
Clustering
10716, Spring 2020

Pradeep Ravikumar (amending notes from Larry
Wasserman)

1 The Clustering Problem

In a clustering problem we aim to find groups in the data. Unlike classification, the data
are not labeled, and so clustering is an example of unsupervised learning. We will study the
following approaches:

1. k-means

2. Mixture models

3. Density-based Clustering I: Level Sets and Trees

4. Density-based Clustering II: Modes

5. Hierarchical Clustering

6. Spectral Clustering

Some issues that we will address are:

1. Rates of convergence

2. Choosing tuning parameters

3. Variable selection

4. High Dimensional Clustering

Example 1 Figures 19 and 20 show some synthetic examples where the clusters are meant
to be intuitively clear. In Figure 19 there are two blob-like clusters. Identifying clusters like
this is easy. Figure 20 shows four clusters: a blob, two rings and a half ring. Identifying
clusters with unusual shapes like this is not quite as easy. In fact, finding clusters of this
type requires nonparametric methods.

2 k-means (Vector Quantization)

One of the oldest approaches to clustering is to find k representative points, called prototypes
or cluster centers, and then divide the data into groups based on which prototype they are
closest to. For now, we assume that k is given. Later we discuss how to choose k.

1

Warning! My view is that k is a tuning parameter; it is not the number of clusters. Usually
we want to choose k to be larger than the number of clusters.

Let X1, . . . , Xn ∼ P where Xi ∈ Rd. Let C = {c1, . . . , ck} where each cj ∈ Rd. We call C a
codebook. Let ΠC [X] be the projection of X onto C:

ΠC [X] = argminc∈C ||c−X||2. (1)

Define the empirical clustering risk of a codebook C by

Rn(C) =
1

n

n∑
i=1

∣∣∣∣Xi − ΠC [Xi]
∣∣∣∣2 =

1

n

n∑
i=1

min
1≤j≤k

||Xi − cj||2. (2)

Let Ck denote all codebooks of length k. The optimal codebook Ĉ = {ĉ1, . . . , ĉk} ∈ Ck
minimizes Rn(C):

Ĉ = argminC∈CkRn(C). (3)

The empirical risk is an estimate of the population clustering risk defined by

R(C) = E
∣∣∣∣∣∣X − ΠC [X]

∣∣∣∣∣∣2 = E min
1≤j≤k

||X − cj||2 (4)

where X ∼ P . The optimal population quantization C∗ = {c∗1, . . . , c∗k} ∈ Ck minimizes R(C).

We can think of Ĉ as an estimate of C∗. This method is called k-means clustering or vector
quantization.

A codebook C = {c1, . . . , ck} defines a set of cells known as a Voronoi tesselation. Let

Vj =
{
x : ||x− cj|| ≤ ||x− cs||, for all s 6= j

}
. (5)

The set Vj is known as a Voronoi cell and consists of all points closer to cj than any other
point in the codebook. See Figure 1.

The usual algorithm to minimize Rn(C) and find Ĉ is the k-means clustering algorithm—
also known as Lloyd’s algorithm— see Figure 2. The risk Rn(C) has multiple minima. The
algorithm will only find a local minimum and the solution depends on the starting values.
A common way to choose the starting values is to select k data points at random. We will
discuss better methods for choosing starting values in Section 2.1.

Example 2 Figure 3 shows synthetic data inspired by the Mickey Mouse example from
http: // en. wikipedia. org/ wiki/ K-means_ clustering . The data in the top left plot
form three clearly defined clusters. k-means easily finds in the clusters (top right). The
bottom shows the same example except that we now make the groups very unbalanced. The
lack of balance causes k-means to produce a poor clustering. But note that, if we “overfit
then merge” then there is no problem.

2

http://en.wikipedia.org/wiki/K-means_clustering

●

●

●
●

●

●

●

●

●

●

Figure 1: The Voronoi tesselation formed by 10 cluster centers c1, . . . , c10. The cluster centers
are indicated by dots. The corresponding Voronoi cells T1, . . . , T10 are defined as follows: a
point x is in Tj if x is closer to cj than ci for i 6= j.

1. Choose k centers c1, . . . , ck as starting values.

2. Form the clusters C1, . . . , Ck as follows. Let g = (g1, . . . , gn) where gi = argminj||Xi − cj||.
Then Cj = {Xi : gi = j}.

3. For j = 1, . . . , k, let nj denote the number of points in Cj and set

cj ←−
1

nj

∑
i: Xi∈Cj

Xi.

4. Repeat steps 2 and 3 until convergence.

5. Output: centers Ĉ = {c1, . . . , ck} and clusters C1, . . . , Ck.

Figure 2: The k-means (Lloyd’s) clustering algorithm.

3

●●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●
●

●

●
●

●
●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●
●

●
●

●

●
●

●●●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●
●

● ●

●

●

●● ●

●

● ●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●●

●

●

●

●

●

●●●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●●

●

●

● ●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

● ●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●
●

●

● ●

● ●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

● ●

● ●●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●● ●●

●

●●

●
●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●
●

●

●
●

●
●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●
●

●
●

●

●
●

●●●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●
●

● ●

●

●

●● ●

●

● ●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●
●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●●

●

●

●

● ●

●

●

●

●

● ●

●
● ●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●●
●●●

●

●
●

●

●

●

●

●
●

●

●

●
●
●●

●●

●●
●

●
●

●

●

●

●

●●
●

● ●
●
●●

●
●

●
●●

●
●

●
●●●

●
●

●

●●●●
●●●

●
●

●

●

●
● ●

●
●●
● ●●

●

●●
●

●●

●

●

●
●

●

●

●● ●●

●●

●

●
●

●

●●●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

● ●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
● ● ●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●
●

●

●

●

● ●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●●

●

●

●
●

●

●●

●

●

●
●

●●

●

●
●

● ●

●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

Figure 3: Synthetic data inspired by the “Mickey Mouse” example from wikipedia. Top
left: three balanced clusters. Top right: result from running k means with k = 3. Bottom
left: three unbalanced clusters. Bottom right: result from running k means with k = 3
on the unbalanced clusters. k-means does not work well here because the clusters are very
unbalanced.

Example 3 The top left plot of Figure 4 shows a dataset with two ring-shaped clusters. The
remaining plots show the clusters obtained using k-means clustering with k = 2, 3, 4. Clearly,
k-means does not capture the right structure in this case unless we overfit then merge.

2.1 Starting Values for k-means

Since R̂n(C) has multiple minima, Lloyd’s algorithm is not guaranteed to minimize Rn(C).
The clustering one obtains will depend on the starting values. The simplest way to choose
starting values is to use k randomly chosen points. But this often leads to poor clustering.

Example 4 Figure 5 shows data from a distribution with nine clusters. The raw data are in
the top left plot. The top right plot shows the results of running the k-means algorithm with
k = 9 using random points as starting values. The clustering is quite poor. This is because
we have not found the global minimum of the empirical risk function. The two bottom plots
show better methods for selecting starting values that we will describe below.

Hierarchical Starting Values. Tseng and Wong (2005) suggest the following method for
choosing staring values for k-means. Run single-linkage hierarchical clustering (which we

4

●●●●
●●●●●●

●●●
●●●

●●●●●●●●●
●●
●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●
●●●●●● ●

●●
●

●●
●
●

●●
●●

●
●●●

●●●●●
●●●●●●●●●●●●●●

●●
●

●●
●

●●●
●

●●
●●

●
●
●
●●

●●
●●
●●

●●
●
●●●

●
●●● ●

●● ●●
●

●●
● ●●●

●●
●●●

●●
●
●

●●
●●
●
●●
●

●

●●●●●●●●●
●●
●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●
●●●●●●●●●●●●●●

●●
●

●●
●

●●●
●

●●
●●

●
●
●
●●

●●
●●
●●

●●
●
●●●

●

●●●●
●●●●●●

●●●
●●●

●●●●●●●●●
●●
●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●
●●●●●●

●●●
●

●●● ●
●● ●●

●
●●

● ●●●
●●

●●●
●●

●
●

●●
●●
●

●
●●
●

●●
●
●

●●
●●

●
●●●

●

●●
●●●

●●
●
●

●●
●●
●
●●
●

●

Figure 4: Top left: a dataset with two ring-shaped clusters. Top right: k-means with k = 2.
Bottom left: k-means with k = 3. Bottom right: k-means with k = 4.

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

● ●
●

●
●

●

●

● ●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

● ●●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●
●

●

●
● ●

●
●

● ●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

● ●

●

●

●
●
●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●● ●
●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●●

●

● ●

●

●
●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

● ●

●

●
●

●
●

●●

●

●

●

● ●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

● ●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

● ●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●●

● ●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 5: An example with 9 clusters. Top left: data. Top right: k-means with random
starting values. Bottom left: k-means using starting values from hierarchical clustering.
Bottom right: the k-means++ algorithm.

5

1. Input: Data X = {X1, . . . , Xn} and an integer k.

2. Choose c1 randomly from X = {X1, . . . , Xn}. Let C = {c1}.

3. For j = 2, . . . , k:

(a) Compute D(Xi) = minc∈C ||Xi − c|| for each Xi.

(b) Choose a point Xi from X with probability

pi =
D2(Xi)∑n
j=1 D

2(Xj)
.

(c) Call this randomly chosen point cj. Update C ←− C ∪ {cj}.

4. Run Lloyd’s algorithm using the seed points C = {c1, . . . , ck} as starting points and output
the result.

Figure 6: The k-means++ algorithm.

describe in Section 7) to obtains p× k clusters. They suggest using p = 3 as a default. Now
take the centers of the k-largest of the p × k clusters and use these as starting values. See
the bottom left plot in Figure 5.

k-means++. Arthur and Vassilvitskii (2007) invented an algorithm called k-means++ to get
good starting values. They show that if the starting points are chosen in a certain way, then
we can get close to the minimum with high probability. In fact the starting points themselves
— which we call seed points — are already close to minimizing Rn(C). The algorithm is
described in Figure 6. See the bottom right plot in Figure 5 for an example.

Theorem 5 (Arthur and Vassilvitskii, 2007). Let C = {c1, . . . , ck} be the seed points from
the k-means++ algorithm. Then,

E
(
Rn(C)

)
≤ 8(log k + 2)

(
min
C
Rn(C)

)
(6)

where the expectation is over the randomness of the algorithm.

See Arthur and Vassilvitskii (2007) for a proof. They also show that the Euclidean distance
can be replaced with the `p norm in the algorithm. The result is the same except that the
constant 8 gets replaced by 2p+2. It is possible to improve the k-means++ algorithm.

6

2.2 Choosing k

In k-means clustering we must choose a value for k. This is still an active area of research
and there are no definitive answers. The problem is much different than choosing a tuning
parameter in regression or classification because there is no observable label to predict.
Indeed, for k-means clustering, both the true risk R and estimated risk Rn decrease to 0
as k increases. This is in contrast to classification where the true risk gets large for high
complexity classifiers even though the empirical risk decreases. Hence, minimizing risk does
not make sense. There are so many proposals for choosing tuning parameters in clustering
that we cannot possibly consider all of them here. Instead, we highlight a few methods.

2.2.1 Elbow Methods

One approach is to look for sharp drops in estimated risk. Let Rk denote the minimal risk
among all possible clusterings and let R̂k be the empirical risk. It is easy to see that Rk is a
nonincreasing function of k so minimizing Rk does not make sense. Instead, we can look for
the first k such that the improvement Rk − Rk+1 is small, sometimes called an elbow. This
can be done informally by looking at a plot of R̂k. We can try to make this more formal by
fixing a small number α > 0 and defining

kα = min

{
k :

Rk −Rk+1

σ2
≤ α

}
(7)

where σ2 = E(‖X − µ‖2) and µ = E(X). An estimate of kα is

k̂α = min

{
k :

R̂k − R̂k+1

σ̂2
≤ α

}
(8)

where σ̂2 = n−1
∑n

i=1 ‖Xi −X‖2.

Unfortunately, the elbow method often does not work well in practice because there may not
be a well-defined elbow.

2.2.2 Hypothesis Testing

A more formal way to choose k is by way of hypothesis testing. For each k we test

Hk : the number of clusters is k versus Hk+1 : the number of clusters is > k.

We begin k = 1. If the test rejects, then we repeat the test for k = 2. We continue until the
first k that is not rejected. In summary, k̂ is the first k for which k is not rejected.

7

A nice approach is the one in Liu, Hayes, Andrew Nobel and Marron (2012). (JASA, 2102,
1281-1293). They simply test if the data are multivariate Normal. If this rejects, they split
into two clusters and repeat. The have an R package sigclust for this. A similar procedure,
called PG means is described in Feng and Hammerly (2007).

Example 6 Figure 7 shows a two-dimensional example. The top left plot shows a single
cluster. The p-values are shown as a function of k in the top right plot. The first k for which
the p-value is larger than α = .05 is k = 1. The bottom left plot shows a dataset with three
clusters. The p-values are shown as a function of k in the bottom right plot. The first k for
which the p-value is larger than α = .05 is k = 3.

2.2.3 Stability

Another class of methods are based on the idea of stability. The idea is to find the largest
number of clusters than can be estimated with low variability.

We start with a high level description of the idea and then we will discuss the details. Suppose
that Y = (Y1, . . . , Yn) and Z = (Z1, . . . , Zn) are two independent samples from P . Let Ak
be any clustering algorithm that takes the data as input and outputs k clusters. Define the
stability

Ω(k) = E [s(Ak(Y), Ak(Z))] (9)

where s(·, ·) is some measure of the similarity of two clusterings. To estimate Ω we use
random subsampling. Suppose that the original data are X = (X1, . . . , X2n). Randomly
split the data into two equal sets Y and Z of size n. This process if repeated N times.
Denote the random split obtained in the jth trial by Y j, Zj. Define

Ω̂(k) =
1

N

N∑
j=1

[
s(Ak(Y

j), Ak(Z
j))
]
.

For large N , Ω̂(k) will approximate Ω(k). There are two ways to choose k. We can choose a

small k with high stability. Alternatively, we can choose k to maximize Ω̂(k) if we somehow

standardize Ω̂(k).

Now we discuss the details. First, we need to define the similarity between two clusterings.
We face two problems. The first is that the cluster labels are arbitrary: the clustering
(1, 1, 1, 2, 2, 2) is the same as the clustering (4, 4, 4, 8, 8, 8). Second, the clusterings Ak(Y)
and Ak(Z) refer to different data sets.

The first problem is easily solved. We can insist the labels take values in {1, . . . , k} and then
we can maximize the similarity over all permutations of the labels. Another way to solve

8

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

−2 −1 0 1 2 3

−
2

−
1

0
1

2

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

p−
va

lu
e

●
●●

●

●
●

● ●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●●
●●

●

●

●

●●

●

●

●● ●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●
●

●

●
●

●
●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●
●

●

●

●
●
●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●
●

●●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●

●

●

●● ● ●

●

●
●

●

●

●

●
●

●

●

●
●

●● ●

●

●
●●

●

● ●●

●

●
●

●

●

●

●●

●

●
●

−6 −4 −2 0 2 4 6

−
5

0
5

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

p−
va

lu
e

Figure 7: Top left: a single cluster. Top right: p-values for various k. The first k for which
the p-value is larger than .05 is k = 1. Bottom left: three clusters. Bottom right: p-values
for various k. The first k for which the p-value is larger than .05 is k = 3.

9

the problem is the following. Any clustering method can be regarded as a function ψ that
takes two points x and y and outputs a 0 or a 1. The interpretation is that ψ(x, y) = 1 if x
and y are in the same cluster while ψ(x, y) = 0 if x and y are in a different cluster. Using
this representation of the clustering renders the particular choice of labels moot. This is the
approach we will take.

