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Abstract

A surface is often modeled as a triangulated mesh of 3D points and textures
associated with faces of the mesh. The 3D points could be either sampled
from range data or derived from a set of images using a stereo or Structure-
from-Motion algorithm. When the points do not lie at critical points of max-
imum curvature or discontinuities of the real surface, faces of the mesh do
not lie close to the modeled surface. This results in textural artifacts, and the
model is not perfectly coherent with a set of actual images—the ones that are
used to texture-map its mesh.

This paper presents a technique for perfecting the 3D surface model by
repositioning its vertices so that it is coherent with a set of observed images
of the object. The textural artifacts and incoherence with images are due to
the non-planarity of a surface patch being approximated by a planar face,
as observed from multiple viewpoints. Image areas from the viewpoints are
used to represent texture for the patch in eigenspace. The eigenspace repre-
sentation captures variations of texture, which we seek to minimize.

A coherence measure based on the difference between the face textures
reconstructed from eigenspace and the actual images is used to reposition the
vertices so that the model is improved or faired. We refer to this technique
of model refinement as EigenFairing, by which the model is faired, both ge-
ometrically and texturally, to better approximate the real surface.

1 Introduction

A model of a real surface is often represented as a textured mesh of 3D points. The
points form vertices of a triangulated mesh, faces of which are texture-mapped to model
the surface. This representation has proven to be effective, as a significant number of
surfaces can be modeled by a mesh of planar faces. Most sensed 3D data, however, do
not always lie at critical points of maximum curvature or discontinuities, such as corners
and edges of the real surface [Figure 1]. Laser scanned data misses out on these strategic
but spatially minute points. Features selected and tracked using local pixel intensities in
images for stereo or SfM algorithms do not always correspond to points of discontinuity
of the observed surface. These facts lead to a poor approximation of the surface by planar
faces, and result in not-so-perfect appearance of modeled surfaces. This paper brings out
this salient aspect of 3D modeling. It presents a new method of repositioning vertices
of the mesh to those critical points for an improvement in the geometrical and textural



Figure 1: (a) 3D points used for creating the model do not lie at geometrical extremities
or points of discontinuity of the cube’s surface. Faces of the mesh with such 3D points as
vertices are poor approximation of the real surface. (b) For the new vertex positions, the
mesh faces lie on the surface of the cube, thus creating a good model.

quality of the model. We show that this seemingly incremental change has a significant
impact on the model’s overall appearance.

The 3D model is refined orfaired by relocating vertices such that the planar faces
lie closer to the surface patches they approximate. As the real surface is not known to
us, the same set of images that is used for texture-mapping faces of the mesh guides the
fairing process. A mesh face, that approximates a surface patch, is projected into images
to yield triangular image areas. A set of these image areas corresponding to the same
surface patch has information of how good its planar approximation is. Had the surface
patch been planar, the image areas corresponding to its planar approximation would be
the same when warped into a fixed triangular area [Figure 2]. As the real world is not built
of simplicial elements, the variations of texture in the image areas can be attributed to the
non-planarity of the surface patch. We would like to get the best possible representation
of texture from the image areas by encoding the textural variations.

Given a set of image areas, a compact representation of these variations can be derived
in terms of a small number of orthogonal basis images. This representation, also called
an eigenspace decomposition, encodes the minute variations of texture as observed from
different viewpoints [7]. We reposition vertices of the mesh such that these textural varia-
tions are minimized. In the process, faces of the mesh better approximate the real surface
in the geometrical sense. Also, the texture-mapped 3D mesh–the 3D model–appears to
be as close as possible to the actual images when observed from the same camera view-
points. Thiscoherencebetween the actual image area and the textural representation of
the corresponding surface patch can be quantified as the distance-from-eigenspace of the
image area. The better a triangular face approximates the surface patch geometrically,
the smaller is the variation of appearance in images, and the smaller is the distance-from-
eigenspace of the image-areas corresponding to the patch. We refer to this idea of 3D
model refinement asEigenFairing.

2 Related Work

The problem of model refinement based on image data has been studied extensively. A
single image can be used to reposition vertices of a texture-mapped mesh by minimizing
error metrics based on the vertex positions, surface normals, and other surface properties



Figure 2: Image areasAiBiCi in thei-th image andA jB jCj in the j-th image correspond to
the same 3D mesh face. Affine warping ofAiBiCi into A jB jCj yields image patchA′iB

′
jC
′
j .

