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Prediction and causation are very different. Typical questions are:

Prediction: Predict Y after observing X = x
Causation: Predict Y after setting X = x.

Causation involves predicting the effect of an intervention. For example:

Prediction: Predict health given that a person takes vitamin C
Causation: Predict health if I give a person vitamin C

The difference between passively observingX = x and actively intervening and settingX = x
is significant and requires different techniques and, typically, much stronger assumptions.
This is the area known as causal inference.

For years, causal inference was studied by statisticians, epidemiologists and economists.
The machine learning community was largely uninterested. This has changed. The ML
community now has an active research program in causation. This is because it is now
recognized that many problems that were once treated as prediction problems are actually
causal questions. Questions like: “If I place this ad on a web page, will people click on it?”
and “If I recommend a product will people buy it?” are causal questions, not predictive
questions.

1 Preliminaries

Before we jump into the details, there are a few general concepts to discuss.

1.1 Two Types of Causal Questions

There are two types of causal questions. The first deals with questions like this: do cell
phones cause brain cancer? In this case, there are variables X and Y and we want to know
the causal effect of X on Y . The challenges are: formalize the causal influence of X on Y
via some parameter θ and find a way to estimate θ. This is usually what we mean when we
refer to causal inference.

The second question is: given a set of variables, determine the causal relationship between
the variables. This is called causal discovery.
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1.2 Two Types of Data

Data can be from a controlled, randomized experiment or from an observational study. In
the former, X is randomly set for the various subjects. In the latter, it is not randomly
set. In randomized experiments, causal inference is straightforward. In observational (non-
randomized) studies, the problem is much harder and requires stronger assumptions and
also requires subject matter knowledge. Statistics and Machine Learning cannot solve causal
problems without background knowledge.

1.3 Two Languages for Causation

There are two different mathematical languages for studying causation. The first is based
on counterfactuals. The second is based on causal graphs. It will not seem obvious at first,
but the two are mathematically equivalent (apart from some small details). Actually, there
is a third language called structural equation models but this is very closely related to causal
graphs.

1.4 Example

Consider this story. A mother notices that tall kids have a higher reading level than short
kids. The mother puts her small child on a device and stretches the child until he is tall.
She is dismayed to find out that his reading level has not changed.

The mother is correct that height and reading skill are associated. Put another way, you
can use height to predict reading skill. But that does not imply that height causes reading
skill. This is what statisticians mean when they say:

correlation is not causation.

On the other hand, consider smoking and lung cancer. We know that smoking and lung
cancer are associated. But we also believe that smoking causes lung cancer. In this case,
we recognize that intervening and forcing someone to smoke does change his probability of
getting lung cancer.

1.5 Prediction Versus Causation

The difference between prediction (association/correlation) and causation is this: in predic-
tion we are interested in

P(Y ∈ A|X = x)
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which means: the probability that Y ∈ A given that we observe that X is equal to x. For
causation we are interested in

P(Y ∈ A|set X = x)

which means: the probability that Y ∈ A given that we set X equal to x. Prediction is
about passive observation. Causation is about active intervention. The phrase correlation
is not causation can be written mathematically as

P(Y ∈ A|X = x) 6= P(Y ∈ A|set X = x).

Despite the fact that causation and association are different, people confuse them up all the
time, even people trained in statistics and machine learning. On TV recently there was a
report that good health is associated with getting seven hours of sleep. So far so good. Then
the reporter goes on to say that, therefore, everyone should strive to sleep exactly seven
hours so they will be healthy. Wrong. That’s confusing causation and association. Another
TV report pointed out a correlation between people who brush their teeth regularly and low
rates of heart disease. An interesting correlation. Then the reporter (a doctor in this case)
went on to urge people to brush their teeth to save their hearts. Wrong!

To avoid this confusion we need a way to discuss causation mathematically. That is, we need
someway to make P(Y ∈ A|set X = x) formal. As I mentioned earlier, there are two common
ways to do this. One is to use counterfactuals. The other is to use causal graphs. There
are two different languages for saying the same thing.