Let ψY and ψZ be clusterings derived from Y and Z. Let us think of Y as training data and
Z as test data. Now ψY returns a clustering for Y and ψZ returns a clustering for Z. We’d
like to somehow apply ψY to Z. Then we would have two clusterings for Z which we could
then compare. There is no unique way to do this. A simple and fairly general approach is
to define

ψY,Z(Zj, Zk) = ψY (Y ′j , Y
′
k) (10)

where Y ′j is the closest point in Y to Zj and Y ′k is the closest point in Y to Zk. (More
generally, we can use Y and the cluster assignment to Y as input to a classifier; see Lange
et al 2004). The notation ψY,Z indicates that ψ is trained on Y but returns a clustering for
Z. Define

s(ψY,Z , ψZ) =
1(
n
2

)∑
s 6=t

I (ψY,Z(Zs, Zt) = ψZ(Zs, Zt)) .

Thus s is the fraction of pairs of points in Z on which the two clusterings ψY,Z and ψZ agree.
Finally, we define

Ω̂(k) =
1

N

N∑
j=1

s(ψY j ,Zj , ψZj).

Now we need to decide how to use Ω̂(k) to choose k. The interpretation of Ω̂(k) requires

some care. First, note that 0 ≤ Ω̂(k) ≤ 1 and Ω̂(1) = Ω̂(n) = 1. So simply maximizing Ω̂(k)
does not make sense. One possibility is to look for a small k larger than k > 1 with a high
stability. Alternatively, we could try to normalize Ω̂(k). Lange et al (2004) suggest dividing

by the value of Ω̂(k) obtained when cluster labels are assigned randomly. The theoretical
justification for this choice is not clear. Tibshirani, Walther, Botstein and Brown (2001)
suggest that we should compute the stability separately over each cluster and then take the
minimum. However, this can sometimes lead to very low stability for all k > 1.

Many authors have considered schemes of this form, including Breckenridge (1989), Lange,
Roth, Braun and Buhmann (2004), Ben-Hur, Elisseeff and Guyron (2002), Dudoit and
Fridlyand (2002), Levine and Domany (2001), Buhmann (2010), Tibshirani, Walther, Bot-
stein and Brown (2001) and Rinaldo and Wasserman (2009).

It is important to interpret stability correctly. These methods choose the largest number
of stable clusters. That does not mean they choose “the true k.” Indeed, Ben-David, von
Luxburg and Pál (2006), Ben-David and von Luxburg Tübingen (2008) and Rakhlin (2007)
have shown that trying to use stability to choose “the true k” — even if that is well-defined

10

● ●
●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●
●●

●

●
●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

● ●
●

●
●●●
●

●
●

●

●

●

●

●
●

●●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●● ●

●
● ●

●●●
●

●●

●

●

●●

● ●

●

● ●

●

●
●

● ●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●
● ●

●

●

● ●
●

●

●

●

●●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●●

●

●

●
●

●

●

●

●
●●●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●●

●

●

●

●●
● ●

●

●

●

●
● ●●

●

●

●
●

● ●

●

● ●
●

●

●
● ●

●

●

●

●

●

●

●
●

●
●●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●
●●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●●
●●

●

●
●

●
●

●

●

●

●

● ●
●

●
●

●

● ●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●

● ●●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

● ●

●

●
●

● ●

●
●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●
●

●●

●
●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●

●
●

●●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●
●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●●
●

●

●

●
●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●
●

●

●
●

● ●

●

●● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●● ●●
●

●
●

●

●
●●

●
●

●
●

●●
●
●●

●●

●
●
●●●

●
●●●●●●●
●

●●
●

●

●●
● ●●●

●

●
●

●
●

●

●
●●
●

●●
●
●●●

●
● ●● ●

● ●
●

●
●

●
●

●
●●

●●
●

● ●

●
●

● ●●
●●

●
●

●
●●
●●●●

●
●

●●
●

●
●● ●●

●
●

●●
●
●

●●
●

●

●

●
●

●●
●●
●

●●
●

●
●●

●●●

●
●

●

●

●●● ●●
●

●●
●

●●
●

●
●

●
●

●●● ●

●

●

●● ●●●

●

●
●

●● ●●
●●●

●
●

●
●

●
●●●●
●

● ●●
●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●●

●
●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●●

●
●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

● ●

●

●

●

●

● ●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●
●

●

●

●
●

Figure 8: Examples from Ben-David, von Luxburg and Pál (2006). The first example (top
left plot) shows a case where we fit k = 2 clusters. Stability analysis will correctly show that
k is too small. The top right plot has k = 3. Stability analysis will correctly show that k
is too large. The bottom two plots show potential failures of stability analysis. Both cases
are stable but k = 2 is too small in the bottom left plot and k = 3 is too big in the bottom
right plot.

— will not work. To explain this point further, we consider some examples from Ben-David,
von Luxburg and Pál (2006). Figure 8 shows the four examples. The first example (top left
plot) shows a case where we fit k = 2 clusters. Here, stability analysis will correctly show
that k is too small. The top right plot has k = 3. Stability analysis will correctly show
that k is too large. The bottom two plots show potential failures of stability analysis. Both
cases are stable but k = 2 is too small in the bottom left plot and k = 3 is too big in the
bottom right plot. Stability is subtle. There is much potential for this approach but more
work needs to be done.

2.2.4 Silhouette Score

A practically useful approach is based on the silhouette scores, and silhoutte graphs (Rousseeuw
1987).

For each point Xi in any cluster Cj, denote its intra-cluster fit as:

ici =
1

|Cj| − 1

∑
s∈Cj ,s 6=i

‖Xi −Xs‖,

11

Figure 9: (From Wikipedia) A plot of the silhouette scores of all the data points in each of
three clusters. Note that some scores are negative, indicating lack of fit with that cluster.

12

and denote its extra-cluster fit with any of the other clusters as:

xci = min
j′ 6=j

1

|Cj′| − 1

∑
s∈Cj′

‖Xi −Xs‖.

We can then define the silhouette value for Xi as:

si =
xci − ici

max{xci, ici}
, if |Cj| > 1,

where Cj is the cluster to which Xi belongs to. Denote si = 0 if |Cj| = 1.

From the definition, it can be seen that −1 ≤ si ≤ 1. If Xi is much much closer to points
in its own clusters as compared to the other clusters, then si will be closer to one. On the
other hand, when it is closer to points in any other cluster on average compared to points
in its own cluster, then si will be negative. The overall silhouette score of the clustering can
then be written as:

s(C) =
1

n

n∑
i=1

si.

But more information can be gleaned by looking at the overall silhoutte graph as in Figure
9. Visual inspection of this silhouette graph might provide more insight into the goodness
of a clustering compared to the single numeric silhoutte score, for instance, by indicating if
there are many points with poor fit to their clusters.

2.3 Theoretical Properties

A theoretical property of the k-means method is given in the following result. Recall that
C∗ = {c∗1, . . . , c∗k} minimizes R(C) = E||X − ΠC [X] ||2.

Theorem 7 Suppose that P(||Xi||2 ≤ B) = 1 for some B <∞. Then

E(R(Ĉ))−R(C∗) ≤ c

√
k(d+ 1) log n

n
(11)

for some c > 0.

Warning! The fact that R(Ĉ) is close to R(C∗) does not imply that Ĉ is close to C∗.

This proof is due to Linder, Lugosi and Zeger (1994), and follows along standard VC theory
techniques.

13

Proof. Note that R(Ĉ) − R(C∗) = R(Ĉ) − Rn(Ĉ) + Rn(Ĉ) − R(C∗) ≤ R(Ĉ) − Rn(Ĉ) +

Rn(C∗) − R(C∗) ≤ 2 supC∈Ck |R(Ĉ) − Rn(Ĉ)|. For each C define a function fC by fC(x) =
||x − ΠC [x]||2. Note that supx |fC(x)| ≤ 4B for all C. Now, using the fact that E(Y) =∫∞

0
P(Y ≥ t)dt whenever Y ≥ 0, we have

2 sup
C∈Ck
|R(Ĉ)−Rn(Ĉ)| = 2 sup

C

∣∣∣∣∣ 1n
n∑
i=1

fC(Xi)− E(fC(X))

∣∣∣∣∣
= 2 sup

C

∣∣∣∣∣
∫ ∞

0

(
1

n

n∑
i=1

I(fC(Xi) > u)− P(fC(Z) > u)

)
du

∣∣∣∣∣
≤ 8B sup

C,u

∣∣∣∣∣ 1n
n∑
i=1

I(fC(Xi) > u)− P(fC(Z) > u)

∣∣∣∣∣
= 8B sup

A

∣∣∣∣∣ 1n
n∑
i=1

I(Xi ∈ A)− P(A)

∣∣∣∣∣
where A varies over all sets A of the form {fC(x) > u}. The shattering number of A is
s(A, n) ≤ nk(d+1). This follows since each set {fC(x) > u} is a union of the complements of
k spheres. By the VC Theorem,

P(R(Ĉ)−R(C∗) > ε) ≤ P

(
8B sup

A

∣∣∣∣∣ 1n
n∑
i=1

I(Xi ∈ A)− P(A)

∣∣∣∣∣ > ε

)

= P

(
sup
A

∣∣∣∣∣ 1n
n∑
i=1

I(Xi ∈ A)− P(A)

∣∣∣∣∣ > ε

8B

)
≤ 4(2n)k(d+1)e−nε

2/(512B2).

Now conclude that E(R(Ĉ)−R(C∗)) ≤ C
√
k(d+ 1)

√
logn
n
. �

A sharper result, together with a lower bound is the following.

Theorem 8 (Bartlett, Linder and Lugosi 1997) Suppose that P (‖X‖2 ≤ 1) = 1 and

that n ≥ k4/d,
√
dk1−2/d log n ≥ 15, kd ≥ 8, n ≥ 8d and n/ log n ≥ dk1+2/d. Then,

E(R(Ĉ))−R(C∗) ≤ 32

√
dk1−2/d log n

n
= O

(√
dk log n

n

)
.

Also, if k ≥ 3, n ≥ 16k/(2Φ2(−2)) then, for any method Ĉ that selects k centers, there exists
P such that

E(R(Ĉ))−R(C∗) ≥ c0

√
k1−4/d

n

where c0 = Φ4(−2)2−12/
√

6 and Φ is the standard Gaussian distribution function.

14

See Bartlett, Linder and Lugosi (1997) for a proof. It follows that (global optimum) k-

means is risk consistent in the sense that R(Ĉ)−R(C∗)
P→ 0, as long as k = o(n/(d log n)).

Moreover, the lower bound implies that we cannot find any other method that improves
much over the k-means approach, at least with respect to this loss function.

The k-means algorithm can be generalized in many ways. For example, if we replace the L2

norm with the L1 norm we get k-medians clustering. We will not discuss these extensions
here.

2.4 Overfitting and Merging

The best way to use k-means clustering is to “overfit then merge.” Don’t think of the k in
k-means as the number of clusters. Think of it as a tuning parameter. k-means clustering
works much better if we:

1. Choose k large

2. merge close clusters

This eliminates the sensitivity to the choice of k and it allows k-means to fit clusters with
arbitrary shapes. For a theoretical underpinning of this approach, see Aragam, Chen, Xing,
Ravikumar, Annals of Statistics, 2019 (more on this in the next section).

2.5 k-Means: Population Perspective

If we think about what K-means does at the population or distribution level, it could be
viewed as quantization or discretization: obtaining k centroids around each of which there
is a lot of probability mass, hopefully tightly concentrated. A density model with a similar
perspective is a Gaussian mixture model, where the mixture component means could be
viewed as centroids around which the density locally concentrates. Indeed, k-means could
be derived as an asymptotic limit (with variance going to zero) of an algorithm to estimate
Gaussian mixture models. We will thus study mixture models next.

3 Mixture Models

Simple cluster structure can be discovered using mixture models. We start with a simple
example. We flip a coin with success probability π. If heads, we draw X from a density
p1(x). If tails, we draw X from a density p0(x). Then the density of X is

p(x) = πp1(x) + (1− π)p0(x),

15

which is called a mixture of two densities p1 and p0. Figure 10 shows a mixture of two
Gaussians distribution.

Let Z ∼ Bernoulli(π) be the unobserved coin flip. Then we can also write p(x) as

p(x) =
∑
z=0,1

p(x, z) =
∑
z=0,1

p(x|z)p(z) (12)

where p(x|Z = 0) := p0(x), p(x|Z = 1) := p1(x) and p(z) = πz(1 − π)1−z. Equation (12) is
called the hidden variable representation. A more formal definition of finite mixture models
is as follows.

[Finite Mixture Models] Let {pθ(x) : θ ∈ Θ} be a parametric class of densities. Define the
mixture model

pψ(x) =
K−1∑
j=0

πjpθj(x),

where the mixing coefficients πj ≥ 0,
∑K−1

j=0 πj = 1 and ψ = (π0, . . . , πK−1, θ0, . . . , θK−1) are
the unknown parameters. We call pθ0 , . . . , pθK−1

the component densities.

Generally, even if {pθ(x) : θ ∈ Θ} is an exponential family model, the mixture may no
longer be an exponential family.

3.1 Mixture of Gaussians

Let φ(x;µj, σ
2
j) be the probability density function of a univariate Gaussian distribution with

mean µj and variance σ2
j . A typical finite mixture model is the mixture of Gaussians. In

one dimension, we have

pψ(x) =
K−1∑
j=0

πjφ(x;µj, σ
2
j),

which has 3K − 1 unknown parameters, due to the restriction
∑K−1

j=0 πj = 1.

A mixture of d-dimensional multivariate Gaussians is

p(x) =
K−1∑
j=0

πj
(2π)d/2|Σj|1/2

exp

{
−1

2
(x− uj)TΣ−1

j (x− uj)
}
.

There are in total

K

(
d(d+ 1)

2︸ ︷︷ ︸
of parameters in Σj

+ d︸︷︷︸
of parameters in uj

)
+ (K − 1)︸ ︷︷ ︸

of mixing coefficients

=
Kd(d+ 3)

2
+K − 1

parameters in the mixture of K multivariate Gausssians.

16

x

p(
x)

0.00

0.05

0.10

0.15

0.20

−4 −2 0 2 4 6

x

p
(x

)
Figure 10: A mixture of two Gaussians, p(x) = 2

5
φ(x;−1.25, 1) + 3

5
φ(x; 2.95, 1).

3.2 Maximum Likelihood Estimation

A finite mixture model pψ(x) has parameters ψ = (π0, . . . , πK−1, θ0, . . . , θK−1). The likelihood
of ψ based on the observations X1, . . . , Xn is

L(ψ) =
n∏
i=1

pψ(Xi) =
n∏
i=1

(K−1∑
j=0

πjpθj(Xi)

)
and, as usual, the maximum likelihood estimator is the value ψ̂ that maximizes L(ψ). Usually,
the likelihood is multimodal and one seeks a local maximum instead if a global maximum.

For fixed θ0, . . . , θK−1, the log-likelihood is often a concave function of the mixing parameters
πj. However, for fixed π0, . . . , πK−1, the log-likelihood is not generally concave with respect
to θ0, . . . , θK−1.

One way to find ψ̂ is to apply your favorite optimizer directly to the log-likelihood.

`(ψ) =
n∑
i=1

log

(K−1∑
j=0

πjpθj(Xi)

)
.

However, `(ψ) is not jointly convex with respect to ψ. It is not clear which algorithm is the
best to optimize such a nonconvex objective function.