The texture within the two areas,A′iB
′
iC
′
i andA jB jCj , are not the same because vertexA is

not at an edge or a corner, and the mesh face does not lie on the actual 3D surface of the
object. Note the ghosting of edges in their superimposition (average) in the center.

such as color and texture [4]. The algorithm never accesses the pixels of the single-image
texture and merely updates texture coordinates in the image. Image-driven mesh simplifi-
cation [5] compares actual images against images of the simplified model to decide which
portions of a model to refine through the edge collapse operator. In image-consistent sur-
face triangulation [6], the initial mesh is refined through edge-swaps to best account for
observed images. The edge-swapping scheme, that uses the weighted-average of affine-
warped image areas, works well only if a surface patch has enough texture and is close to
the planar face that approximates it. Other algorithms [3] [8] recover surface shape and
reflectance properties from multiple images by deforming a 3D representation. However,
these methods optimize complicated objective functions that combine several image and
geometric-based constraints. We shall show that a simple objective function, based on
the eigenspace representation of texture, can be minimized to refine the geometry of 3D
models. Our approach is especially consequential for modeling surfaces whose textural
detail is denser than the geometrical level of detail.

Eigenspace texture methods [7] [1] encode appearance variations of a surface patch
under various viewing conditions. Appearance of patches are encoded using the eigenspace
method, and new views are reconstructed from their eigenspace representations. We shall
use an eigenspace representation of dimensionality five to represent texture of 3D surface.
It has been shown that for diffuse surfaces of arbitrary texture, the first five components
of eigenspace explain most of the image variation [2].

EigenFairing is similar to the multiresolution surface reconstruction algorithm [9], but
it does not attempt to subdivide the mesh to account for perspective effects. It refines a
given mesh to best approximate an observed surface. The planarity of a surface patch
as compared to a mesh face that models it, i.e. perspective distortion, depends on the
position of the vertices. One of the critical components of model refinement, that seems
to be missing in previous work, is the relocation of vertex points so that they lie at the
extremities or critical points of object geometry.

3 Image Coherence

If a surface patch is not planar and has perspective distortion, how can texture of its planar
approximation—the mesh face—be best represented, given the triangular pixel-areas in



Figure 3: The triangular image patchI iF in the i-th image corresponding to faceF
is warped to a fixed cell imageIiF . The reconstructed cell image using the first five
components of eigen-space isUF ci . The Geman-McClure norm betweenIiF andUF ci

for σ=100, and the spatial distribution of outliers (eT = σ/
√

3) are on the right.

multiple images that correspond to it? The triangular image areas depend on viewpoints
of the camera as well as degree of non-planarity of the 3D-surface patch. The affine warp-
ing of triangular image areas into each other does not align the texture within [Figure 2].
Estimating texture that corresponds to the mesh face by weighted-average of pixels from
different images [6] leads to blurring of the estimated texture. Since image-consistency
is sensitive to textural variations, averaging of affine-warped image areas leads to com-
plicated overlapping surfaces and chances of the refinement algorithm being trapped in
local minima. Moreover, textural variations of image areas corresponding to the same
3D-surface patch can be exploited for refining the mesh. Image coherence considers this
intra-imagetextural variation, as well as consistency of estimated texture when compared
to actual images.

For a given set of image areas corresponding to a single 3D-surface patch, image co-
herence constructs a small set of basis images that best captures the variations in texture.
These basis images form a view-based representation of the texture of the patch. Each
triangular image area is affine warped to a fixed triangular area called thecell image[7].
Since each cell image is created by affine warping the triangular image areas correspond-
ing to a patch, the number of basis vectors to adequately represent its appearance depends
on the planarity of the patch. This is valid under the assumption that the patch has Lam-
bertian reflective properties. The more planar a patch is, the better is its approximation by
the mesh face, the lower is its perspective distortion as seen from the image-viewpoints,
and therefore, the lower is the number of basis vectors needed to represent the texture
of the patch. Considering the firstk principal components corresponding to thek largest
singular values, the basis image-set isUF = [UF1,UF2, ...,UFk] for faceF . Let UF ci

denote the reconstructed cell image corresponding to theith-image patch. The set of
scalar values,ci = [ci1,ci2, ...,cik], is computed by taking the dot product of the cell image
and basis imagesUF . Thus,UF ci is constructed by a linear combination of thek basis
images;UF ci ≡ ∑k