Causal inference is tricky and should be used with great caution. The main messages are:

1. Causal effects can be estimated consistently from randomized experiments.

2. It is difficult to estimate causal effects from observational (non-randomized) experi-
ments.

3. All causal conclusions from observational studies should be regarded as very tentative.

Causal inference is a vast topic. We will only touch on the main ideas here.

2 Counterfactuals

Consider two variables X and Y . We will call X the “exposure” or the “treatment.” We
call Y the “response” or the “outcome.” For a given subject we see (X(i), Y (i)). What we
don’t see is what their value of Y (i) would have been if we changed their value of X(i). This
is called the counterfactual. The whole causal story is made clear in Figure 1 which shows
data (left) and the counterfactuals (right).
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Figure 1: Left: X and Y have positive association. Right: The lines are the counterfactuals,
i.e. what would happen to each person if I changed their X value. Despite the positive
association, the causal effect is negative. If we increase X everyone’s Y values will decrease.

Suppose that X is a binary variable that represents some exposure. So X = 1 means the
subject was exposed and X = 0 means the subject was not exposed. We can address the
problem of predicting Y from X by estimating E(Y |X = x). To address causal questions,
we introduce counterfactuals. Let Y1 denote the response if the subject is exposed. Let Y0
denote the response if the subject is not exposed. Then

Y =

{
Y1 if X = 1

Y0 if X = 0.

More succinctly
Y = XY1 + (1−X)Y0. (1)

We have replaced the random variables (X, Y ) with the more detailed variables (X, Y0, Y1, Y )
where Y = XY1 + (1−X)Y0. When X is continuous, the counterfactual is a function Y (·).
Then Y (x) is value of the function Y (·) when X = x. The observed Y is Y ≡ Y (X).

If we expose a subject, we observe Y1 but we do not observe Y0. Indeed, Y0 is the value
we would have observed if the subject had NOT been exposed. The unobserved variable is
called a counterfactual. The variables (Y0, Y1) are also called potential outcomes. We have
enlarged our set of variables from (X, Y ) to (X, Y, Y0, Y1). A small dataset might look like
this:
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X Y Y0 Y1
1 1 * 1
1 1 * 1
1 0 * 0
1 1 * 1
0 1 1 *
0 0 0 *
0 1 1 *
0 1 1 *

Here, each row corresponds to a different subject. Thus, X = 1 in any row indicates that
subject was given the treatment, and X = 0 indicates they were not. The asterisks indicate
unobserved variables. So, for those subjects for whom X = 1, for those specific subjects, we
only observe their Y1 value, and do not observe their Y0 value. Causal questions involve the
the distribution p(y0, y1) of the potential outcomes. We can interpret p(y1) as p(y|set X = 1)
and we can interpret p(y0) as p(y|set X = 0). The mean treatment effect or mean causal
effect is defined by

θ = E(Y1)− E(Y0) = E(Y |set X = 1)− E(Y |set X = 0).

The parameter θ has the following interpretation: θ is the mean response if we exposed
everyone minus the mean response if we exposed no-one.

Lemma 1 In general,

E[Y1] 6= E[Y |X = 1] and E[Y0] 6= E[Y |X = 0].

To see this, note that since Y = XY1 + (1 − X)Y0, we have that E[Y |X = 1] = E[Y1|X =
1] 6= E[Y1] unless for instance Y1 is independent of X.

Suppose now that we observe a sample (X(1), Y (1)), . . . , (X(n), Y (n)). Can we estimate θ? In
general the answer is no. We can estimate

α = E(Y |X = 1)− E(Y |X = 0)

but α is not equal to θ. Quantities like E(Y |X = 1) and E(Y |X = 0) are predictive param-
eters. These are things that are commonly estimated in statistics and machine learning.

Let’s formalize this. Let P be the set of distributions for (X, Y0, Y1, Y ) such that P (X =
0) > δ and P (X = 1) > δ for some δ > 0. (We have no hope if we do not have positive
probability of observing exposed and unexposed subjects.) Recall that Y = XY1+(1−X)Y0.
The observed data are (X(1), Y (1)), . . . , (X(n), Y (n)) ∼ P . Let θ(P ) = E[Y1] − E[Y0]. An
estimator is uniformly consistent if, for every ε > 0,

sup
P∈P

P (|θ̂n − θ(P )| > ε)→ 0

as n→∞.