A convenient and commonly used algorithm for finding the maximum likelihood estimates of
a mixture model (or the more general latent variable models) is the expectation-maximization
(EM) algorithm. To discuss this algorithm, we will re-write the statistical model for a mixture
of two Gaussians in terms of latent variables as

Z ∼ Bernouli(π), (13)

X|Z = j ∼ N(µj,Σj) for j = 0, 1. (14)

Define

p(x|Z = 1) := pµ1,Σ1(x) and p(x|Z = 0) := pµ0,Σ0(x).

17

Let X1, . . . , Xn be the observed data and let Z1, . . . , Zn be the “missing data”. There are
two types of unknowns: (i) the parameter vector ψ = (π, µ0, µ1)T , and the latent samples
Z1, . . . , Zn. The latent variables Z1, . . . , Zn can be used for clustering, while ψ can be
used for evaluating the likelihood. The EM algorithm is then similar to a block coordinate
ascent procedure, which aims to maximize the log-likelihod function by alternatively inferring
the information of Z1, . . . , Zn (Expectation-step) and estimating the parameter vector ψ
(Maximization-step).

Let us consider the simpler setting where Σ0 = Σ1 = I.

The Expectation-Maximization Algorithm for the Mixture of Two Gaussians

Initialize ψ(0) := (π(0), µ
(0)
1 , µ

(0)
0)T .

For t = 1, 2, {

• Expectation-Step (E-Step): for i = 1, . . . , n, calculate

γ
(t+1)
i := Pψ(t)

(
Zi = 1|X1, . . . , Xn

)
=

π(t) exp
[
− (Xi−µ

(t)
1)2

2

]
π(t) exp

[
− (Xi−µ

(t)
1)2

2

]
+ (1− π(t)) exp

[
− (Xi−µ

(t)
0)2

2

] .
• Maximization-Step (M-Step): Given γ

(t+1)
i , we update the parameter ψ by

π(t+1) ← 1

n

n∑
i=1

γ
(t+1)
i ;

µ
(t+1)
1 ←

∑n
i=1 γ

(t+1)
i Xi∑n

i=1 γ
(t+1)
i

and µ
(t+1)
0 ←

∑n
i=1(1− γ(t+1)

i)Xi∑n
i=1(1− γ(t+1)

i)
.

until convergence.

It can be seen that this is a “softer” version of k-means, where γi is a softer cluster assignment
of each point to the k centroids, while the corresponding centroids also average the softer
cluster assignments.

While the algorithm can be slow to converge, its simplicity, flexibility, and the fact that
it doesn’t require a choice of step size make it a convenient choice for many estimation
problems. Nonetheless, the EM algorithm is only one of many numerical procedures for
obtaining a (local) maximum likelihood estimate of the latent variable models. In some
cases procedures such as Newton’s method or conjugate gradient may be more effective, and
should be considered as alternatives to EM.

18

In principle, there are polynomial time algorithms for finding good estimates of ψ based on
spectral methods and the method of moments. It appears that, at least so far, these methods
are not yet practical enough to be used in routine data analysis.

Example. The data are measurements on duration and waiting time of eruptions of the
Old Faithful geyser from August 1 to August 15, 1985. There are two variables with 299 ob-
servations. The first variable ,“Duration”, represents the numeric eruption time in minutes.
The second variable, “waiting”, represents the waiting time to next eruption. This data is
believed to have two modes. We fit a mixture of two Gaussians using EM algorithm. To
illustrate the EM step, we purposely choose a bad starting point. The EM algorithm quickly
converges in six steps. Figure 11 illustrates the fitted densities for all the six steps. We see
that even though the starting density is unimodal, it quickly becomes bimodal.

Eruption tim
e (m

ins)

W
aiting tim

e (m
ins)

m
ixture density

Eruption tim
e (m

ins)
W

aiting tim
e (m

ins)

m
ixture density

Eruption tim
e (m

ins)

W
aiting tim

e (m
ins)

m
ixture density

Step 1 Step 2 Step 3

Eruption tim
e (m

ins)

W
aiting tim

e (m
ins)

m
ixture density

Eruption tim
e (m

ins)

W
aiting tim

e (m
ins)

m
ixture density

Eruption tim
e (m

ins)

W
aiting tim

e (m
ins)

m
ixture density

Step 4 Step 5 Step 6

Figure 11: Fitting a mixture of two Gaussians on the Old Faithful Geyser data. The initial
values are π0 = π1 = 0.5. u0 = (4, 70)T , u1 = (3, 60)T , Σ1 = Σ2 =

(
0.8 7
7 70

)
. We see that

even though the starting density is not bimodal, the EM algorithm converges quickly to a
bimodal density.

19

3.3 The Twilight Zone

Mixtures models are conceptually simple but they have some strange properties.

Computation. Finding the mle is NP-hard.

Infinite Likelihood. Let pψ(x) =
∑k

j=1 πjφ(x;µj, σ
2
j), be a mixture of Gaussians. Let

L(ψ) =
∏n

i=1 pψ(Xi) be the likelihood function based on a sample of size n. Then supψ L(ψ) =

∞. To see this, set µj = X1 for some j. Then φ(X1;µj, σ
2
j) = (

√
2πσj)

−1. Now let σj → 0.
We have φ(X1;µj, σ

2
j) → ∞. Therefore, the log-likelihood is unbounded. This behavior

is very different from a typical parametric model. Fortunately, if we define the maximum
likelihood estimate to be a mode of L(ψ) in the interior of the parameter space, we get a
well-defined estimator.

Multimodality of the Density. Consider the mixture of two Gaussians

p(x) = (1− π)φ(x;µ1, σ
2) + πφ(x;µ0, σ

2).

You would expect p(x) to be multimodal but this is not necessarily true. The density p(x)
is unimodal when |µ1 − µ2| ≤ 2σ and bimodal when |µ1 − µ2| > 2σ. One might expect that
the maximum number of modes of a mixture of k Gaussians would be k. However, there are
examples where a mixture of k Gaussians has more than k modes. In fact, Edelsbrunner,
Fasy and Rote (2012) show that the relationship between the number of modes of p and the
number of components in the mixture is very complex.

Nonintinuitive Group Membership. Our motivation for studying mixture modes in
this chapter was clustering. But one should be aware that mixtures can exhibit unexpected
behavior with respect to clustering. Let

p(x) = (1− π)φ(x;µ1, σ
2
1) + πφ(x;µ2, σ

2
2).

Suppose that µ1 < µ2. We can classify an observation as being from cluster 1 or cluster 2
by computing the probability of being from the first or second component, denoted Z = 0
and Z = 1. We get

P(Z = 0|X = x) =
(1− π)φ(x;µ1, σ

2
1)

(1− π)φ(x;µ1, σ2
1) + πφ(x;µ2, σ2

2)
.

Define Z(x) = 0 if P(Z = 0|X = x) > 1/2 and Z(x) = 1 otherwise. When σ1 is much
larger than σ2, Figure 12 shows Z(x). We end up classifying all the observations with large
Xi to the leftmost component. Technically this is correct, yet it seems to be an unintended
consequence of the model and does not capture what we mean by a cluster.

Improper Posteriors. Bayesian inference is based on the posterior distribution p(ψ|X1, . . . , Xn) ∝
L(ψ)π(ψ). Here, π(ψ) is the prior distribution that represents our knowledge of ψ before
seeing the data. Often, the prior is improper, meaning that it does not have a finite integral.

20

p(x)

x

p
(x

)

−2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

x

h(
x)

−2 0 2 4 6

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

x

Z(
x)

Z(x) = 0 Z(x) = 1 Z(x) = 0

Figure 12: Mixtures are used as a parametric method for finding clusters. Observations with
x = 0 and x = 6 are both classified into the first component.

For example, suppose that X1, . . . , Xn ∼ N(µ, 1). It is common to use an improper prior
π(µ) = 1. This is improper because ∫

π(µ)dµ =∞.

Nevertheless, the posterior p(µ|Dn) ∝ L(µ)π(µ) is a proper distribution, where L(µ) is the
data likelihood of µ. In fact, the posterior for µ is N(X, 1/

√
n) where x is the sample mean.

The posterior inferences in this case coincide exactly with the frequentist inferences. In many
parametric models, the posterior inferences are well defined even if the prior is improper and
usually they approximate the frequentist inferences. Not so with mixtures. Let

p(x;µ) =
1

2
φ(x; 0, 1) +

1

2
φ(x;µ, 1). (15)

If π(µ) is improper then so is the posterior. Moreover, Wasserman (2000) shows that the only
priors that yield posteriors in close agreement to frequentist methods are data-dependent
priors.

Nonidentifability. A model {pθ(x) : θ ∈ Θ} is identifiable if

θ1 6= θ2 implies Pθ1 6= Pθ2

where Pθ is the distribution corresponding to the density pθ. Mixture models are noniden-
tifiable in two different ways. First, there is nonidentifiability due to permutation of labels.
For example, consider a mixture of two univariate Gaussians,

pψ1(x) = 0.3φ(x; 0, 1) + 0.7φ(x; 2, 1)

21

and
pψ2(x) = 0.7φ(x; 2, 1) + 0.3φ(x; 0, 1),

then pψ1(x) = pψ2(x) even though ψ1 = (0.3, 0.7, 0, 2, 1)T 6= (0.7, 0.3, 2, 0, 1)T = ψ2. This is
not a serious problem although it does contribute to the multimodality of the likelihood.

A more serious problem is local nonidentifiability. Suppose that

p(x; π, µ1, µ2) = (1− π)φ(x;µ1, 1) + πφ(x;µ2, 1). (16)

When µ1 = µ2 = µ, we see that p(x; π, µ1, µ2) = φ(x;µ). The parameter π has disappeared.
Similarly, when π = 1, the parameter µ2 disappears. This means that there are subspaces of
the parameter space where the family is not identifiable. This local nonidentifiability causes
many of the usual theoretical properties— such as asymptotic Normality of the maximum
likelihood estimator and the limiting χ2 behavior of the likelihood ratio test— to break
down. For the model (16), there is no simple theory to describe the distribution of the
likelihood ratio test for H0 : µ1 = µ2 versus H1 : µ1 6= µ2. The best available theory is
very complicated. However, some progress has been made lately using ideas from algebraic
geometry (Yamazaki and Watanabe 2003, Watanabe 2010).

The lack of local identifiabilty causes other problems too. For example, we usually have that
the Fisher information is non-zero and that θ̂ − θ = OP (n−1/2) where θ̂ is the maximum
likelihood estimator. Mixture models are, in general, irregular: they do not satisfy the usual
regularity conditions that make parametric models so easy to deal with. Here is an example
from Chen (1995).

Consider a univariate mixture of two Gaussians distribution:

pθ(x) =
2

3
φ(x;−θ, 1) +

1

3
φ(x; 2θ, 1).

Then it is easy to check that I(0) = 0 where I(θ) is the Fisher information. Moreover, no
estimator of θ can converge faster than n−1/4 if the number of components is not known
in advance. Compare this to a Normal family φ(x; θ, 1) where the Fisher information is
I(θ) = n and the maximum likelihood estimator converges at rate n−1/2. Moreover, the
distribution of the mle is not even well understood for mixture models. The same applies to
the likelihood ratio test.

Mixture Models: Use With Caution. Mixture models can have very unusual and un-
expected behavior. This does not mean that we should not use mixture modes. Indeed,
mixture models are extremely useful. However, when you use mixture models, it is impor-
tant to keep in mind that many of the properties of models that we often take for granted,
may not hold.

If you are going to use mixture models, it is worthwhile remembering the words of Rod
Serling:

22

Figure 13: A distribution that is identifiable as a mixture of Gaussians, but not identifiable
as a mixture of two sub-Gaussians.

There is a fifth dimension beyond that which is known to man. It is a dimension
as vast as space and as timeless as infinity. It is the middle ground between light
and shadow, between science and superstition, and it lies between the pit of man’s
fears and the summit of his knowledge. This is the dimension of imagination. It
is an area which we call the Twilight Zone.

4 Nonparametric Mixture Models

Viewed from an information-theoretic lens, in clustering, we are asking: when can we recover
the unseen cluster assignment Y given just the input X? Without much loss of generality,
this can be cast as a non-parametric mixture model estimation problem. To see this, suppose
we are given some random vector X, and denote the latent clustering assignment variable as
Y , that say takes k values. It can then be seen that Y specifies a mixture model: P (X) =∑k

j=1 P (Y = j)P (X|Y = j), so if we are able to estimate the mixture components, we would
be able to recover the clustering corresponding to Y . This is an identifiability question: given
the mixture components {P (X|Y)} (and mixture weights) there is obviously a unique input
distribution P (X). When is there a unique set of mixture components (and is there a
practical recover these) given just P (X)? Obviously, without any information about the
mixture components, the answer is no, since there are many possible mixture models that
could have given rise to P (X).

With parametric mixture models, we are given the additional side information that the
mixture component distributions lie in a specific parametric family.Classical results on iden-
tifiability of mixture models (Yakowitz and Spragins, 1968; Teicher, 1963) state that so long
as the specific family of distributions is such that the CDFs of the individual distributions
are linearly independent over R, the corresponding mixture models are identifiable. This

23

Figure 14: Estimating Non-parametric Mixture Models via Overfitted Gaussian Mixtures

holds true for typical parametric models (e.g. Gaussian mixture models), so that the corre-
sponding mixture model is indeed identifiable: just given P (X), we can in principle recover
the mixture components. But the moment we go to non-parametric models, identifiability
typicaly fails to hold, even for very simple non-parametric classes.

For instance, consider the mixture of three Gaussians in Figure 13. While we can write the
distribution uniquely as a mixture of three Gaussians, we can also write it as three different
equally valid representations as a mixture of two sub-Gaussians. Thus, the distribution is
not identifiable with respect to a mixture model over sub-Gaussian distributions. Note that
even if we assume the number of components are known , and the component means are
well-separated, this would still remain non-identifiable: consider two components, and where
the third component is arbitrarily far to the right.

(Aragam, Chen, Xing, Ravikumar, Annals of Statistics 2020) provide conditions under which
non-parametric mixture models can indeed be identifiable. Loosely: Gaussian mixture mod-
els are identifiable, and moreover are dense in the space of all distributions. Thus, each
non-parametric mixture component can be approximated well via a mixture of Gaussians,
and consequently, the overall distribution as a mixture of Gaussians in turn. Thus, one
can project any non-parametric distribution onto a mixture of a large number of Gaussians.
Then so long as one could cluster these Gaussian components, then one could identify the

24

Figure 15: (Top) Density plot of the original mixture density. (Left) Contour plot of overfit-
ted Gaussian mixture approximation, centers marked with small circles. (Middle) Original
data color coded by the approximate Bayes optimal partition. (Right) Estimated Bayes op-
timal partition, visualized by color-coding the input space by estimated cluster membership.

individual non-parametric mixture components with each cluster of Gaussian components.
Their paper essentially provided the regularity conditions under which the above very natural
procedure is guaranteed to identify the non-parametric mixture components.

The overall algorithm, as shown in Figure 14, then is:

1. Estimate an overfitted mixture of Gaussians to the given data

2. Cluster the Gaussian densities with respect to say the Hellinger metric

3. Identify each cluster with a non-parametric mixture component

Figure 15 provides an example of a difficult clustering example, where the above approach
works well.

Given the connection between Gaussian mixture models and K-means, this also suggestive
of a theoretical underpinning for the overfitted Kmeans strategy mentioned in the previous
section: fit a large number of clusters via K-means, and then merge the (sub)-clusters.

