are looking for as a function of P .
Examples of such functions include:

T (P) = the support of P
T (P) = ridges of the density p
T (P) = dimension of the support
T (P) = DTM (distance to a measure)
T (P) = persistent homology of DTM.

A common example is when the support of P is a manifold M . In that case, we define the
minimax risk

Rn = inf
M̂

sup
P∈P

EP [H(M̂,M(P))]

where H is the Hausdorff distance:

H(A,B) = inf{ε : A ⊂ B ⊕ ε and B ⊂ A⊕ ε}

and
A⊕ ε =

⋃
x∈A

B(x, ε).

20

Figure 9: First two plots: a ball of raidus r < κ rolls freely. Third plot: ball cannot roll
because reach is 0. Fourth: ball cannot roll because r > κ.

2.1 Manifolds

A common starting place is to assume that P is supported on a manifold M . This is usually a
bogus assumption. More realistically, the data might be concentrated near a low dimensional
structure. Assuming that the structure is smooth and that the support is exactly on this
structure is unrealistic. But it is a starting place. So, for now, assume that Yi ∈ RD and
that P is supported on a manifold M of dimension d < D.

Just as we needed some conditions on a density function or regression function to estimate
it, we needed a condition on a manifold to estimate it. The most common condition is that
M has positive reach. The reach of a manifold M is the largest r such that d(x,M) ≤ r
implies that x has a unique projection onto M . This is also called the thickness or condition
number of the manifold; see Niyoki, Smale, and Weinberger (2009). Intuitively, a manifold
M with reach(M) = κ has two constraints:

1. Curvature. A ball or radius r ≤ κ can roll freely and smoothly over M , but a ball or
radius r > κ cannot.

2. Separation. M is at least 2κ from self-intersecting.

See Figure 9. Also, normal vectors of length less than κ will not cross. See Figure 10.

The easiest way to estimate a d-manifold embedded in RD is just to estimate the support of
P . For example, the Devroye-Wise (1980) estimator is

M̂ =
⋃
i

B(Yi, ε).

Choosing εn � (1/n)1/D we get

E[H(M̂,M)] ≤
(
C log n

n

) 1
D

.

21

Figure 10: Left: Normal vectors of length r < κ don’t cross. Right: Normal vectors of length
r > κ do cross.

This estimator is simple but sub-optimal. Note that the rate depends on the ambient di-
mension.

Let Y1, . . . , Yn ∼ P where
Yi = ξi + Zi

where Yi ∈ RD, ξ1, . . . , ξn ∼ G where G is uniform on a d-manifold M and the noise Zi
is perpendicular to M (uniform on the normals). It’s a weird model but it was used in
Niyogi, Smale, Weinberger (2008). Let P be the set of distributions with bounded density
on d-manifolds with reach at least κ. Then (GPVW 2011)

Rn = c

(
log n

n

) 2
2+d

.

Thus the rate depends on d not D. I don’t know a practical estimator to achieve this rate.

Now suppose that
Y1, . . . , Yn ∼ (1− π)U + πG

where G is supported on M , 0 < π ≤ 1, U is uniform on a compact set K ⊂ RD. Then
(GPVW 2012)

Rn �
(

1

n

) 2
d

.

A more realistic model is Yi = Xi + Zi where X1, . . . , Xn ∼ G and and Zi ∼ N(0, σ2ID).
Then

1

log n
≤ Rn ≤

1√
log n

.

This means that, with additive noise, the problem is hopeless.

On solution is to give up on estimating M and instead estimate some approximation to M .
This is the next topic.

22

●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●

Figure 11: The mean shift algorithm.

2.2 Ridges

A ridge is a high-density, low dimensional structure. A 0-dimensional ridge is just a mode.
In this case

∇p(x) = 0 and λmax(H(x)) < 0

where H is the Hessian. (assuming p is Morse). Recall that a mode can also be thought of
as the destination of a gradient ascent path, πx: i.e.

m = lim
t→∞

πx(t)

where
π′x(t) = ∇p(πx(t)).

The modes of p can be found by the mean-shift algorithm as in Figure 11.

Higher dimensional ridges can be defined as the zeros of a projected gradient. Think of the
ridge of a mountain. The left plot in Figure 12 shows a density with a sharp, one-dimensional
ridge. The right plot show the underlying manifold, the ridge, and the ridge of the smoothed
density.

To define the ridge formally, let p be a density with gradient g and Hessian H. Denote the
eigenvalues of H(x) by

λ1(x) ≥ λ2(x) ≥ · · · ≥ λd(x) ≥ λd+1(x) ≥ · · · ≥ λD(x).