5



Theorem 2 In general, there does not exist a uniformly consistent estimator of θ.

Proof. It is easy construct P (X, Y0, Y1) and and Q(X, Y0, Y1) such that θ(P ) 6= θ(Q) and
yet P (X, Y ) = Q(X, Y ). �

In the case that X is continuous, the causal quantity (or rather, an example of a causal
quantity) is

θ(x) = E[Y (x)]

which, in general, is NOT equal to m(x) = E[Y |X = x].

2.1 Two Ways to Make θ Estimable

Fortunately, there are two ways1 to make θ estimable. The first is randomization and the
second is adjusting for confounding.

Randomization. Suppose that we randomly assign X. Then X will be independent of
(Y0, Y1). In symbols:

random treatment assignment implies : (Y0, Y1) ⊥⊥ X.

Of course, we can’t estimate θ if we always assign X = 1 or X = 0. We assume that
0 < δ ≤ P (X = 1) ≤ 1− δ < 1 for some δ. Let P be all such distributions.

Warning! Note that X is not independent of Y .

Theorem 3 If X is randomly assigned, then θ = α where

α = E(Y |X = 1)− E(Y |X = 0).

A uniformly consistent estimator of α (and hence θ) is the plug-in estimator

α̂ =

∑n
i=1X

(i)Y (i)∑n
i=1X

(i)
−
∑n

i=1(1−X(i))Y (i)∑n
i=1(1−X(i))

. (2)

That is, for every ε > 0,
sup
P∈P

P (|α̂− θ| > ε)→ 0

as n→∞.

1A third way is to use instrumental variables but we won’t discuss that.
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Proof. Since X is independent of (Y0, Y1), we have

α = E(Y |X = 1)− E(Y |X = 0)

= E(Y1|X = 1)− E(Y0|X = 0) since Y = XY1 + (1−X)Y0

= E(Y1)− E(Y0) = θ since (Y0, Y1) ⊥⊥ X.

Hence, random assignment makes θ equal to α. To prove the consistency of α̂, note that we
can write α̂ = (An/Bn)− (Cn/Dn), for corresponding terms An, Bn, Cn, Dn from the plugin
estimator in Eqn. (2). Also note that

α =
E[Y X]

E[X]
− E[Y (1−X)]

E[1−X]
≡ A

B
− C

D
.

Let ε be a small positive constant. By Hoeffding’s inequality and the union bound, with
high probability, An/Bn < (A + ε)/(B − ε) < (A/B) + ε∆1 for some positive constant ∆1.
Similarly, An/Bn > (A/B) − ε∆2, say. A similar argument applies to the second term and
the result follows. �

To summarize: If X is randomly assigned then correlation = causation. This is why
people spend millions of dollars doing randomized experiments.

The same results hold when X is continuous. In this case there is a counterfactual Y (x) for
each value x of X. We again have that, in general,

E[Y (x)] 6= E[Y |X = x].

See Figure 1. But if X is randomly assigned, then we do have E[Y (x)] = E[Y |X = x] and
so E[Y (x)] can be consistently estimated using standard regression methods. Indeed, if we
had randomly chosen the X values in Figure 1 then the plot on the left would have been
downward sloping. To see this, note that θ(x) = E[Y (x)] is defined to be the average of the
lines in the right plot. Under randomization, X is independent of Y (x). So

right plot = θ(x) = E[Y (x)] = E[Y (x)|X = x] = E[Y |X = x] = left plot.

In other words, under randomization, θ(x) = m(x) where m(x) = E(Y |X = x) is the uusal
regression function. So you can use everything you know about regression estimation and
then you are estimating the causal effect.