25

5 Density-Based Clustering I: Level Set Clustering

Let p be the density if the data. Let Lt = {x : ph(x) > t} denote an upper level set of p.
Suppose that Lt can be decomposed into finitely many disjoint sets: Lt = C1

⋃
· · ·
⋃
Ckt .

We call Ct = {C1, . . . , Ckt} the level set clusters at level t.

Let C =
⋃
t≥0 Ct. The clusters in C form a tree: if A,B ∈ C, the either (i) A ⊂ B or (ii)B ⊂ A

or (iii) A ∩B = ∅. We call C the level set cluster tree.

The level sets can be estimated in the obvious way: L̂t = {x : p̂h(x) > t}. How do we

decompose L̂t into its connected components? This can be done as follows. For each t let

Xt = {Xi : p̂h(Xi) > t}.

Now construct a graph Gt where each Xi ∈ Xt is a vertex and there is an edge between Xi

and Xj if and only if ||Xi − Xj|| ≤ ε where ε > 0 is a tuning parameter. Bobrowski et al
(2014) show that we can take ε = h. Gt is a called a Rips graphs. The clusters at level t are
estimated by taking the connected components of the graph Gt. In summary:

1. Compute p̂h.

2. For each t, let Xt = {Xi : p̂h(Xi) > t}.
3. Form a graph Gt for the points in Xt by connecting Xi and Xj if ||Xi −Xj|| ≤ h.

4. The clusters at level t are the connected components of Gt.

A Python package, called DeBaCl, written by Brian Kent, can be found at

http://www.brianpkent.com/projects.html.

Fabrizio Lecci has written an R implementation, include in his R package: TDA (topological
data analysis). You can get it at:

http://cran.r-project.org/web/packages/TDA/index.html

Two examples are shown in Figures 16 and 17.

5.1 Theory

How well does this work? Define the Hausdorff distance between two sets by

H(U, V) = inf

{
ε : U ⊂ V ⊕ ε and V ⊂ U ⊕ ε

}

26

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

la
m

bd
a ●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 0 2 4 6 8

−
2

0
2

4
6

8

cluster labels

XX[,1]

X
X

[,2
] ●

●

●
●

●

●

●●●
●

●
●●

●
●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
●

●●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●
●●

●
●

●●

●

●
●

●

●

●

●●
●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●
●

●

●
●

●

●

●

●
●

●

●● ●●

●

●

●

●

●●
●

●

●

●
●

●
●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

● ●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●●
●●

● ●

●

●
●

●●
●

● ● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●●
● ●

●

●

●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
● ●

●
●●
● ●

●

●

●

●

●

●

●

●●
●

●● ●

●

●

●

●● ●
● ●

●
●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
● ●

●
●●●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

● ●
●

●
●

●

●

●

●
●

●
●

●

●
●

● ●

● ●
●

●

●
●● ●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
● ●

●
● ●

●●●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

● ●

●
●

●

●
●

●

●

●

●
●

●●●

● ●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

● ●

●

●
●

●

●

●

●
●

● ●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●●

●

●

●

●

●●

●

● ●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

● ●●

●
●

● ●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●●●
●

●

●
●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●●
●● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●
● ●

●

●

●●

●

● ●

●
●●

●

●

●

●

●

●

●●●

●

●●

●

● ●
●

●

●●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●
●

●

● ●
●●

●

●

●

●
● ●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●● ●

●

●
●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

● ●

●

●

●

●●

●●

●

●

●

●

●
●● ●

●
●

●
●

●

●

●

●

●

●

●●

● ●

●

●
● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
● ●

●

●●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

● ●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

● ●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●
●

●●

● ●

●
●

●

●

●●
●

●

●

● ● ●

●

●

●●
●●

●

●

●

●
●

●

●

● ●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●
● ●●

●
●

●
●

●
●

●

● ●

●
●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●●
●

●
●●

●
●

●

●●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●
●●

●
●

●●

●

●
●

●

●

●

●●

● ●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●● ●
●●

●
●

●

●

●
●

●

●● ●●

●

●

●

●

●●

●

●

●
●

●●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
● ●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●
● ●

●

●

●●
●●

●

●

●
●

●●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●●●

●●

●

●●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●

●
● ●

●
●●
● ●

●

●

●

●

●

●

●●
●

●
●

●

●

●● ●
● ●

●
●

●

●

● ●

●
●

●

●

●
●

●

●●
●

●

●● ●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●
● ●

●
●●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●
●

●

●●

●
●

●
●

●

●
●

● ●

● ●

●

●
●● ●

●

●●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

● ●

●
●

●

●

●
● ●

●
● ●

●●●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

● ●

●
●

●
●

●

●

●

●
●

●●●

● ●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

● ●
●

●

●

●

●
●

● ●

●●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●●

● ●

●

●●

●

●

●

●●

●

● ●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●● ●

●

●

●

●

●

●

●

● ●●
● ●

●●

●

●● ●

●

●

●

●

●●

●
●

●
●

●

●
●

●

● ●●

●
●

● ●

●
●

●

●

●

●
●

●

●
●

●

●

●
●●●
●

●
●● ●

●

●

●

●

●
●

●

●

●
●

● ●
●●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●●
●

●
●

●●

● ●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●●

●

●
● ●

●

●●

● ●

●
●●

●

●

●

●●● ●●

●

●
●

●

●●
●

●

●

●

● ●

●
●

●

●

●

●

●●

●

● ●
●● ●●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●● ●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

● ●

●

●

●

●●

●●

●

●

●

●

●
●● ●

●
●

●
●

●

●

●
●●

● ●

●

●
● ●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●
●

●●

● ●

●

●

●●
●

●● ● ●

●

●

●●
●●

●

●
●

●

●

●

● ●
●

●

●

●

● ●
●

●

● ●

●
●

●

●

●
●

●●

● ●
● ●

●
●

●
●

●

●

● ●

●
●

● ●

● ●
●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

● ●●●
●

●
●

●
●

●
●●●●

●
●

●
●●● ●●●

●
●

●
●

●

●●●

●

●
●●●

●●
●

●
●

● ●●
● ●●●●● ●

●
● ●● ●

●

●

●
●●●●●●

●●

●●●●
●

●●●● ●● ●●●● ●●
●
●

●
●

●
●

●
●
●

●
●
● ●●

●
●●

●●
●

●
● ●
●

●● ●
●●● ●
●●

●
● ●●

●●● ●
● ●●
●

●●●
●

Figure 16: DeBaClR in two dimensions.

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

01
0

0.
02

0

la
m

bd
a

cluster labels

−4 −2 0 2 4 6 8 10

1
2

3
4

5
6

7
8

−4
−2

 0
 2

 4
 6

 8
10

XX[,1]

X
X

[,2
]

X
X

[,3
]

●
●

●
●●

●

●
●

●
●
●●

●

●

●

●

●

●

●●●
●
●

●●
●

●

●

●

●● ●

●

●

●

●

●

●●
●

●

●

●
●

●●
●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●●●

●

●●●
●

●●
●●

●
●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●●● ●●●●

●

●
●

●

●

●●
●

●

●●

●

●

●

●●
●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●●
●

●

●

●
●

●

●●

●
●

●
●
●

●

●●

●

●

●

●

●

●●●

●

●●
●

●

●

●

● ●
●●

●

●
●

●

●

●

● ●

●

●
●
●

●

●

●

●

●
●
●●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●
●●

●●

●

●

●

●

● ●
● ●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●
●

● ●
●●

●

●

●

●

●
●

●●
●

● ●

●

●●

●

●●

●

●

●

●

●●
●●●

●

●

●
●●

●

●

●

●

●

●●

●

●
●

●● ●

●

●

●
●●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●●

●

●

●
●

●

●

● ●

● ●
●

●

●
●●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●●
●

●

●
●
●●

●●
●

●

●
●

●●●

●

●

●

●
●

●●

●

●

●●

●

● ●

●
●

●
●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●
●

● ●
●

●

● ●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●●

●●

●

●

●

●●

●●

●

●
●

●

●

●●

●●
●

●●

●

●

●●●
●

●
●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●
●

●●●

●●

●●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
● ●

●
●
●

●
●●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●
● ●

●
●

●

● ●

●
●

●●
●

●
●

●

●

●

●

●

●●

●
●

●

●●

●

●

●
●

●
●

●

●
●●

●
●

● ●

●

●●

●

●

●

●
●

● ●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●●

●
●

●

●

●

●

●

●●
●

●

●●●

●

●

●
●

●

●

●

●

●

●

●●●

●●● ●
●

●

●

●

●●

●

●●

●
●
●
●●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●●
●●

●
●

●

●
●

●

●

●

●

●
●
●

●
●

●

●●● ●

●

●

●
●

●

●

●
●

●

●●
●

●●●

●

●

●●

●

●

● ●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●
● ●●

●
●

●

●

●
●

●●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●●●
●
●

●●

●

● ●

●●●●●
●
●

● ●

●
●●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●●

● ●●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●● ●
●
●

●

●

●
●

●
●●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●●

●

●

●

●

●

●
●

●
●

●
●
●

●●

●

● ●
●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●●●

●●
●

●

●●

● ●
●●

●●

●

●

●

●

●
●

●

●

●

●●

●●●
●

●
●

●
●

●

●

●●

●
●●

●●
●

●

●

●

●

●

●

●
●

●
●●
●

●● ●

●

●

●
●

●
●●

●

●

● ●
● ●●

● ●

●

●●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●●
●

●

●

●

●
●

●

●
●●

●

●

●●

●●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●
●

●

●

●
●
●

●

●

● ●
● ●

●

●

●

●

●

●
●●

● ●

●●●

●
●●

●

●

●

●●
●

●

●

● ●

●

●

●
●

● ●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●

●●
●

●●
●

●

●

●

●

●●

●

●

●

●

●
●●

●
●

●
●

●
●

●

●

●● ●
●

●

●
●●

●

●

●●

●

●●

●●
●

●

●
●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●●
● ●●

●

●

●

●

●

●

●●
●
●●

●

●●

●●

●

●

●

●

●●●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●●

●

●●

●

●●
●

●●●

●
●

●
●

●

●
● ●

●
●
● ●●

●
●

●
●
●

●

●●

●
●

● ●

●

●

●
●●

●

●

●

●●

●
●

●
●

●
●●●

●

●●
●● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●●

●
● ●

●
●

●●
●

●

●

●

●

●●

●

●

●●●●

●

●

●

●
●

●●

●
● ●

●

●

● ●●
●

●
●

●●

●
●

●

●

●

●

●
●●

●●●

●

●
●

●
●

●

●●

●

●

●●

● ●

●

●

●

●●
●

●●
●●●●●●

●●●

●

●●●
● ●●●●

●
●

●

●

●

●●

●
●

●

● ●●
●

●
●

●

●●

●

●
●

●
●

●
●

●
●●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●●
●

●

●

●
●

●

●
● ●

●

●
●

● ●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●
●

●

●
●

● ●●● ●

● ●●●
●

●

●

●

● ●
●●

●

●

●●
●●

●

●

●

●●

●

●●●

●

●●

●
●
●

●●

●

●

●

●
●

●●

●

●

●●

● ●
●
●
●

●

●
●

●
●

●●

●

●
●

●

●

● ●
●

●

●

●

●

●
●

●
● ●

●
●●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●● ●●
●●

●●
●

●
●

●

●

●
●●

●●

●●
●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●●●

●

●
●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●
● ●●

●● ●
●

●

●
●

●●
●

●

●

●

● ●

●

●

●● ●●
●

●

●

●
●

●

●
●
●●

●

●
●

●

●
●

●
●

●

●●●

●

●

●●●
●

●

●●●

●

●

●
●
● ●●

●

●●●●●
● ●●

●

●●
●
●
●

●●●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●●

●

●

●

●
●

●

●

●

●

●
●● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●●

●

●
●

●

● ●
●

● ●●
●

●
●

●
●

●
●

●
●

●

●

●
●

●●

●

●
●

●

●

●
●●

●
●
●

●
●

●

●

●

●

● ●

●

●
●● ●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

● ●

●●
●●●

●
●●

●●

●
●
●

●
● ●●

●

●
●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

● ●●

●

●●
●

●
●● ●

●

●
●

●
●
●●●●●●●

●●

●●

●●
●
●

●●●●
●●

●

●

●
●
●●●

●
● ●
● ●●

●
●●●

●
●

●●
●●

● ●
●

●

●
●

●
●

●
●

● ●

●

●●
●●
●

● ●

●

●●
●

●

●

●
●

●
●
●

●

●
●

●
●

●

●

●
●

●

●●

●
●● ●

●
●

●
● ●●

●●
●

●

●

●

●●

●●

●

●

●●
●

●●
●●●●

●

●

●
●

●●●
●
●

●●
●●

●

●
●●●

●

●
●

●●
●●

●●

●●
●●
●

●

●●
●

●

●

●
●●

●
●
●

●● ●●●
●●●●

●●
●●

●
●●●●
●
●●●●

●●
●

●
●●●● ●●●●●

●

●●●
● ●

●
●●
● ●
●
●●

●

●
●
●
●

●

●

●
●
●
●

●●●
●

●
●●

● ●
●●●

●

●●

●
●● ●

●
●

●
●●●
●

●

●
●

●●●●
●●

●

●

●●●

●●

●

●

●●●●
●

●●
●

●
●
●

●

●

●●
●
●

●●
●●●
●

●●
● ●

●
●● ●

●●
●●●●●
●

●
●

●

●
●

●●
●

●
●

●

●
●

●●
●
●

●●●●●●
●●
●
●

●
●
●
●
●
●●●●●
●

●
●●●

Figure 17: DeBaClR in three dimensions.

27

where
V ⊕ ε =

⋃
x∈V

B(x, ε)

and B(x, ε) denotes a ball of radius ε centered at x. We would like to say that Lt and L̂t are
close. In general this is not true. Sometimes Lt and Lt+δ are drastically different even for
small δ. (Think of the case where a mode has height t.) But we can estimate stable level
sets. Let us say that Lt is stable if there exists a > 0 and C > 0 such that, for all δ < a,

H(Lt−δ, Lt+δ) ≤ Cδ.

Theorem 9 Suppose that Lt is stable. Then H(L̂t, Lt) = OP (
√

log n/(nhd)).

Proof. Let rn =
√

log n/(nhd)). We need to show two things: (i) for every x ∈ Lt there

exists y ∈ L̂t such that ||x− y|| = OP (rn) and (ii) for every x ∈ L̂t there exists y ∈ Lt such
that ||x − y|| = OP (rn). First, we note that, by earlier results, ||p̂h − ph||∞ = OP (rn). To
show (i), suppose that x ∈ Lt. By the stability assumption, there exists y ∈ Lt+rn such that

||x − y|| ≤ Crn. Then ph(y) > t + rn which implies that p̂h(y) > t and so y ∈ L̂t. To show

(ii), let x ∈ L̂t so that p̂h(x) > t. Thus ph(x) > t − rn. By stability, there is a y ∈ Lt such
that ||x− y|| ≤ Crn. �

5.2 Persistence

Consider a smooth density p with M = supx p(x) < ∞. The t-level set clusters are the
connected components of the set Lt = {x : p(x) ≥ t}. Suppose we find the upper level
sets Lt = {x : p(x) ≥ t} as we vary t from M to 0. Persistent homology measures how
the topology of Lt varies as we decrease t. In our case, we are only interested in the modes,
which correspond to the zeroth order homology. (Higher order homology refers to holes,
tunnels etc.) The idea of using persistence to study clustering was introduced by Chazal,
Guibas, Oudot and Skraba (2013).