Let U(x) = [W (x) : V (x)] be the matrix of eigenvectors. Then L(x) = V (x)V T (x) is the
projector onto the local tangent space. Define the projected gradient G(x) = L(x)g(x).

23

M R

Rh

Figure 12: Left: The one-dimensional ridge of a density. Right: the manifold, the ridge of
the density p, and the ridge of the smoothed density p ? Kh.

Finally. define the ridge by

R(p) =

{
x : λd+1(x) < 0 and G(x) = 0

}
.

Several other definitions of a ridge have been proposed in the literature; see Eberly (1996).
The one we use has several useful properties: if p̂ is close to p then R(p̂) is close in Hausdorff
distance to R(p).

And, there is an algorithm to find the ridge: the subspace-constrained mean-shift algorithm
(SCMS, Ozertem and Erdogmus 2011). (The usual mean-shift algorithm with a projection
step.)

To estimate R(p), estimate the density, its gradient, and its Hessian:

p̂(y) =
1

n

n∑
i=1

1

hD
K

(
y − Yi
h

)

ĝ = gradient of p̂ and Ĥ = Hessian of p̂. Denoising: remove low density points. Apply the
SCMS algorithm.

R̂ is a consistent estimator of R and:

H(R, R̂) = OP

(
n−

2
8+D

)
24

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 13: Left: Manifold in blue. Estimated ridge in red. Right: sample example with more
data.

For fixed bandwidth h (which still captures the shape),

H(Rh, R̂h) = OP

(√
log n

n

)

and R̂h is (nearly) homotopic to Rh. See Figures 13 and 14 for examples. A real example is
shown in 15 (from Chen, Ho, Freeman, Genovese and Wasserman: arXiv:1501.05303).

How to choose a good bandwidth h is not clear. Figure 16 shows that the ridge is fairly
stable as we decrease h until we reach a phase transition where the ridge falls apart.