Adjusting For Confounding. In some cases it is not feasible to do a randomized exper-
iment and we must use data from from observational (non-randomized) studies. Smoking
and lung cancer is an example. Can we estimate causal parameters from observational
(non-randomized) studies? The answer is: sort of.
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In an observational study, the treated and untreated groups will not be comparable. Maybe
the healthy people chose to take the treatment and the unhealthy people didn’t. In other
words, X is not independent of (Y0, Y1). The treatment may have no effect but we would still
see a strong association between Y and X. In other words, α might be large even though
θ = 0.

Here is a simplified example. Suppose X denotes whether someone takes vitamins and Y is
some binary health outcome (with Y = 1 meaning “healthy.”)

X 1 1 1 1 0 0 0 0
Y0 1 1 1 1 0 0 0 0
Y1 1 1 1 1 0 0 0 0

In this example, there are only two types of people: healthy and unhealthy. The healthy
people have (Y0, Y1) = (1, 1). These people are healthy whether or not that take vitamins.
The unhealthy people have (Y0, Y1) = (0, 0). These people are unhealthy whether or not
that take vitamins. The observed data are:

X 1 1 1 1 0 0 0 0
Y 1 1 1 1 0 0 0 0.

In this example, θ = 0 but α = 1. The problem is that people who choose to take vitamins
are different than people who choose not to take vitamins. That’s just another way of saying
that X is not independent of (Y0, Y1).

To account for the differences in the groups, we can measure confounding variables. These
are the variables that affect both X and Y . These variables explain why the two groups of
people are different. In other words, these variables account for the dependence between X
and (Y0, Y1). By definition, there are no such variables in a randomized experiment. The
hope is that if we measure enough confounding variables Z = (Z1, . . . , Zk), then, perhaps the
treated and untreated groups will be comparable, conditional on Z. This means that X is
independent of (Y0, Y1) conditional on Z. We say that there is no unmeasured confounding,
or that ignorability holds, if

X ⊥⊥ (Y0, Y1)
∣∣∣ Z.

The only way to measure the important confounding variables is to use subject matter
knowledge. In other words, causal inference in observational studies is not possible
without subject matter knowledge.

Theorem 4 Suppose that

X ⊥⊥ (Y0, Y1)
∣∣∣ Z.

Then

θ ≡ E(Y1)− E(Y0) =

∫
m(1, z)p(z)dz −

∫
m(0, z)p(z)dz (3)
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where
m(x, z) = E(Y |X = x, Z = z).

A consistent estimator of θ is

θ̂ =
1

n

n∑
i=1

m̂(1, Z(i))− 1

n

n∑
i=1

m̂(0, Z(i))

where µ̂(x, z) is an appropriate, consistent estimator of the regression function µ(x, z) =
E[Y |X = x, Z = z].

Proof. We have

θ = E(Y1)− E(Y0)

=

∫
E(Y1|Z = z)p(z)dz −

∫
E(Y0|Z = z)p(z)dz

=

∫
E(Y1|X = 1, Z = z)p(z)dz −

∫
E(Y0|X = 0, Z = z)p(z)dz

=

∫
E(Y |X = 1, Z = z)p(z)dz −

∫
E(Y |X = 0, Z = z)p(z)dz (4)

where we used the fact that X is independent of (Y0, Y1) conditional on Z in the third line
and the fact that Y = (1−X)Y1 +XY0 in the fourth line. �

It is instructive to compare the casual effect

θ =

∫
m(1, z)p(z)dz −

∫
m(0, z)p(z)dz

with the predictive quantity

α = E(Y |X = 1)− E(Y |X = 0)

=

∫
m(1, z)p(z|X = 1)dz −

∫
m(0, z)p(z|X = 0)dz

which are mathematically (and conceptually) quite different.

The process of including confounding variables and using equation (3) is known as adjusting

for confounders and θ̂ is called the adjusted treatment effect. The choice of the estimator
m̂(x, z) is delicate. If we use a nonparametric method then we have to choose the smoothing
parameter carefully. Unlike prediction, bias and variance are not equally important. The
usual bias-variance tradeoff does not apply. In fact bias is worse than variance and we
need to choose the smoothing parameter smaller than usual. Estimating the quantity in (3)
well is thus difficult and involves an area of statistics called semiparametric inference (we
are interested in the one-dimensional parameter θ, and the rest of the full non-parametric
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m(·, ·) could be viewed as a “nuisance” parameter). In statistics, biostatistics, econometrics
and epidemiology, this is the focus of much research. It appears that the machine learning
community has ignored this goal and has focused instead on the perhaps quixotic goal of
causal discovery.