Imagine setting t = M and then gradually decreasing t. Whenever we hit a mode, a new
level set cluster is born. As we decrease t further, some clusters may merge and we say that
one of the clusters (the one born most recently) has died. See Figure 18.

In summary, each mode mj has a death time and a birth time denoted by (dj, bj). (Note that
the birth time is larger than the death time because we start at high density and move to
lower density.) The modes can be summarized with a persistence diagram where we plot the
points (d1, b1), . . . , (dk, bk) in the plane. See Figure 18. Points near the diagonal correspond
to modes with short lifetimes. We might kill modes with lifetimes smaller than the noise

28

−5 0 5

b1

d1

b2

d2

b3

d3

b4
d4

●

●

●

●

death

bi
rt

h

d3 d1 d4 d2

b 4
b 2

b 1
b 3

Figure 18: Starting at the top of the density and moving down, each mode has a birth time
b and a death time d. The persistence diagram (right) plots the points (d1, b1), . . . , (d4, b4).
Modes with a long lifetime are far from the diagonal.

level, as captured by the deviation of the density estimate, and the true density. We measure
this via the bootstrap quantile εα defined by

εα = inf

{
z :

1

B

B∑
b=1

I
(
||p̂∗bh − p̂h||∞ > z

)
≤ α

}
. (17)

Here, p̂∗bh is the density estimator based on the bth bootstrap sample. This corresponds
to killing a mode if it is in a 2εα band around the diagonal. See Fasy, Lecci, Rinaldo,
Wasserman, Balakrishnan and Singh (2014). Note that the starting and ending points of the
vertical bars on the level set tree are precisely the coordinates of the persistence diagram.
(A more precise bootstrap approach was introduced in Chazal, Fasy, Lecci, Michel, Rinaldo
and Wasserman (2014).)

6 Density-Based Clustering II: Modes

Let p be the density of X ∈ Rd. Assume that p has modes m1, . . . ,mk0 and that p is a Morse
function, which means that the Hessian of p at each stationary point is non-degenerate. We
can use the modes to define clusters as follows.

29

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

● ●●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

● ●

●

●

●

●
●

●

●

● ●●

●●

● ●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●
●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●
●

●

●

● ●
●

●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

● ●
● ●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●
●●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●
●

● ●

●

Figure 19: A synthetic example with two “blob-like” clusters.

●●●
●●●
●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●
●●●●
●●●
●●●
●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●
●●●● ●

●
●
●

●
●

●●●●●●●●●●●●●●
●

●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●

●
●
●
●
●
●

●
●●

●
●

●

●
●

●

●

●
●

●
●

●●

●

●

●

●●
●

● ●

●

● ●●
●

● ●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●
●

●
●●●●●●●●●●●

●●●●
●●●
●●
●●

●
●●●

●
●●●●●●

●●
●
●
●

●●
●● ●●●●

Figure 20: A synthetic example with four clusters with a variety of different shapes.

6.1 Mode Clustering

Given any point x ∈ Rd, there is a unique gradient ascent path, or integral curve, passing
through x that eventually leads to one of the modes. We define the clusters to be the “basins
of attraction” of the modes, the equivalence classes of points whose ascent paths lead to the
same mode. Formally, an integral curve through x is a path πx : R→ Rd such that πx(0) = x
and

π′x(t) = ∇p(πx(t)). (18)

Integral curves never intersect (except at stationary points) and they partition the space.

Equation (18) means that the path π follows the direction of steepest ascent of p through x.
The destination of the integral curve π through a (non-mode) point x is defined by

dest(x) = lim
t→∞

πx(t). (19)

It can then be shown that for all x, dest(x) = mj for some mode mj. That is: all integral
curves lead to modes. For each mode mj, define the sets

Aj =
{
x : dest(x) = mj

}
. (20)

These sets are known as the ascending manifolds, and also known as the cluster associated
with mj, or the basin of attraction of mj. The Aj’s partition the space. See Figure 21. The
collection of ascending manifolds is called the Morse complex.

Given data X1, . . . , Xn we construct an estimate p̂ of the density. Let m̂1, . . . , m̂k be the
estimated modes and let Â1, . . . , Âk be the corresponding ascending manifolds derived from
p̂. The sample clusters C1, . . . , Ck are defined to be Cj =

{
Xi : Xi ∈ Âj

}
.

30

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●

●

● ●

Figure 21: The left plot shows a function with four modes. The right plot shows the ascending
manifolds (basins of attraction) corresponding to the four modes.

Recall that the kernel density estimator is

p̂(x) ≡ p̂h(x) =
1

n

n∑
i=1

1

hd
K

(
||x−Xi||

h

)
(21)

where K is a smooth, symmetric kernel and h > 0 is the bandwidth.1 The mean of the
estimator is

ph(x) = E[p̂h(x)] =

∫
K(t)p(x+ th)dt. (22)

To locate the modes of p̂h we use the mean shift algorithm which finds modes by approx-
imating the steepest ascent paths. The algorithm is given in Figure 22, and is essentially
a fixed point iteration obtained by setting the gradient of the kernel estimate to zero. The
result of this process is the set of estimated modes M̂ = {m̂1, . . . , m̂k}. We also get the
clustering for free: the mean shift algorithm shows us what mode each point is attracted to.
See Figure 23.

A modified version of the algorithm is the blurred mean-shift algorithm (Carreira-Perpinan,
2006). Here, we use the data as the mesh and we replace the data with the mean-shifted data
at each step. This converges very quickly but must be stopped before everything converges
to a single point; see Figures 24 and 25.

What we are doing is tracing out the gradient flow. The flow lines lead to the modes and
they define the clusters. In general, a flow is a map φ : Rd × R→ Rd such that φ(x, 0) = x

1In general, we can use a bandwidth matrix H in the estimator, with p̂(x) ≡ p̂H(x) = 1
n

∑n
i=1 KH(x−Xi)

where KH(x) = |H|− 1
2K(H− 1

2x).

31

Mean Shift Algorithm

1. Input: p̂(x) and a mesh of points A = {a1, . . . , aN} (often taken to be the data
points).

2. For each mesh point aj, set a
(0)
j = aj and iterate the following equation until

convergence:

a
(s+1)
j ←−

∑n
i=1 XiK

(
||a(s)j −Xi||

h

)
∑n

i=1K

(
||a(s)j −Xi||

h

) .

3. Let M̂ be the unique values of the set {a(∞)
1 , . . . , a

(∞)
N }.

4. Output: M̂.

Figure 22: The Mean Shift Algorithm.

and φ(φ(x, t), s) = φ(x, s+ t). The latter is called the semi-group property.

6.2 Choosing the Bandwidth

As usual, choosing a good bandwidth is crucial. You might wonder if increasing the band-
width, decreases the number of modes. Silverman (1981) showed that the answer is yes if
you use a Normal kernel.

●
●

●

●

●

●

●

●

● ●
●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

Figure 23: A simple example of the mean shift algorithm.

32

●●

●

●
●

●

●

●

●

●●
●

● ●● ●
● ●

●
●

●

●

●
●●●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●
●

●

● ● ●
●

●

●

● ●
●●

● ●

●

● ●
●●

●

● ●

●
●●

●●

●●

● ● ●

●

●

●

●

●●
●●●

●

●

●
●

●
●

●

●
●

●● ●
●

●
●

●

●
●

●

● ●●

●

●
●

●
●

●

●

●
●

●

●
● ●

●

●
●

●

●●
●●

●
●

● ●
●

●

●

●

● ●

●

●●

● ●

●

●

●
●

●●

●

●
●

●
● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

● ●

●
●● ●

●

●

●

●

●

●

●

●●
●

●
●

● ●

●
●

●

● ●● ●
●

● ●●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●
● ●● ●

●
●

●

●

●

●

●
●

● ●
●

●

●
●

●

● ●
●●●

●

●

●

●

● ●

●
●

● ●
●

● ●
●

●●

●

●

● ●●

●

●

●
●

●

●
●

●
●

●
●

●

●
●
●

●

●

●●
●

●

●
●●

●
●

●

●

●
●●

●
●●

●
●

●

●

●

●

● ●

●

●●

● ●●

●

●
●

●
●●

● ●

● ●

●

●
●

●●

● ●
●●

●
●

●
●●●

●

●
●

●●●

●

●

●

●● ●
●

●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●
●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●●●

●

●
●●

●

●
●

●
●

●● ●

●
●

● ●●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
● ●●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●
●