25

●●●●
●●●●

●●●●
●●●●●●●

●

●●

●●●
●●

●●●
●

●●●●
●

●●●

●●●
●●

●

●●●

●●●
●●

●●

●●●
●●●

●
●

●●

●●●
●●

●
●

●●

●●●
●●

●●●

●●●
●●

●●
●

●●●
●●

●●●

●●●●
●

●
●
●

●●●

●●●●●

●
●
●

●●
●

●●●●●

●
●
●

●●

●
●

●●●●

●●●

●
●

●

●●●●
●

●●●●

●
●

●
●

●●●●
●
●

●
●
●

●●●

●
●

●

●●●
●●●

●
●
●

●●●

●
●

●
●

●
●

●

●●
●●●

●●●

●
●

●
●

●

●

●

●●●

●
●

●
●

●
●

●

●●●

●
●

●●●

●
●

●
●

●
●

●●●

●
●

●●●●

●
●

●
●

●
●

●

●
●●

●●●●●●

●
●

●●

●

●●●●●●

●
●

●
●

●●

●●●●●
●●

●

●
●

●
●

●
●

●

●
●

●

●●●

●●●●
●●●

●
●

●
●

●

●
●

●
●

●

●●●

●
●●●●

●●
●

●

●

●
●

●

●●

●●

●
●

●●●
●●●●

●
●

●●●

●
●

●
●

●●●●●●

●
●

●
●

●

●●●

●
●

●
●

●
●

●
●●●●●●

●
●

●
●

●
●

●●●

●

●
●

●
●

●

●

●●●●●●

●
●

●
●

●
●

●●●

●●●

●
●

●
●

●

●●●●●

●
●

●
●

●

●●●

●●●

●
●

●
●

●
●

●

●●●●●●

●
●

●

●●●

●●●

●
●

●
●

●
●●

●●●●●●

●
●

●●●

●

●
●

●
●

●
●

●

●●●●●●

●
●

●
●

●●●

●●●

●
●
●
●

●
●

●
●

●
●

●●●●●
●

●
●

●
●

●

●●

●●●●

●
●
●
●
●
●
●
●
●
●
●

●●●
●

●●●
●●●

●
●

●●

●●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●●

●●●●●●●

●●●

●●

●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●●●●

●●●●●●●

●●

●●●●
●
●
●
●
●
●
●
●
●

●

●●●●●

●●●●●●

●●●●●
●

●●●●●

●●●●●
● ●

●●●●●

●●●●●●

●●●●●
●

●
●
●

●●●

●●●●●

●●●●●

●●●●
●
●
●
●
●
●
●
●

●● ●●

●●●●●

●●●●●●

●●●●

●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●

●●●●●●

●●●●●●

●●●
●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●

●●●●●

●●●●●
●

●●●
●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●

●●●●●

●
●

●●
●

●
●
●

●●●
●●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●

●
●
●
●
●
●
●
●
●
●
●

●●●●●

●
●

●
●

●

●
●
●
●
●
●
●

●●●
●●

●
●●
●
●
●
●
●
●
●
●
●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●

●●●●●

●
●

●
●

●
●

●

●
●
●
●
●
●
●
●

●●●●
●

●●●
●

●
●
●
●
●
●

●
●

●
●

●
●

●
●
●
●
●
●
●

●●●●●

●
●

●
●

●
●

●

●
●
●
●
●
●
●
●

●●●●
●

●●●

●
●
●
●
●
●
●

●
●

●
●

●
●
●
●
●

●●●●●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●

●●●●●

●●●

●
●
●
●
●
●
●

●
●

●

●

●

●●●●●●

●
●

●
●

●

●
●
●
●
●
●
●
●
●

●●●●●

●●

●
●
●
●
●
●

●
●

●
●

●●●●●●

●
●

●
●

●
●

●
●
●
●
●
●
●
●

●●
●●

●

●●●

●
●
●
●
●

●
●

●
●
●
●
●
●
●

●●●●●●

●
●

●
●

●
●

●

●
●
●
●
●
●

●●●
●

●●●

●
●
●
●
●
●

●●●●●●

●
●

●
●

●
●

●
●
●
●●●●

●

●●●

●
●
●
●
●
●
●
●

●●●●●●

●
●

●
●

●●●●●●●

●●

●
●
●
●
●
●
●
●

●●●●●●●●

●

●●●●●●●

●

●
●
●
●
●
●
●
●

●
●●●●●●●

●●●●●●●

●

●
●
●
●
●
●
●
●

●
●

●
●●●
●
●
●
●

●
●

●●●●●
●

●
●
●

●●●●

●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●

●
●

●
●
●
●●

●

●
●
●
●
●

●●●●

●
●
●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●●
●
●
●
●
●
●
●
●

●●●●

●

●●●
●

●
●

●
●

●

●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●

●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●●●●

●●●
●

●
●

●
●

●

●

●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●●
●

●
●
●
●
●
●
●
●
●
●
●
●

●●●●

●●
●●●●

●

●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●

●
●

●
●

●
●

●

●●

●
●
●
●
●
●
●
●
●
●

●●●

●
●●●●●●

●

●
●●
●●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●●●

●
●

●
●●●

●●

●●●●

●
●
●
●
●
●
●
●

●
●

●
●

●

●
●

●
●●●●

●
●

●
●

●
●●

●●

●●●

●
●
●
●
●
●
●

●
●

●

●

●
●●●●●

●
●

●
●

●
●●

●●●

●●●

●
●
● ●●●

●

●●

●●●●●

●
●

●
●

●
●

●
●●

●●●

●●●

●●●●

●●

●●●●●

●
●

●
●

●
●

●
●

●●●

●●●

●●●●

●●

●●●●●

●
●

●
●

●
●

●
●

●

●●●

●●●

●●●●

●●

●●●●●

●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●

●●

●●

●●●●

●●

●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●●

●

●●

●●

●●●●

●

●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●

●●●

●●●

●●●●

●●

●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●

●●●

●●●

●●●

●●●

●

●●●●●

●
●
●
●
●
●

●

●●●●

●●●
●

●●●

●●●●

●●●●

●●●●●

●●●●

●●●

●●●●

●●

●●●●

●●●●

●●●

●●●

●●●●

●●

●●●●

●●●

●●●

●●●

●●●

●●

●●

●●
●

●●●

●●●

●●●

●●
●
●
●●●●

●●●

●●

●●●
●

●
●●●●●●

●●●

●●●

●●●
●●

●●●●●●

●●●

●●●

●●●
●

●●●●●●

●●●

●●

●●●

●●●●●

●●●

●

●●●●

●●●●●

●●●

●●

●●●

●●●●●

●●●

●●●

●●●●

●●●●●

●●

●●●

●●●●●

●●

●●●
●

●●●●●

●●

●●

●●●
●

●●●●●

●●

●●

●●●
●

●●●●●

●

●●

●●

●●●●●

●●

●●●●●●

Figure 14: Left: data. Right: SCMS output.

Figure 15: Galaxy data from the Sloan Digital Sky Survey at three different redshifts. The
fourth plot shows known galaxy clusters. From: Chen, Ho, Freeman, Genovese and Wasser-
man: arXiv:1501.05303

26

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●

● ●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

● ●

● ●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

Figure 16: As we decrease the bandwidth, the ridge is quite stable. Eventually we reach a
phase transition where the estimated ridge falls apart.

27