We need to treat θ̂ cautiously. It is very unlikely that we have successfully measured all
the relevant confounding variables so θ̂ should be regarded as a crude approximation to θ at
best.

More generally,

θ(x) = E[Y (x)] = E[Y (x)|Z = z]dP (z) =

∫
E[Y (x)|Z = z,X = x]dP (z)

=

∫
E[Y |Z = z,X = x]dP (z) =

∫
m(x, z)dP (z)

where m(x, z) = E[Y |Z = z,X = x] is the usual regression function. We can insert an
estimate m̂ and replace the integral over z eith an average:

θ̂(x) =
1

n

∑
i

m̂(x, Z(i)).

However, you should not use cross-validation to choose the smoothing parameter. You need
to use methods known as semi-parametric inference to get an accurate estimate.

In the case where E[Y |X = x, Z = z] is linear, the adjusted treatment effect takes a simple
form. Suppose that E[Y |X = x, Z = z] = β0 + β1x+ βT

2 z. Then

θ =

∫
[β0 + β1 + βT

2 z]dP (z)−
∫

[β0 + βT
2 z]dP (z) = β1.

In a linear regression, the coefficient in front of x is the causal effect of x if (i) the model is
correct and (ii) all confounding variables are included in the regression.

3 Causal Graphs and Structural Equations

Another way to capture the difference between P (Y ∈ A|X = x) and P (Y ∈ A|set X = x) is
to represent the distribution using a directed graph. Then we capture the second statement
by performing certain operations on the graph. Specifically, we break the arrows into the
some variables to represent an intervention.

A Directed Acyclic Graph (DAG) is a graph for a set of variables with no cycles. The graph
defines a set of distributions of the form

p(y1, . . . , yk) =
∏

p(yj|parents(yj)
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where parents(yj) are the parents of yj. A causal graph is a DAG with extra information.
A DAG is a causal graph if it correctly encodes the effect of setting a variable to a fixed
value.

Consider the graph G in Figure 2. Here, X denotes treatment, Y is response and Z is a
confounding variable. To find the causal distribution p(y|set X = x) we do the following
steps:

1. Form a new graph G∗ by removing all arrow into X. Now set X equal to x. This
corresponds to replacing the joint distribution p(x, y, z) = p(z)p(x|z)p(y|x, z) with the
new distribution p∗(y, z) = p(z)p(y|x, z). The factor p(x|z) is removed because we
regard x as a fixed number. (Actually, p(x|z) is replaced with a point mass at x.)

2. Compute the distribution of y from the new distribution:

p(y|set X = x) ≡ p∗(y) =

∫
p∗(y, z)dz =

∫
p(z)p(y|x, z)dz.

Now we have that

p(y|set X = 1)− p(y|set X = 0) =

∫
p(y|1, z)p(z)dz −

∫
p(y|0, z)p(z)dz.

Hence,

θ = E[Y |set X = 1]− E[Y |set X = 0]

=

∫
yp(y|1, z)p(z)dz −

∫
yp(y|0, z)p(z)dz = E[Y |X = 1, Z = z]p(z)dz − E[Y |X = 0, Z = z]p(z)dz

=

∫
µ(1, z)p(z)dz −

∫
µ(0, z)p(z)dz

This is precisely the same equation as (3). Both approaches lead to the same formulas for the
causal effect. Of course, if there were unobserved confounding variables, then the formula
for θ would involve these variables and the causal effect would be non-estimable (as before).

In a randomized experiment, there would be no arrow from Z to X. (That’s the point of
randomization). In that case the above calculations shows that θ = E(Y |X = 1)−E(Y |X =
0) which again agrees with the counterfactual approach.

In general, the DAG approach and the counterfactual approach lead to the same formulas
for causal effects. They are two different languages for the same thing.