●

●●

●

●

●

●
●

●

●
● ● ● ●

●

●
●
●

● ●

●

●

●

●

●

●

●
●●

●
●●

●

●

●

●

●●

●
●●

● ●
● ●

●

●

●

●●
●●

●
●

●

●

●

●

● ●●
●●

●
●●

●

●● ●

●

●

●

●
●

●
●

●

●

●
●

●

● ●
●

●
●

●

●
●

●●
● ●

●

●

●

●●
●●●
●

●
●

● ●

●●
●

●

●
●

●

●●

● ●

●
● ●

●
●

●
●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

●●

● ●
●

●

● ●

●

●

●
●

●

●

●

●
●

●
●●
● ●●

●
● ●

●

●

● ●
●

●

● ●●

●●
●
●

● ●

●
●

●

●

●

●

●

●●

●

●

●

●●

●●● ●

●

● ●

●

●

●

●
●

●
●

●

●● ●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●● ●

●

●

●●●
●

●
● ●

●

●
●
●

●

● ●
●●

● ● ●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

● ●●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●
●●● ● ●

●

●

●●
●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●

●
●●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●
●

●●

●

●
●●
●

●●
●

●

●

●● ●
●

●

●●●
●●●

●●●
●●●

●

●● ●

● ●●

●● ●●
●●

●●

●
●●●

●
●

●
●●

●● ●●

●

●

●

●

● ●

●

●

●

●●
●

●

●● ●● ●● ●●●

●

●

●
● ●

●
● ●

●
●

●
●

●

●

●
● ●●●●●

●
●● ●●

●

●
●

●

●

●● ●●
●

●
●

●

●●
●

●

●
●● ●

●
●

● ●● ●
●● ●●

●●
●
● ●●●●●

●

●
●

●

●
● ●

●●

●

●

●●

●

●

●
●

● ●

● ●

● ● ●
●

●
●

●
●● ●● ●

●
●

●

●●

●

●●
● ●

●

●●
●

●●

●
●

●
● ●●

●

●
●●

● ●
●

●
●
●●

●●●

●

●

●

● ●
●● ●●●

●
●● ●

●

●●●
●

● ●●
●●

●●●●
●

●

●●
●

●● ●●
●

●
●

●

●

●●
●

●
●

● ● ●●●●

●

●

●
●

●

●●

●
●

●
●

●●

●

●

●

●
●

●

●● ● ●

●
●●● ●

●
●●

●

●

● ●
●

●
● ●

●
●

●
●

●
●

●

●
● ●●

●
●

● ●
● ● ●

●

●

●

●●

●

●●
●

●●

●

●●
● ●

●

● ●

●

●
●

●
●

●
● ●●● ●

●

●●
●

●
●

●
●

●●

●

●
● ●

●

●●

●
●

●

●

●

●

● ●

●

●
●

●●●

●

●
●

●●
●●●

●
●
●

●●
●●●●●

●

● ●
●

●●
● ●

●

● ●

●

●

●

●
●

●

●

●

●●●●● ●●● ●●●●●
●● ●●

●

●

●●●●
●●

●
●

●
●

●
●●

●

●●●

●

●

●

●

●
●

●● ●
●

●●

●●● ●

●

● ●
●●

●

●●
●

●
● ●

●

●
●●

●
●

●
●●

●

●

● ●●

●

●
●●

● ●

●

●●● ●●●●
●

●

●

●●
●●

●
●

●
●●

●

●

●

●

●
●●

●
●● ●●

●

●
●●

●
●

●
● ●

●
● ● ●

●

●
●●●

●
● ●● ●

●
●

●
●

● ●●

●
●●●

●

●●● ●

●

●
● ●● ●●

●

●
●●

●

●●
●

●● ●● ●
● ●

●
●

● ●●● ●

●

●

●

●
● ●

●●
● ●●

●
●

●

●● ●●

●
● ●● ●●

●
●

●

● ●●

●

●●
●

●● ●

●

●
●

● ●

●

●
●

●
●

●
●

●
●●

●

●

●●● ●

●

●●
●

●
●

●

● ●●● ●
●

●
●

●●
● ●●

● ●
●

●

●●●
●

●
● ●●

●
●

●

●● ●
●

●
●●

●
●

●●

●

●
● ●

●

●● ●

●

●●
●

●

●
● ●●● ●●●● ●●

●

●
●

●● ●

●

●
●

●
●

●

●●
●●

● ●●

●
●

●
●● ●● ●●●●

●

●
●

●
●

●
●

●
●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

a

b

●●

●
●

●

●

●

●

●

●●
● ● ●● ●

● ●
●

●

●

●

●
●●●

●
●●

●
●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●
●

●
● ● ●

● ●

●

● ●
●●

● ●

●

● ●
●●

●

● ●

●
●●

●●
●●

● ● ●

●

●

●

●

●●
●●●

●

●

●
●

●
●

●

●
●

●● ●
●

●
●

●

●
●

●

● ●●

●

●
●

● ●
●

●

●
●

●

●
● ●

●

●●

●

●●
●●

●
●

● ●
●

●

●

●

● ●

●

●●

● ●

●
●

●
●

●●

●
●

●

●
● ●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●

● ●

●
●● ●

●

●

●

●

●

●

●

●●
●

●
●

● ●

●●

●
● ●● ●

●
● ●●

●
●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●●
●

● ●●●
●
●

●

●

●

●

●
●● ●

●

●

●
●●

● ●
●●●

●
●

●

●

● ●

●
●

● ●
●

● ●
●

●●

●

●

● ●●

●

●

●●

●

●●
●

●
●

●

●

●
●
●

●

●

●●
●

●

●
●● ●

●

●

●

●
●●

●
●●

●●

●

●

●

●

● ●

●

●●

● ●●

●

●
●

●
●●

● ●

● ●

●

●●

●●

● ●
●●

●
● ●

●●●

●

●
●

●●●

●

●
●

●● ●
●

●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●
●

●●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●
●

●●●

●

●
●●

●

● ●

●
●

●● ●

●●

● ●●
●

●

●
●

●●

●
●

●

●

●

●
●

●

●
●

● ●●
●

●

●
●

● ●
●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●
●

●

●●

●

●

●

●
●

●

●
● ● ● ●

●

●
●●

● ●

●
●

●

●

●

●

●●●
●
●●
●

●

●

●

●●

●
●●

● ●● ●

●
●

●

●●
●●

●
● ●

●

●

●

● ●●
●●

●
●●

●

●● ●

●
●

●

●
●

●
●

●

●

●
●

●

● ●
●

●●

●

●
●

●●
● ●

●

●

●
●●

●●●
●

●
●
● ●

●●
●

●

●
●

●

●●

● ●
●● ● ●

●
●

●

●

●

●

●

●
●

●

● ● ●

●

●
●

●

●●

● ●
●

●

● ●

●

●

●
●●

●

●

●
●

● ●●
● ●●

●
● ●

●

●

● ●
●

●

● ●●

●●
●
●

●●

●
●

●

●

●

●
●

●●

●

●

●

●●

●●●●

●

● ●

●
●

●

●
●

●
●

●

●● ●
●

●

●

●

●
●

●
●

●
●

●

●●

●
●

●● ●

●

●

●●●
●

●
● ●

●

●
●
●

●

● ●
●●● ● ●

●

●

●

●
●
●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

● ●●

●
●

●
●

●
●

●

●

●

●●

●

●
●

●●
● ●●● ● ●

●

●

●●
●

●

●

●
●

●

●●

●

● ●
●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●
●
●●

●
●●

●

●

●
●

● ●

●

●●

●
●

●
●

●

●

●
●

●●

●

●
●●
●

●●
●

●

●

●● ●
●

●

●●● ●●●
●●●

●●●

●
●● ●

● ●●
●● ●●
●●

●●
●

●●●
●

●
●

●● ●● ●●

●

●

●

●

●●

●

●

●

●●
●

●

●● ●●●● ●●●
●

●

●
●●

●
● ●

●
●

●
●

●

●

●
●●●●●●

●
●● ●●

●

●
●

●

●

●● ●●
●

●●

●
●●

●
●

●
●●● ●
●

● ●● ●
●●●●

●●
●
● ●●●●●

●

●
●

●

●
● ●

●●
●

●
●●

●

●

● ●
● ●

● ●
● ● ●●

●
●

●
●● ●●●

●
●

●

●●

●

●●
● ●

●

●● ●
●●

●
●

●
● ●●

●

●
●●

● ●●
●

●
●●
●●●

●

●

●

● ●
●● ●●●

●
●● ●

●

●●●
●

● ●●
●●

●●●●
●

●

●●
● ●● ●●

●

●
●

●

●

●●
●

● ●
● ●●●●●

●

●
●●

●

●●
●●

●
●

●●

●

●

●

●
●

●

●●● ●
● ●●● ●●●●

●

●

● ●
●

●
● ●

●
●

●
●

●
●

●

●
● ●●

●
●

● ●
● ● ●●

●

●

●●

●

●●
●

●●

●

●●● ●

●

● ●

●

●
●

●
●

●
● ●●● ●

●

●●
●

●
●

●
●

●●
●

●
● ●

●

●●

●
●

●

●

●

●

● ●

●

●
●

●●●

●

● ●

●●
●●● ●

●
●●● ●●●●●

●

● ●
● ●●

● ●
●

●●

●

●

●
●

●

●

●

●

●●●●● ●●● ●●●●● ●● ●●

●

●

●●●●
●●

● ●
●

●
●

●●

●

●●●

●

●

●

●

●
●

●● ●
●

●●

●●● ●

●

●●
●●

●

●●
● ●●●

●

●
●● ●

●
●

●●
●

●

● ●●

●

●
●●

● ●

●

●●●●●●●
●●

●

●●
●●

●
●

●
●●

●
●

●

●

●
●●

●
●● ●●

●

●
●●
●●●

● ●
●● ● ●

●

●
●●●

●● ●● ● ●
●

●
●

●●●

●
●●●

●

●●● ●

●

●
● ●● ●●

●
●

●●

●

●●
●

●● ●● ●
●●

●
●

● ●●●●

●

●

●

●
● ●

●●
● ●●●

●

●

●● ●●

●
● ●● ●●

●
●

●
●●●

●

●●
●

●● ●

●

●
●

●●

●
●

●
●●

● ●
●

●●
●

●

●●● ●
●

●●
●

●
●

●
● ●●● ●

●
●

●●●
● ●●

●●
●

●

●●●●
●

● ●●
●

●

●
●● ●

●
●

●●
●

●
●●

●

●
● ●

●
●● ●

●

●●
●

●

●
● ●●● ●●●● ●●

●

●
●

●● ●

●

●
●

●
●

●
●●

●●
● ●●

●
●

●
●● ●● ●●●●

●

●
●● ●

●
●

●
●

●
●● ●

●

●

●
●

●

●

●●

●

● ●

●

●

● ●
●

●

●● ●

●

●
●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●●

●

●

●

●
●

●

●

●●●

●
●

●

●
●

●
●●

●

●
●

●●

●●

●●

●
● ●

●

●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●
●

● ●
●

●
●

●

●

●

●

● ●●

●

● ●

●

●

●
●

●●
●

● ●
●●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●●

●●

●●

●

●● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●●

●

●

●

●

●

● ●●

● ●

●

●

●
●●

●

●

●

●

●●●

●●
●

●

●
●

●

●
●

●

●

●

● ●

●

●

● ●●
●

●

●

●● ●●●

●

●

●

●

●
●

●

● ●

●

●●●

● ●

●
●●

●
●

●

●

● ●●

●

● ●

●

●

●
●

●

●

●
●

● ●
●

●

●

●
●

●

●●

●

●●●

●

●●● ●

●

●● ●

●

●
● ●

●●

●

●

● ●

●

●●
●

●●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

● ●●

●
●

●
●

●

●
●

●

●

●
● ●●

●
● ●

●

●●

●

●

● ●●

●●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●
●

●●●

●

●
●

●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●● ●●●●

●

●●

●

●

●

●

●

●

●
●

●

●
●

● ●●
●

●

●
●

●

●●

●

●●●

●

●

●

●

●

●

●
●

●●●● ●

●

●●

●

●

●●
●

●

●

●

● ●

●

●

●
●●

●

●

●●

●

●

●

●

●●
●

●●●●

●

●

●

●●
●

●
●

●
●

● ●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●●●● ●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●

●●
●

●

● ●●

●
●

●

●

●

●
●

●

●●●

●●

●

●
●

● ●

●

●

●
●

●

●

●●●

●

●

●●

● ●
●

●
●

●● ●●

●

●

●
●

●

●

● ●

●

●●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●● ●

●

● ●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●
●

●

●

●

●●●● ●●●

●

●●●

●

●

●

●
●●

● ●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●●

● ●●
●

●
●

●

●

●●

● ●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

● ●
● ●●●● ●● ●

●

●●● ●● ●● ●●● ●

●
●

●

● ●●

●

● ●● ●●● ●●
●

●● ●●● ●●● ●●● ●●● ●●●
● ●●●
● ●● ●● ●●●● ●●
● ●●●● ● ●●● ●● ●●
●

●

●● ●●
●

●
●

●●●
●

●● ●●●● ●●● ● ●● ●●●● ●●● ● ●●●● ●●●●●●●●● ●●

●

● ●
●

●

●● ●● ● ●●
● ●● ●

●
●●●● ●●● ●● ●●●●● ●●●● ●●●●●

●
●●●

●● ● ●●● ●●● ●
●

● ●● ●●●●● ●● ● ●●●●●●● ●● ●●●
●

●●● ●
●

●● ● ●●
● ●●

● ●●

●

●●●
● ●● ●●●●●●●

●
●

●
● ●●● ●●●● ●●●● ●●● ●● ●● ●●●●●● ●● ●● ● ●● ●●● ● ●●

●

●●● ● ●● ●●●●●
●

●●● ●●●●●
●

●●●
●

●

●

●●

●

●●● ●● ●●● ●●●● ●
●

● ●● ●●●● ●● ●

●

●●

●● ●●● ●● ●●● ●●

●

●

●●
●

●● ● ●●

●
●●● ●

●

● ●
●

● ●● ●●● ●●● ●

●

●● ●● ●
●● ●● ●●● ●

●

●●● ●

●

●

●

●

● ● ●●● ●●●
●● ●●● ●●●● ●●●● ●●●●●

●

● ●● ●●● ●● ●● ●
●

● ●●
●

●

●

●●●●● ●●● ●●●●●●● ●●
●●●●●● ●●● ●●●● ●● ●●●●

●

● ●

●

● ●●● ●●●● ●●● ●
●

●● ●● ●●●●●●● ●●●● ●●●●● ● ●● ●● ●● ●●●● ●●●●●●●● ●●

●

●● ●●●● ●●● ●● ●
●

●●●●●● ●●● ●●● ●●●● ●●● ● ●● ●●●● ●● ●● ● ●●● ●● ●●● ●●● ●●●● ●
●

●● ●● ●●● ● ●● ●●● ●●●●● ●●● ●●●●●●●● ●

●

●●● ●●● ●●● ●
● ●● ●●●● ●● ●● ●●● ●●●

●

●●● ●● ● ●● ●●●● ● ●●●● ●● ●● ● ●●●● ●● ●●● ●●●● ●●● ●●●●●● ● ●●●● ●
●

●●●●●● ●●●● ●●●● ●● ●● ●●●●● ●● ● ●●● ●● ●●● ●●● ●●● ●●●● ●●● ●●●● ● ●● ●● ●●●●●●● ●●● ●● ●● ●● ●●●● ●● ●● ●● ● ●●●

●●●
● ●●●● ●

●●
●

●●
● ●

●●
● ●

●●●

●

●●

●●● ●●

●
●●

●

●

●● ●●●
●●

●●

●●●
● ●●●

●
●

●

●●●

●

●

●

●
●

●●●● ●● ●●

●●
●●●

●●
●

●

●● ●●
●●

●●

●

●● ●●

●

●
●●

● ●●●
●

●●
●

●

●●●

●

●●
●

●
●●●●●

●●●
●

●●

●

●
● ●

●

●●
●

●

●

●● ●

●●

●

●●
● ●●●

●●

●●

●●
●

●●●

●

●

●

●

●

●●●
●

●
●

●
●

●

●

●●

●

●

●

●●

●●

●

●●●

●

●
●

●
● ●●

●●

●

●

●●●
●

●
●

●
●●●

●● ●● ●●

●

●●
●

●●● ●

●

●

●●●●

●●
●●●●●

●

●
●●● ●●

●●

●

●●●

●●

●●●● ●●

●

●●●

●

●

●

●

● ●●
●

●
●

●

●

●

●

●

●

●
●●

●●
●

●●●

●

●●●●
●

●●●

●●●●
●●

●

●

●●
●

●●
●●●

●

●

●
● ●●

●

●●

●●●

●

● ●

●●
●● ●● ●

●

●●

●
●●

●●●

●● ●

●
●● ●

●
● ●●

●●

●●
●

●
●●●

●●● ●● ●

●

●

●● ●●●

●

●●●● ●●●● ●●●
●

●

●
● ●

●

●

●●●●
●

●

●

●
●

●

●●

●●

●
●

●

●

●●●●●●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●●●
●●

●
●

●

●
●

●

●●●

●
●

●

●

● ●

●
●

●
●●●●

●

●●

●

●

●●●
●

●
●

●

●●

●
●

●●
●

●

●●

● ●
●

●

●●
●

●●●●

●

●

●

●
●●

●
●

●

●

●●

●●●

●●

●●

●
●

●●

●

●
●

●
●

●●●●●

●●

●●

● ●●●●
●

● ●●
●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●●

●
●●

●

●●●

●●● ●●

●●
●

●●

●

●

●●

●●

●●●
●

●● ●●
●

●
●

●●●
●●

●●●

●●
●

●

● ●

●

●

●●
●

●

●

●●

●●
●

●

●

●●●●

●●
●

●
●

●
●

●

●

●●

●●

●●
●

●
●

●

●

● ●

●●

●

●

●●●

●●●●

●

●●
●

●

●

●●
●●

●

●
●

●

●

●

●●
●

●●●

●●

●
●●●●

●
●●

● ●

●●●
●

●●●

●

●●●

●
●

●

●
●●●

●

●●
●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●

●

●●●●● ●●

●
●

●

● ●● ●

●●
●

●
●

●

●
●●●

●
●● ●●

●
●●

●
●

●●

●

●●
●

●

●

●
●

●●●

●
●

●
●●

●

●

● ●

●
●

●
●●●

●●

●

●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●

●

●●

●

●●

●

●●●

●

●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●●●

●

●

●●●

●

●●

●

●●

●

●

●●

●

●

●●●

●

●●

●

●●

●●

●

●●

●

●

●

●

●

●●

●●

●●

●●●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●●●

●

●

●●

●●

●●●

●●

●

●

●

●

●

●

●●

●●

●

●●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●●

●

●

●●●●●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●●

●●

●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●●●●●

●

●

●●●

●

●

●●

●

●●●

●●

●

●●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●

●

●●●●

●

●●●

●

●●●

●●

●

●

●●

●

●●

●●●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●●

●●●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●●

●●

●

●

●●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●●●●

●

●●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●●

●
●

●

●

●●

●

●●●●

●

●

●

●

●●

●

●

●

●

●●

●●●

●●

●●

●

●

●●

●

●

●

●

●

●●●●●

●●

●●

●
●●●●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●●
●

●
●

●●

●

●
●

●

●

●●

●●

●●●

●

●
●

●●

●

●

●

●●●

●●

●●
●

●●

●

●

●
●

●

●

●●

●

●

●

●●

●●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●
●

●●

●

●

●●
●

●●●●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●●●

●
●

●

●●●
●

●

●●

●
●

●●●

●

●●●

●

●●●

●

●

●

●

●●●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●●●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●●●

●

●
●

●●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●
●

●

●

●

●●●

●●

●

●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●

●

●●

●

●●

●

●●●

●

●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

Figure 24: The crescent data example. Top left: data. Top right: a few steps of mean-shift.
Bottom left: a few steps of blurred mean-shift.

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

u1

u2

●

●

●
●

●

●
●●

●

●●

●

●

●

●

●

●●
●

●

●

●● ●

●

●

●

●

●●●●
●

●

●

●

●

●
●● ●

●

● ●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

● ●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●●

●●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●
●●●

●●

●

●

●●

●
●

●

●
●

●

●

●●

●

● ●

●

●
●●

●

●
●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●
●

●

●

●●

●
●

●
●

●

● ●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●●●

●

●
●

●
●

●●

●●

●

●●●
● ●●
●

●●

●
●●

●●

●

●
●

●●

●
● ●

●●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●●●
●

●

●●

●

●
●

●
●
●

●

●

●
●●●

●

●

●

●

●●●
●

●

●●●

●●

●

●

●●

●

●●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●●●
●

●
●
●

●
●

●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●●
●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●●●

●●●●

●

●●
●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●●
●

●●●

●

●●

●

●

●

●●

●●

●
●

●

●●

●

●●●

●

●●●

●

●

●●●

●

●●●

●
●

●●●

●

●

●●●●●●●●●

●

●

●

●

●

●

●●●●●

●

●

●

●●●●●●
●●●●●●●

●
●

●●●●●●●●●●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●●
●

●

●●

●
●

●●

●

●●

●●

●

●●

●

●

●
●

●
●●

●

●

●

●

●●

●●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●

●

●●●●

●●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●●●●

●

●● ●●●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●

●

●●●●

●
●

●
●●

●
●●●●●●●●●●●

●
●●●

●
●●●●●●

●●
●

●
●

●
●●

●
●

●●
●

●
●●

●●●
●●●

●●●●●
●

●
●

●
●●

●
●●

●
●

●●
●

●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●●●●

●

●●
●●●

Figure 25: The Broken Ring example. Top left: data. Top right: a few steps of mean-shift.
Bottom left: a few steps of blurred mean-shift.

33

Theorem 10 (Silverman 1981) Let p̂h be a kernel density estimator using a Gaussian
kernel in one dimension. Then the number of modes of p̂h is a non-increasing function of h.
The Gaussian kernel is the unique kernel with this property.

We still need a way to pick h. We can use cross-validation as before. One could argue that
we should choose h so that we estimate the gradient g(x) = ∇p(x) well since the clustering
is based on the gradient flow.

How can we estimate the loss of the gradient? Consider, first the scalar case. Note that∫
(p̂′ − p′)2 =

∫
(p̂′)2 − 2

∫
p̂p′ +

∫
(p′)2.