m=1cimUFm.
An image coherent representation is the best possible approximation,UF ci , over all

image areas, i.e., fori = 1,2, ...,n. For a Lambertian surface, such a representation reflects
the accuracy of approximation of the textured patch by the mesh geometrical element.
Image coherence is based on the closeness of these two approximations: the textural
approximation as captured by the basis images, and the geometrical approximation of the



physical 3D patch by the planar face. Minimizing the error in representation of surface
texture minimizes the error in the approximation of the surface patch by a linear mesh
element.

4 Model Fairing

Given a set of basis texture-imagesUF corresponding to a faceF , we reconstruct the
image patchUF ci in the i-th image. The objective function to be minimized for the set of
n cell images,IiF ; i = 1, ...,n , is

E(c) =
n

∑
i=1

∑
uF

ρ(IiF (u)− [UF ci ](u)) (1)

The error normρ defined over residual pixel-error in cell images.uF is the coordinate
of cell pixels. Instead of exhaustively searching around each vertex in 3D space, we
formulate an iterative search method.

4.1 Vertex Displacement

Let η = [ηX ηY ηZ]T represent a 3D displacement of a vertex. The faired vertex point
x̃V is updated as̃xV ← xV +η . The goal is to simultaneously find the coefficientsc and
displacement vectorη that minimize the objective function of the residual error;

E(c,η) =
n

∑
i=1

∑
uF̃

ρ(IiF̃ (u)− [UF̃ ci ](u)) (2)

for the facesF̃ constructed from the new verticesx̃V . This optimization interleaves two
sub-problems. The first sub-problem is to minimizeE(c,η) with respect toc while the
vertexxV is kept fixed. This is the same as the eigen-texture method [7] discussed in the
last section.

The second sub-problem is to minimizeE(c,η) with respect to thefairing parameters
or displacementη , this time with the coefficientsc held fixed. The image patchIF corre-
sponding to faceF gets warped toIF̃ that corresponds to a new facẽF . For a given set
of basis imagesUF , we have to determine a new set of image patches and corresponding
cell images,IiF̃ (u) for i = 1,2, ...,n , such that the following is minimized:

n

∑
i=1

∑
uF̃

ρ(IiF̃ (u)− [UF ci ](u)) (3)

Due to a vertex displacementη , cell pixels atu get displaced to new cell image coordi-
nates asu+υiF (u,η). For a given pixel-coordinate displacement functionυiF (u,η), the
new cell image isIiF̃ (u) = IiF (u+υiF (u,η)). Ideally, we should have

IiF (u+υiF (u,η)) = [UF ci ](u) (4)

Equation (4) states that there are pixel displacementsυiF (u,η) that when applied to the
image patchIiF makeIiF look like some image reconstructed from the eigenspace. A
first order Taylor series expansion of the left hand side of Equation (4) yields

IiF (u)+∇IiF ·υiF (u,η) = [UF ci ](u) (5)



Summing the residual pixel-errorec over cell pixelsuF corresponding to faceF in all
images, the error function can be written in terms ofec as

E(c,η) =
n

∑
i=1

∑
uF

ρ (ec ) where ec ≡ ∇IiF ·υiF (u,η)+(IiF (u)− [UF ci ](u)) (6)

4.2 Optimization

The minimization ofE(c,η) with respect toη can be obtained using the Gauss-Newton
algorithm. In the Gauss-Newton method, a search direction is computed using the gra-
dient, and a first-order approximation to the Hessian for the given objective function
E(c,η). Thek-th element of gradient vectorg is

gk =
n

∑
i=1

∑
uF

ρ̇ (ec )
∂ec

∂ηk
,

∂ec

∂ηk
=

(
∇IiF · ∂υiF (u,η)

∂ηk

)
for k∈ {X,Y,Z}. (7)

whereρ̇ , also called the influence function, is the derivative of the error normρ with
respect to the residual pixel error. We have chosen the Geman-McClure norm as our
error normρ; it is defined over the residual pixel-errorec in cell images. Given a scale
factor σ that controls the convexity of the norm and its influence to outliers, we have:
ρ(ec) = e2

c/(σ + e2
c) , ρ̇(ec) = 2σec/(σ + e2

c)
2 , andρ̈(ec) = 2σ(σ − 3e2

c)/(σ + e2
c)