The formulas derived from a causal graph will only be correct if the causal graph is correct.
Right now, we are assuming that the the correct causal structure is known to us, and is
based on subject matter knowledge. For example, we know that rain cases wet lawns but
wet lawns don’t cause rain.
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Z X Y

Figure 2: A basic causal graph. The arrows represent the effect of interventions. For example,
the arrow from X to Y means that changing X effects the distribution of Y .

Example 5 You may have noticed a correlation between rain and having a wet lawn, that is,
the variable “Rain” is not independent of the variable “Wet Lawn” and hence pR,W (r, w) 6=
pR(r)pW (w) where R denotes Rain and W denotes Wet Lawn. Consider the following two
DAGs:

Rain −→Wet Lawn Rain←−Wet Lawn.

The first DAG implies that p(w, r) = p(r)p(w|r) while the second implies that p(w, r) =
p(w)p(r|w) No matter what the joint distribution p(w, r) is, both graphs are correct. Both
imply that R and W are not independent. But, intuitively, if we want a graph to indicate
causation, the first graph is right and the second is wrong. Throwing water on your lawn
doesn’t cause rain. The reason we feel the first is correct while the second is wrong is because
the interventions implied by the first graph are correct.

Look at the first graph and form the intervention W = 1 where 1 denotes “wet lawn.”
Following the rules of intervention, we break the arrows into W to get the modified graph:

Rain set Wet Lawn =1

with distribution p∗(r) = p(r). Thus P∗(R = r | set W = w) = P∗(R = r) tells us that “wet
lawn” does not cause rain.

Suppose we (wrongly) assume that the second graph is the correct causal graph and form the
intervention W = 1 on the second graph. There are no arrows into W that need to be broken
so the intervention graph is the same as the original graph. Thus p∗(r) = p(r|w) which would
imply that changing “wet” changes “rain.” Clearly, this is nonsense.

Both are correct probability graphs but only the first is correct causally. We know the correct
causal graph by using background knowledge.

Causal graphs can also be represented by structural equation models. The graph in Figure 2
can be written as:

Z = g1(U)

X = g2(Z, V )

Y = g3(Z,X,W )
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for some functions g1, g2, g3 and some random variables (U, V,W ). Intervening on X corre-
sponds to replacing the second equation with

X = x.

4 The Difficulty of Causal Discovery

We could try to learn the correct causal graph from data but this is dangerous. In fact it is
impossible. To understand what is going on, let’s consider two examples.

Suppose we observe (X(1), Y (1)), . . . , (X(n), Y (n)) where X(i) is the income of the subject’s
parents when the subject was a child, and Y (i) is income of the subject at age 50. In this case,
the variables are time ordered. So we can have X causing Y but we cannot have Y causing
X. We must always allow for the fact that there may be many unobserved confounding
variables. We will denote these by U = (U1, . . . , Uk) where k is potentially very large. There
are eight possible graphs as shown in Figure 3.2 Our main interest is in whether there is an
arrow from X to Y .

Let’s see how the graph discovery community reasons in this case. Suppose we observe a
large sample (X(1), Y (1)), . . . , (X(n), Y (n)). Let α be some measure of dependence between
X and Y . It is possible to define a consistent estimator α̂. The causal discovery algorithms
work as follows in this example. Suppose we find that there is a strong association between
X and Y . (We can formally test for dependence between X and Y .) This is consistent
with graphs 4,5,6,7 and 8. Some of these graphs include an arrow from X to Y and some
don’t. The conclusion is that we cannot tell if X causes Y . In this case, the causal discovery
algorithms are correct.

Now suppose instead that we find that there is no significant association between X and Y .
This is consistent with the first three graphs. None of these graphs include an arrow from
X to Y . However, the last graph is also consistent with X being independent of Y . This
might seem counterintuitive when you look at this graph. But the correlation created by the
path U −→ X −→ Y can cancel out the correlation created by the path U −→ Y . Such a
cancellation is called unfaithfulness. Such a cancellation is considered to be unlikely. And
the set B of such unfaithful distributions is “small.” (For example, if the joint distribution
is Normal, then the parameters that correspond to unfaithful distributions have measure 0.)
So it seems reasonable to restrict ourselves to faithful distributions. If we restrict to faithful
distributions, then the only explanation for the independence of X and Y is the first three
graphs. We conclude that X does not cause Y .