We can ignore the last term. The first term is known. To estimate the middle term, we use
integration by parts to get ∫

p̂p′ = −
∫
p̂′′p

suggesting the cross-validation estimator∫
(p̂′(x))2dx+

2

n

∑
i

p̂′′i (Xi)

where p̂′′i is the leave-one-out second derivative. More generally, by repeated integration by
parts, we can estimate the loss for the rth derivative by

CVr(h) =

∫
(p̂(r)(x))2dx− 2

n
(−1)r

∑
i

p̂
(2r)
i (Xi).

6.3 Theoretical Analysis

How well can we estimate the modes?

Theorem 11 Assume that p is Morse with finitely many modes m1, . . . ,mk. Then for h > 0
and not too large, ph is Morse with modes mh1, . . . ,mhk and (possibly after relabelling),

max
j
||mj −mjh|| = O(h2).

With probability tending to 1, p̂h has the same number of modes which we denote by m̂h1, . . . , m̂hk.
Furthermore,

max
j
||m̂jh −mjh|| = OP

(√
1

nhd+2

)
and

max
j
||m̂jh −mj|| = O(h2) +OP

(√
1

nhd+2

)
.

34

Remark: Setting h � n−1/(d+6) gives the rate n−2/(d+6) which is minimax (Tsyabkov 1990)
under smoothness assumptions. See also Romano (1988). However, if we take the fixed h
point if view, then we have a n−1/2 rate.

Proof Outline. But a small ball Bj around each mjh. We will skip the first step, which is
to show that there is one (and only one) local mode in Bj. Let’s focus on showing

max
j
||m̂jh −mjh|| = OP

(√
1

nhd+2

)
.

For simplicity, write m = mjh and x = m̂jh. Let g(x) and H(x) be the gradient and Hessian

of ph(x) and let ĝ(x) and Ĥ(x) be the gradient Hessian of p̂h(x). Then

(0, . . . , 0)T = ĝ(x) = ĝ(m) + (x−m)T
∫ 1

0

Ĥ(m+ u(x−m))du

and so

(x−m)T
∫ 1

0

Ĥ(m+ u(x−m))du = (g(m)− ĝ(m))

where we used the fact that 0 = g(m). Multiplying on the right by x−m we have

(x−m)T
∫ 1

0

Ĥ(m+ u(x−m))(x−m)du = (ĝ(m)− ĝ(m))T (x−m).

Let λ = inf0≤u≤1 λmin(H(m+ u(x−m))). Then λ = λmin(H(m)) + oP (1) and

(x−m)T
∫ 1

0

Ĥ(x+ u(m− x))(x−m)du ≥ λ||x−m||2.

Hence, using Cauchy-Schwartz,

λ||x−m||2 ≤ ||ĝ(m)−g(m)|| ||x−m|| ≤ ||x−m|| sup
y
||ĝ(y)−ĝ(y)|| ≤ ||x−m||OP

(√
1

nhd+2

)

and so ||x−m|| = OP

(√
1

nhd+2

)
. �

Remark: If we treat h as fixed (not decreasing) then the rate is OP (
√

1/n) independent of
dimension.

7 Hierarchical Clustering

Hierarchical clustering methods build a set of nested clusters at different resolutions. The
are two types of hierarchical clustering: agglomerative (bottom-up) and divisive (top-down).

35

With agglomerative clustering we start with some distance or dissimilarity d(x, y) between
points. We then extend this distance so that we can compute the distance d(A,B) between
to sets of points A and B.

The three most common ways of extending the distance are:

Single Linkage d(A,B) = min
x∈A,y∈B

d(x, y)

Average Linkage d(A,B) = 1
NANB

∑
x∈A,y∈B

d(x, y)

Complete Linkage d(A,B) = max
x∈A,y∈B

d(x, y)

The algorithm is:

1. Input: data X = {X1, . . . , Xn} and metric d giving distance between clusters.

2. Let Tn = {C1, C2, . . . , Cn} where Ci = {Xi}.

3. For j = n− 1 to 1:

(a) Find j, k to minimize d(Cj, Ck) over all Cj, Ck ∈ Tj+1.

(b) Let Tj be the same as Tj+1 except that Cj and Ck are replaced with Cj ∪ Ck.

4. Return the sets of clusters T1, . . . , Tn.

The result can be represented as a tree, called a dendogram. We can then cut the tree at
different places to yield any number of clusters ranging from 1 to n. Single linkage often
produces thin clusters while complete linkage is better at rounder clusters. Average linkage
is in between.

Example 12 Figure 26 shows agglomerative clustering applied to data generated from two
rings plus noise. The noise is large enough so that the smaller ring looks like a blob. The
data are show in the top left plot. The top right plot shows hierarchical clustering using single
linkage. (The tree is cut to obtain two clusters.) The bottom left plot shows average linkage
and the bottom right plot shows complete linkage. Single linkage works well while average
and complete linkage do poorly.

Finally, we let us mention divisive clustering. This is a form of hierarchical clustering
where we start with one large cluster and then break the cluster recursively into smaller and
smaller pieces.

36

●

●●

●

●

●●
●
●

●
●

●

●
●

●●
●● ●●●● ●

●

●

●
●

●

●●
● ●

●●
●

●●●●●● ●
●

●

●
●●

●
●

●
●●

●●

●

●●
●

●

●

●

● ●

●

●
●

●

●●

●

●
●

●

●
●

●
●

●

●
●

●●

●
●●
●

●

●
●

●
●

●

●● ●
●●●

●
● ●

●●
● ●

●
●

●

●●

●

●

●

●

●
●

● ●
●●●

●●
●●

●●

●● ●●
●

●
●

●
●

●

●
●●

● ●●
●

●

●●●

●

●
● ●

●●●

●

●

●

●●
●

●
●

●

●●
●

●

●

●
●●

● ● ●

●

●

●

●

●
● ●

●

●

●● ●

●●
●

●●
●
●

●
●

●
●

●

●
●

●●

●

●

●●
●
●

●
●

●

●
●

●●
●● ●●●● ●

●

●

●
●

●

●●
● ●

●●
●

●●●●●● ●
●

●

●
●●

●
●

●
●●

●●

●

●●
●

●

●

●

● ●

●

●
●

●

●●

●

●
●

●

●
●

●
●

●

●
●

●●

●
●●
●

●

●
●

●
●

●

●● ●
●●●

●
●

●

●●

●

●

●●
●
●

●
●

●

●
●

●●
●● ●●●● ●

●

●

●
●

●

●●
● ●

●●
●

●●●●●● ●
●

●

●
●●

●
●

●
●●

●●

●

●●
●

●

●

●

● ●

●

●
●

●

●●

●

●
●

●

●
●

●
●

●

●
●

●●

●
●●
●

●

●
●

●
●

●

●● ●
●●●

●
●

●●●
●●

●●

●●

●● ●●
●

●
●

●
●

●

●
●●

● ●●
●

●

●●●

●

●
● ●

●●●

●

●

●

●●
●

●
●

●

●●
●

●

●

●
●●

● ● ●

●

●

●

●

●
● ●

●

●

●●

●

●

●●
●
●

●
●

●

●
●

●●
●● ●●●● ●

●

●

●
●

●

●●
● ●

●●
●

●●●●●● ●
●

●

●
●●

●
●

●
●●

●●

●

●●
●

●

●

●

● ●

●

●
●

●

●●

●

●
●

●

●
●

●
●

●

●
●

●●

●
●●
●

●

●
●

●
●

●

●● ●
●●●

●
●

●●●
●●

●●

●●

●● ●●
●

●
●

●
●

●

●
●●

● ●●
●

●

●●●

●

●
● ●

●●●

●

●

●

●●
●

●
●

●

Figure 26: Hierarchical clustering applied to two noisy rings. Top left: the data. Top right:
two clusters from hierarchical clustering using single linkage. Bottom left: average linkage.
Bottom right: complete linkage.

7.1 Some Theoretical Properties of Hierarchical Clustering

Suppose that X1, . . . , Xn is a sample from a distribution P on Rd with density p. A high
density cluster is a maximal connected component of a set of the form {x : p(x) ≥ λ}. One
might expect that single linkage clusters would correspond to high density clusters. This
turns out not quite to be the case. See Hartigan (1981) for details. Loosely, higher up in the
hierarchical clustering tree, clusters get large enough that they might intersect with multiple
connected components of the density level sets. So Hartigan (1981) suggested that to obtain
high density clusters from single linkage clustering, we need to make it more “robust,” and
remove points from lower density regions that would not have made the corresponding density
level set.

Chaudhuri and DasGupta (2010) formalized this, and suggested the following modified ver-
sion of hierarchical clustering that attempts to fix this problem, and which can be seen to
be very similar to density clustering introduced earlier:

1. For each xi, let rk(xi) = {inf r : B(xi, r) contains k data points}.

2. As r increases from 0 to ∞:

(a) Construct a graph Gr with nodes {xi : rk(xi) ≤ r}. Include edge (xi, xj) if
‖xi − xj‖ ≤ αr.

(b) Output Ĉ(r) as the connected components of Gr.

37

Here, the neighborhood radius parameter r ranging from 0 to ∞ corresponds to the level
set parameter λ in density clustering ranging from 0 to ∞. In both cases, we remove points
corresponding to lower density regions: in this case, by checking if the point has at least
k nearest neighbors within that radius. There are two parameters here: k and α. It can
be seen that single linkage is obtained by setting α = 1, k = 2. More robust versions can
be obtained by setting k to be much larger. Chaudhuri and DasGupta (2010) showed that
α ≥
√

2, and k ∼ d log n suffices to obtain consistent estimates of high density clusters.

Single linkage hierarchical clustering could also be viewed as geometric graph clustering. Let
G = (V,E) be a graph where V = {X1, . . . , Xn} and Eij = 1 if ||Xi−Xj|| ≤ ε and Eij = 0 if
||Xi −Xj|| > ε. Let C1, . . . , Ck denote the connected components of the graph. As we vary
ε we get exactly the hierarchical clustering tree.

8 Spectral Clustering

Spectral clustering refers to a class of clustering methods that use ideas related to eigenvectors
of appropriately constructed similarity matrices. An excellent tutorial on spectral clustering,
and on which this section heavily relies on, is von Luxburg (2006). More detail can be found
in Chung (1997).

Let G be an undirected graph with n vertices. Typically these vertices correspond to obser-
vations X1, . . . , Xn. Let W be an n× n symmetric weight matrix. Say that Xi and Xj are
connected if Wij > 0. The simplest type of weight matrix has entries that are either 0 or 1.
For example, we could define

Wij = I(||Xi −Xj|| ≤ ε).

An example of a more general weight matrix is Wij = e−||Xi−Xj ||2/(2h2).

The degree matrix D is the n×n diagonal matrix with Dii =
∑n

j=1Wij. The graph Laplacian
is

L = D −W. (23)

The graph Laplacian has many interesting properties which we list in the following result.
Recall that a vector v is an eigenvector of L if there is a scalar λ such that Lv = λv in which
case we say that λ is the eigenvalue corresponding to v.

Theorem 13 The graph Laplacian L has the following properties:

1. For any vector f = (f1, . . . , fn)T ,

fTLf =
1

2

n∑
i=1

n∑
j=1

Wij(fi − fj)2.

38

2. L is symmetric and positive semi-definite.

3. The smallest eigenvalue of L is 0. The corresponding eigenvector is (1, 1, . . . , 1)T .

4. L has n non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λk.

5. The number of eigenvalues that are equal to 0 is equal to the number of connected
components of G. That is, 0 = λ1 = . . . = λk where k is the number of connected
components of G. The corresponding eigenvectors v1, . . . , vk are orthogonal and each
is constant over one of the connected components of the graph.

Part 1 of the theorem says that L is like a derivative operator. The last part shows that we
can use the graph Laplacian to find the connected components of the graph.

Proof.

(1) This follows from direct algebra.

(2) Since W and D are symmetric, it follow that L is symmetric. The fact that L is positive
semi-definite folows from part (1).

(3) Let v = (1, . . . , 1)T . Then

Lv = Dv −Wv =

 D11
...

Dnn

−
 D11

...
Dnn

 =

 0
...
0

which equals 0× v.

(4) This follows from parts (1)-(3).

(5) First suppose that k = 1 and thus that the graph is connected. We already know that
λ1 = 0 and v1 = (1, . . . , 1)T . Suppose there were another eigenvector v with eigenvalue 0.
Then

0 = vTLv =
n∑
i=1

n∑
j=1

Wij(v(i)− v(j))2.

It follows that Wij(v(i) − v(j))2 = 0 for all i and j. Since G is connected, for any pair of
nodes i, j, there is a path i0 = i, i1, . . . , im = j, such that Wi`i`+1

> 0, which entails that:

39

v(i`) = v(i`′) for all nodes in the path, and consequently that vi = vj. Since this holds for
all i, j, v is constant, and lies in the span of v1.

Now suppose that K has k components. Let nj be the number of nodes in components
j. We can relabel the vertices so that the first n1 nodes correspond to the first connected
component, the second n2 nodes correspond to the second connected component and so
on. Let v1 = (1, . . . , 1, 0, . . . , 0) where the 1’s correspond to the first component. Let Let
v2 = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0) where the 1’s correspond to the second component. Define
v3, . . . , vk similarly. Due to the re-ordering of the vertices, L has block diagonal form:

L =

L1

L2

. . .

Lk

 .

Here, each Li corresponds to one of the connected components of the graph. It is easy to
see that for j = 1, . . . , k, Lvj = 0 so that each vj is an eigenvector with zero eigenvalue.
Suppose that v is any eigenvector with 0 eigenvalue. Arguing as before, v must be constant
over each component, so that it lies in the span of {vj}kj=1. �

Example 14 Consider the graph

X1 X2 X3 X4 X5

and suppose that Wij = 1 if and only if there is an edge between Xi and Xj. Then

W =

0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 0 1 0

 D =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 1

and the Laplacian is

L = D −W =

1 −1 0 0 0
−1 1 0 0 0
0 0 1 −1 0
0 0 −1 2 −1
0 0 0 −1 0

 .

The eigenvalues of W , from smallest to largest are 0, 0, 1, 2, 3. The eigenvectors are

v1 =

1
1
0
0
0

 v2 =

0
0
1
1
1

 v3 =

0
0
−.71

0
.71

 v4 =

−.71
.71
0
0
0

 v5 =

0
0
−.41
.82
−.41

Note that the first two eigenvectors correspond to the connected components of the graph.

40

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Figure 27: The top shows a simple graph. The remaining plots are the eigenvectors of
the graph Laplacian. Note that the first two eigenvectors correspond to the two connected
components of the graph.

Smoothness with respect to graph. Note fTLf measures the smoothness of f relative to
the graph. This means that the higher order eigenvectors generate a basis where the first few
basis elements are smooth (with respect to the graph) and the later basis elements become
more wiggly.

Example 15 Figure 27 shows a graph and the corresponding eigenvectors. The two eigen-
vectors correspond two the connected components of the graph. The other eignvectors can be
thought of as forming bases vectors within the connected components.

One approach to spectral clustering is to set

Wij = I(||Xi −Xj|| ≤ ε)

for some ε > 0 and then take the clusters to be the connected components of the graph which
can be found by getting the eigenvectors of the Laplacian L. This is also called geometric
graph clustering. Thus one perspective of spectral clustering is a new algorithm to find the
connected components of the graph.

However, there are other ways to use spectral methods for clustering as we now explain.

41

8.1 Spectral Clustering: Feature Transformations

The idea underlying the other spectral methods is to use the Laplacian to transform the
data into a new coordinate system in which clusters are easier to find. For this purpose, one
typically uses a modified form of the graph Laplacian. The most commonly used weights for
this purpose are

Wij = e−||Xi−Xj ||2/(2h2).