3.
The{k, l}-th element of the HessianH is

Hkl =
n

∑
i=1

∑
uF

ρ̈(ec)
∂ec

∂ηk

∂ec

∂ηl
for k, l ∈ {X,Y,Z} (8)

The objective functionE is convex when the HessianH of E is positive definite. A
positive definite Hessian indicates that the function has a unique optimum, in the local
neighborhood, whereas a Hessian that has one or more eigenvalues zero will allow an
entire manifold of solutions to minimize the objective function.E is locally convex when
ρ̈(ec) > 0 ∀ ec. For smallσ values,ρ̈(ec) can be negative, and therefore, one may not
get a descent direction. Aṡρ(0) = 0, ρ̈(ec) is substituted by its secant approximation,
ρ̇(ec)/ec, for small values ofec, and is positive everywhere. Substituting in equation 8,

∑
l∈{X,Y,Z}

(
n

∑
i=1

∑
uF

ρ̇(ec)
ec

∂ec

∂ηk

∂ec

∂ηl

)
δηl =−

n

∑
i=1

∑
uF

ρ̇(ec)
∂ec

∂ηk
for k∈ {X,Y,Z}. (9)

The fairing displacements,η = [ηX ηY ηZ]T , are iteratively updated for stepm asη(m+1) =
η(m) +δη andη(0) = [ 0 0 0 ]T . After each vertexfairing step, the image patches are up-
dated by considering the new position of the vertex. The new image patches are warped
into their corresponding cell images. These cell images are used for the next optimization
step. As the warping registers the image patches and the eigenspace, the approximation
[UF ci ] continues to improve and the texture representation gets better.

4.3 Cell-Pixel Displacement

The cell-pixel displacement functionυiF (u,η) in the i-th image, corresponding to the
faceF , is related to the vertex-displacementη . The3×4 projection matrixP for thei-th



Figure 4: (a) A vertex displacement induces pixel displacementsδuiV andδuiV , shown
as red arrows, in imagei and j. (b) Pixel displacements are used to calculate the cell pixel-
displacementsυiF andυ jF for the i-th and j-th cell images. (c) Optical flow calculated
using constant brightness constraint between the cell image and its eigenspace reconstruc-
tion is superimposed on their difference. (d) The path of successive vertex displacements.
A0

i andA0
j correspond to the initial position of the vertex.Ai andA j correspond to the 3D

point that the vertex converges to. (All red arrows are displacements magnified 10×)

image is known, and let itsp-th row be represented as[ r p | tp ] for p = 1,2 and3. The
pixel displacement in thei-th image corresponding to a small 3D vertex displacement,η ,
is

δuiV =
[

(r3x+t3)r1η−(r1x+t1)r3η
(r3x+t3)2

(r3x+t3)r2η−(r2x+t2)r3η
(r3x+t3)2

]T
(10)

This pixel displacement causes a change in the pixels of the cells. For pixels correspond-
ing to faceF in the i-th image, the affine transformationHiF (a 2×3 matrix) between
the image patch and its cell is known, andu = HiF [uT 1]T . The cell-pixel displacement
function can now be related to the vertex pixel displacement in the image as

υiF (uV ,η) = HiF [δuT
iV 0]T + δHiF [uT

iV 1]T (11)

For small pixel displacements,δHiF is usually negligible. Once the cell-pixel displace-
ment at the moving vertex is determined, cell-pixel displacements over the entire cell are
calculated by interpolation, because the displacements at the other twofixedvertices and
along their connecting edge are zero. The goal is to achieve cell-pixel displacements that
vary linearly across the cell image from the moving vertex to the other two vertices, or
are as close as possible to a linear variation. We are trying to determine the location of the
faired vertex that best approximates the surface patch with a planar face of the mesh. The
same vertex location yields observed image-pixel displacements that are closest to linear
variation of image-pixel displacements of a planar face. For the new position of the vertex,
the cell-pixel displacements lead to a better approximation of the surface patch; hence, a
morelinear variation of flow or pixel displacements appears across the cell image.