Let us summarize the logic. There is a measure of dependence α and a consistent estimator
α̂. We are interested in the causal effect θ. We showed earlier that θ is a function p(x, y, u).

2Actually, we should have a separate node for each Uj . And then there are many more possible graphs.
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Figure 3: The eight possible causal graphs corresponding to the example.
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In particular, θ = 0 means there is no arrow from X to Y and θ 6= 0 means there is an arrow
from X to Y . We have:

α 6= 0 =⇒ θ can be 0 or nonzero (no conclusion)

α = 0 and faithfulness =⇒ θ = 0 (no causal effect).

Since α̂ is a consistent estimator of α, we can substitute α̂ for α and our conclusion is
asymptotically correct. Note that if P ∈ B, the relationship between α and θ breaks down.
If P ∈ B then θ 6= 0 but α = 0.

Unfortunately, this reasoning is invalid. Let P be a set of distributions for (X, Y, U). Our
model is

P ′ = P − B
where B is the set of unfaithful distributions. The problem is that we can explain α̂ ≈ 0 by
graph 1 or by a P that is close to B. We can always find a distribution P is that is faithful
but arbitrarily close to unfaithful. We can never tell if α̂ ≈ 0 is due to “no arrow from X to
Y ” or from P being very close to unfaithful. No matter how large n is, we can find a P that
is so close to unfaithful that it could result in α̂ ≈ 0.

Essentially, there are infinitely many distributions in P ′ that are arbitrarily close to B and
the procedure breaks down at B. The problem is that asymptotics have to be uniform
over P.

By the way, keep in mind that U is very high dimensional. The set B might be “small” in
some sense, but it is very complex. It is like a spider web.

To simplify matters, consider the linear case. The model for the DAG is

U = ε1

X = aU + ε2

Y = bX + cU + ε3.

Here, the εi’s are mean 0 error terms. The causal effect is b. But all we observe is (X, Y ).
The correlation between X and Y is ρ = a2 + ac+ b. The problem is:

It is easy to construct cases where b is huge but ρ ≈ 0. Ruling out the case when b is large
and ρ = 0 (unfaithfulness) isn’t enough but we can stll have b large and ρ ≈ 0.

To make all this more precise, let ψ = 1 if there is an arrow from X to Y and let ψ = 0
if there is no arrow from X to Y . Let ψ̂ be the output of any causal discovery procedure
(which can be set-valued). Suppose that ψ̂ is non-trivial, meaning that 1 ∈ ψ̂ with increasing
probability when b 6= 0. Let P0 be the set of faithful distributions with zero causal effect.

Theorem 6 For any non-trivial procedure,

sup
P∈P0

P (ψ̂ 6= ψ)→ 1
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as n→∞. In other words, if the procedure is non-trivial, we cannot control the type I error.

There is another way to see the problem. Consider the causal effect

θ(x) = E[Y (x)] =

∫
E[Y |X = x, U = u]p(u)du =

∫
m(x, u)p(u)du.

Discovering the graph involves implicitly estimating (or testing) θ(x). But it is clear that
θ(x) is not estimable. It depends on E[Y |X = x, U = u] and p(u). But we never observe
U . We can’t estimate m(x, u) if we don’t observe u. Hence we can’t estimate
the causal effect. We can’t estimate parameters that are functions of unobserved random
variables! The causal parameter is not identified.

To have reliable inference we need uniformly consistent estimates and we need valid confi-
dence sets. There are no consistent estimators or valid confidence sets for causal parameters
when there is unobserved confounding. The only solutions are: measure all the confounders
or do a randomized study.

Further Reading: A good tutorial with a lot of good references is:

E. Kennedy (2015). Semiparametric Theory and Empirical Processes in Causal Inference.
arXiv:1510.04740

Also, there is a very good, free book here:

https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
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