Other kernels Kh(Xi, Xj) can be used as well. We define the symmetrized Laplacian
L = D−1/2WD−1/2 and the random walk Laplacian L = D−1W. (We will explain the
name shortly.) These are very similar and we will focus on the latter. Some authors define
the random walk Laplacian to be I − D−1W . We prefer to use the definition L = D−1W
because, as we shall see, it has a nice interpretation. The eigenvectors of I − D−1W and
D−1W are the same so it makes little difference which definition is used. The main difference
is that the connected components have eigenvalues 1 instead of 0.

Lemma 16 Let L be the graph Laplacian of a graph G and let L be the random walk Lapla-
cian.

1. λ is an eigenvalue of L with eigenvector v if and only if Lv = (1− λ)Dv.

2. 1 is an eigenvalue of L with eigenvector (1, . . . , 1)T .

3. L is positive semidefinite with n non-negative real-valued eigenvalues.

4. The number of eigenvalues of L equal to 1 equals the number of connected components of
G. Let v1, . . . , vk denote the eigenvectors with eigenvalues equal to 1. The linear space
spanned by v1, . . . , vk is spanned by the indicator functions of the connected components.

To get further intuition for the random walk Laplacian L, note that it has a nice probabilistic
interpretation (Coifman, Lafon, Lee 2006). Consider a Markov chain on X1, . . . , Xn where
we jump from Xi to Xj with probability

P(Xi → Xj) = L(i, j) =
Kh(Xi, Xj)∑
sKh(Xi, Xs)

.

The random walk Laplacian L(i, j) captures how easy it is to move from Xi to Xj. This
Markov chain is a discrete version of a continuous Markov chain with transition probability:

P (x→ A) =

∫
A
Kh(x, y)dP (y)∫
Kh(x, y)dP (y)

.

The corresponding linear operator Â : f → f̃ is

(Âf)(i) =

∑
j f(j)Kh(Xi, Xj)∑
jKh(Xi, Xj)

42

is in turn an estimate of the population linear operator A : f → f̃ where

Af =

∫
A
f(y)Kh(x, y)dP (y)∫
Kh(x, y)dP (y)

.

Given the form of this linear operator, it can be seen that the lower order eigenvectors of
L are vectors that are smooth relative to the density P . Thus, projecting onto the first few
eigenvectors parameterizes in terms of closeness with respect to the underlying density.

Thus, one approach to spectral clustering would be to use the random walk Laplacian to
transform the data {Xi} to within into a new coordinate system. Denoting the transformed

data as {X̂i}, we would like to ensure that if X̂i and X̂j are close in Euclidean distance, then
they are connected by many high density paths through the data.

The steps are:

Input: n× n similarity matrix W .

1. Let D be the n× n diagonal matrix with Dii =
∑

jWij.

2. Compute the Laplacian L = D−1W.

3. Find first k eigenvectors v1, . . . , vk of L.

4. Project each Xi onto the eigenvectors to get new points X̂i = (
√
λj vj(i))j∈[k].

5. Cluster the points X̂1, . . . , X̂n using any standard clustering algorithm.

The numbers h (bandwidth for kernel) and k (number of eigenvectors) are tuning parameters.
The hope is that clusters are easier to find in the new parameterization.

In this view of spectral clustering, spectral methods are similar to multidimensional scal-
ing. However, multidimensional scaling attempts to reduce dimension while preserving all
pairwise distances. Spectral methods attempt instead to preserve local distances.

Example 17 Figure 28 shows a simple synthetic example. The top left plot shows the data.
We apply spectral clustering with Gaussian weights and bandwidth h = 3. The top middle
plot shows the first 20 eigenvalues. The top right plot shows the the first versus the second
eigenvector. The two clusters are clearly separated. (Because the clusters are so separated,
the graph is essentially disconnected and the first eigenvector is not constant. For large h,
the graph becomes fully connected and v1 is then constant.) The remaining six plots show
the first six eigenvectors. We see that they form a Fourier-like basis within each cluster.
Of course, single linkage clustering would work just as well with the original data as in the
transformed data. The real advantage would come if the original data were high dimensional.

Example 18 Figure 29 shows a spectral analysis of some zipcode data. Each datapoint is a
16 x 16 image of a handwritten number. We restrict ourselves to the digits 1, 2 and 3. We

43

●●
●●●●●
●●●
●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●
●●●●●
●●●●

●●
●
●●

●
●

●
●●

●●
●●

●
●●●

●
●

●●
●●●●●●●●●●●●

●●●
●●

●
●

●●
●
●

●●

●●
●
●●●
●

●
●●
●●
●

●
●
●●

● ●
●●● ●

●●●● ● ●● ●●
●

●
●●●

●●
●
●●

●●
●

●
●●

●●
●●

●

5 10 15 20

0.
0

0.
4

0.
8

λ
●●●●●●●
●
●●●
●
●
●●●
●●●●
●●●
●●●●
●●●
●●
●●●●
●●●●●●
●
●●●●
●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●
●●●

●●●●●
●●●
●●
●●
●●
●
●●●
●●
●●
●
●●
●●
●●
●
●●
●
●
●●●
●●
●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●
●●
●●●
●
●●●
●●
●●●●●
●●●●●●●●●

v1

v 2

v1 v2 v3

v4 v5 v6

Figure 28: Top left: data. Top middle: eigenvalues. Top right: second versus third eigen-
vectors. Remaining plots: first six eigenvectors.

44

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●● ●

●

●

●

●
●

●

●

● ●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●
●

●

● ●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

● ●
●

●

●

●
●

●

●●
●

●
●

●

●
●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●●

●

●

●●
●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

v2

v 3

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ

●

●
●●
●
●

●
●●

●
●
●
●

●●●
●

●

●●

●

●
●

●●
●

●●

●
●
●
●●

●●●●

●
●
●●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●●

●●

●●●
●●
●
●
●

●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●
●
●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●●

●
●

●
●

●

●

●

●

●

●●●●●

●●

●

●
●

●

●
●●●

●

●

●●

●●
●

●
●

●●

●

●●

●●
●●

●●●●

●

●
●

●

●

●●
●

●
●

●●

●●

●

●

●

●

●●

●
●●●

●

●●

●

●●
●●●
●

●
●
●

●

●

●

●

●
●●●

●●

●

●

●

●●●
●●

●
●●

●●

●●●

●

●
●

●●

●

●●

●

●
●

●

●●

●
●

●●

●

●

●●

●

●

●

●●
●●

●●

●●●

●

●

●

●●

●●

●

●

●
●

●

●●

●

●

●●
●

●

●

●●

●

●

●

●●●

●●●
●

●

●
●
●●

●

●●

●

●

●
●●
●
●
●

●

●●●

●●

●
●

●

●●●
●

●

●
●
●
●●

●

●●

●●
●
●●

●

●●

●

●●
●

●●

●

●

●

●
●●●●●●
●

●●

●●

●

●

●●

●

●
●●●
●●
●

●
●
●
●

●

●

●

●
●

●●●

●

●●
●
●

●
●

●
●●

●

●●●
●
●●
●

●●●
●●
●
●
●

●●

●●
●

●

●

●

●●●●

●●

●

●
●
●
●
●●●●
●
●
●●

●

●●

●
●●●

●●

●●●
●

●

●●

●

●●

●●

●

●●●

●●

●
●

●

●

●

●

●

●

●
●●

●●●●

●

●
●●●

●

●
●
●
●
●
●●

●

●

●●

●

●

●

●●
●●

●
●

v2

v 3

Figure 29: Spectral analysis of some zipcode data. Top: h = 6. Bottom: h = 4. The plots
on the right show the second versus third eigenvector. The three colors correspond to the
three digits 1, 2 and 3.

use Gaussian weights and the top plots correspond to h = 6 while the bottom plots correspond
to h = 4. The left plots show the first 20 eigenvalues. The right plots show a scatterplot of
the second versus the third eigenvector. The three colors correspond to the three digits. We
see that with a good choice of h, namely h = 6, we can clearly see the digits in the plot. The
original dimension of the problem is 16 x 16 =256. That is, each image can be represented by
a point in R256. However, the spectral method shows that most of the information is captured
by two eignvectors so the effective dimension is 2. This example also shows that the choice
of h is crucial.

Spectral methods are interesting. However, there are some open questions:

1. There are tuning parameters (such as h) and the results are sensitive to these param-
eters. How do we choose these tuning parameters?

2. Does spectral clustering perform better than density clustering?

45

9 High-Dimensional Clustering

As usual, interesting and unexpected things happen in high dimensions. The usual methods
may break down and even the meaning of a cluster may not be clear.

We will begin by discussing some recent results from Sarkar and Ghosh (arXiv:1612.09121).
Suppose we have data coming from k distributions P1, . . . , Pk. Let µr be the mean of Pr
and Σr be the covariance matrix. Most clustering methods depend on the pairwise distances
||Xi −Xj||2. Now,

||Xi −Xj||2 =
d∑
a=1

δ(a)

where δa = (Xi(a) − Xj(a))2. This is a sum. As d increases, by the law of large numbers
we might expect this sum to converge to a number (assuming the features are not too
dependent). Indeed, suppose that X is from Pr and Y is from Ps then

1√
d
||X − Y || P→

√
σ2
r + σ2

s + νrs

where

νrs = lim
d→∞

1

d

d∑
a=1

||µr(a)− µs(a)||2

and

σ2
r = lim

d→∞

1

d
trace(Σr).

Note that νrr = 0.

Consider two clusters, C1 and C2:

X Y ||X − Y ||
X ∈ C1 Y ∈ C1 ||X − Y || = 2σ2

1

X ∈ C2 Y ∈ C2 ||X − Y || = 2σ2
2

X ∈ C1 Y ∈ C2 ||X − Y || = σ2
1 + σ2

2 + ν12

If
σ2

1 + ν12 < σ2
2

then every point in cluster 2 is closer to a point in cluster 1 than to other points
in cluster 2. Indeed, if you simulate high dimensional Gaussians, you will see that all the
standard clustering methods fail terribly.

What’s really going on is that high dimensional data tend to cluster on rings. Pairwise
distance methods don’t respect rings.

46

10 Summary

The main clustering methods are:

1. k-means

2. mixture models

3. density-based

4. hierarchical

5. spectral

The multiplicity of methods is because each method corresponds to different if related notions
of what a cluster means. They all involve tuning parameters that must be chosen carefully.

11 References

Arias-Castro, E., Mason, D. and Pelletier, B. On the estimation of the gradient lines of a
density and the consistency of the mean-shift algorithm. Unpublished Manuscript, 2013.

Chacon, J. Clusters and water flows: a novel approach to modal clustering through Morse
theory. arXiv preprint arXiv:1212.1384, 2012.

Chacon, J. and Monfort, P. A comparison of bandwidth selectors for mean shift clustering.
arXiv preprint arXiv:1310.7855, 2013.

Chacon, J. and Duong, T. Multivariate plug-in bandwidth selection with unconstrained pilot
bandwidth matrices. Test, 19(2):375-398, 2010.

Chacon, J. and Duong, T. and Wand, M. Asymptotics for general multivariate kernel density
derivative estimators. Statistica Sinica, 21:807-840, 2011.

Chacon, J. and Duong, T. Data-driven density derivative estimation, with applications to
nonparametric clustering and bump hunting. Electronic Journal of Statistics, 7:1935-2524,
2013.

Chazal, F., Guibas, L.J., Oudot, S.Y. and Skraba, P. Persistence-based clustering in rie-
mannian manifolds. In Proceedings of the 27th annual ACM symposium on Computational
geometry, pages 97-106. ACM, 2011.

Comaniciu, D. and Meer, P. Mean shift: a robust approach toward feature space analysis.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(5):603-619, may 2002.
ISSN 0162-8828. doi: 10.1109/34.1000236.

47

Donoho, D. and Liu, R. Geometrizing rates of convergence, III. The Annals of Statistics,
pages 668-701, 1991.

Carreira-Perpinan, M. (2006). Fast nonparametric clustering with Gaussian blurring mean-
shift. Proceedings of the 23rd international conference on Machine learning. 153–160.

Silverman, B. (1981). Using kernel density estimates to investigate multimodality. Journal
of the Royal Statistical Society. Series B (Methodological), pages 97-99, 1981.

Fasy, Lecci, Rinaldo, Wasserman, Balakrishnan and Singh (2013). Statistical Inference For
Persistent Homology. arXiv:1303.7117.

Wasserman, L. (2000). Asymptotic inference for mixture models by using data-dependent
priors. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 62,
159–180.

Rousseeuw, P. J. (1987). Silhouettes: a Graphical Aid to the Interpretation and Validation
of Cluster Analysis. Computational and Applied Mathematics, 20: 5365.

B. Aragam, C. Dan, E. Xing, P. Ravikumar (2020) Identifiability of Nonparametric Mixture
Models and Bayes Optimal Clustering. Annals of Statistics, 2019.

@inproceedings{edelsbrunner2012add,

title={Add isotropic Gaussian kernels at own risk:

More and more resilient modes in higher dimensions},

author={Edelsbrunner, Herbert and Fasy, Brittany Terese and Rote, G{\"u}nter},

booktitle={Proceedings of the 2012 symposuim on Computational Geometry},

pages={91--100},

year={2012},

organization={ACM}

}

@article{yamazaki2003singularities,

title={Singularities in mixture models and

upper bounds of stochastic complexity},

author={Yamazaki, Keisuke and Watanabe, Sumio},

journal={Neural networks},

volume={16},

number={7},

pages={1029--1038},

year={2003},

48

publisher={Elsevier}

}

@book{watanabe2009algebraic,

title={Algebraic geometry and statistical learning theory},

author={Watanabe, Sumio},

volume={25},

year={2009},

publisher={Cambridge University Press}

}

@article{chen1995optimal,

title={Optimal rate of convergence for finite mixture models},

author={Chen, Jiahua},

journal={The Annals of Statistics},

pages={221--233},

year={1995},

publisher={JSTOR}

}

@article{dacunha1999testing,

title={Testing the order of a model using locally conic parametrization: population mixtures and stationary ARMA processes},

author={Dacunha-Castelle, Didier and Gassiat, Elisabeth},

journal={The Annals of Statistics},

volume={27},

number={4},

pages={1178--1209},

year={1999},

publisher={Institute of Mathematical Statistics}

}

@article{dacunha1997estimation,

title={The estimation of the order of a mixture model},

author={Dacunha-Castelle, Didier and Gassiat, Elisabeth},

journal={Bernoulli},

49

pages={279--299},

year={1997},

publisher={JSTOR}

}

@article{keribin2000consistent,

title={Consistent estimation of the order of mixture models},

author={Keribin, Christine},

journal={Sankhy{\=a}: The Indian Journal of Statistics, Series A},

pages={49--66},

year={2000},

publisher={JSTOR}

}

50

	The Clustering Problem
	k-means (Vector Quantization)
	Starting Values for k-means
	Choosing k
	Elbow Methods
	Hypothesis Testing
	Stability
	Silhouette Score

	Theoretical Properties
	Overfitting and Merging
	k-Means: Population Perspective

	Mixture Models
	Mixture of Gaussians
	Maximum Likelihood Estimation
	The Twilight Zone

	Nonparametric Mixture Models
	Density-Based Clustering I: Level Set Clustering
	Theory
	Persistence

	Density-Based Clustering II: Modes
	Mode Clustering
	Choosing the Bandwidth
	Theoretical Analysis

	Hierarchical Clustering
	Some Theoretical Properties of Hierarchical Clustering

	Spectral Clustering
	Spectral Clustering: Feature Transformations

	High-Dimensional Clustering
	Summary
	References