5 An Illustration

At first, we illustrate an EigenFairing process for aunit cube with textures on three faces
visible in 12 images. The vertexA, common to the three faces as shown in Figure 2, is
faired such that it corresponds to the actual corner of the cube. The cell size is128×128
pixels. The path of the vertex, as it moves towards the actual corner, is displayed in
Figure 4(d) for two views. A vertex displacement during the fairing process is shown
in Figure 4(a). The interpolated pixel-displacements in the cell images, for the same
vertex displacement, are shown in Figure 4(b). Figure 4(c) shows the optical flow fields
computed between the cell image and its eigenspace reconstruction. They point in the
opposite direction to the pixel-displacements. The estimated vertex displacement is the
change in vertex position for which induced pixel-displacements on faces best counter-
balance flow-fields between the cell-images and their eigenspace reconstructions.

6 Results with Real Data

We applied EigenFairing to real outdoor scenes. An initial set of 3D points for generating
the mesh was sampled from range data at points of geometrical extremities and disconti-
nuities, as shown in Figure 5(a). The data was registered with a sequence of 22 images,
two of which are shown in Figure 5, by selecting the closest points of correspondence.
The points do not accurately correspond to physical corners in images, and edges of the
mesh are not aligned with edges of the facade, as viewed in the images. Notice the textu-
ral artifacts if this mesh is used for modeling the facade, in Figures 5(a, left column) and
6(a). After EigenFaring the initial model, the 3D vertices correspond to actual corners,
and edges of the mesh are aligned with physical edges in images [Figure 5(b)]. Also, the
facade is better modeled in a geometrical sense and, at the same time, devoid of textural
artifacts [Figure 6(b)]. Figure 7 shows another real data set where a SfM algorithm was
used to derive the initial position of vertices from 10 images. For both data sets, the initial
meshes are generated using Image-consistent Triangulation [6].

The robustness of the fairing process was increased by adding a coarse-to-fine refine-
ment strategy. A five-level pyramid was used whereσsmoothvaried linearly from 6.0 to
1.2. The Geman-McClure parameter was chosen asσ = max(|ec|)/

√
3. The error norm

minimizes the effect of outliers that usually appear at geometrical edges of image areas,
specularitites, or due to large textural discontinuities within a patch [Figure 3]. The neigh-
borhood of 3D points for which the initial vertex converges to the faired position depends
on how textured the neighboring faces are and how well their textures are represented
in eigenspace. The new 3D point may not always lie on the actual surface, although its
neighboring faces collectively represent the actual surface region with greater accuracy,
both geometrically and texturally.

7 Conclusion

The EigenFairing algorithm refines a texture-mapped mesh to better represent a surface by
relocating vertices of the mesh. The relocation process is carried out such that the texture
mapped onto the faces is best represented, and the resulting 3D model is coherent with
observed images. Coherence of texture-mapped faces with images has been formulated



Figure 5: On the first column, 3D range data is superimposed on the texture-mapped mod-
els before and after EigenFairing. Range scans often miss out corners due to occlusions or
their spatial minuteness. Selected vertices are not always best positioned for surface ap-
proximation, as seen on the inner dome. The edges are close to, but not perfectly aligned
with the physical edges of the building. Row (a) Initial mesh. Row (b) The EigenFaired
mesh. The red arrows point at mesh elements that have considerably improved the model.

Figure 6: (a) The mesh and the texture-mapped model for the initial position of vertices.
(b) The EigenFaired mesh and model. Notice that the initial mesh has irregularities in
structure along the arch and on the inner dome. The corresponding textural artifacts are
clearly visible in the model. The EigenFaired mesh better approximates the geometrical
structure of the building. Its texture-mapped model is devoid of artifacts at the same time.

as minimizing the distance between observed textures corresponding to the faces of the
mesh and their eigenspace reconstructions. We have shown that minimizing this distance
leads to a better geometrical approximation of the unknown surface by the 3D model.
EigenFairing couples geometrical properties of a 3D model with its textural properties or
albedo. Coherence of texture leads to a faired mesh that is physically closer to the true
surface. This approach is significant for modeling a surface whose textural variation is
much higher than the geometrical resolution required to represent the surface.



Figure 7: On the left are two images showing the initial vertex positions in green and
the faired vertices in red. The faired vertices accurately correspond to corners and edges
of the architecture. Notice the points along the archways, roof and balcony edges. The
initial model and the EigenFaired model are shown in (a) and (b) respectively. The green
and red arrows point out the presence and absence of modeling artifacts respectively.
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