UNIVERSITY OF CALIFORNIA

Santa Barbara

Transparent Fault Tolerance for CORBA

A Dissertation Submitted in Partial Satisfaction
of the Requirements for the Degree of

Doctor of Philosophy
n
Electrical and Computer Engineering

by

Priya Narasimhan

Dissertation Committee:
Professor Louise E. Moser, Chairperson
Professor P. M. Melliar-Smith
Professor Steven E. Butner
Professor Rachid Guerraoui
Professor Douglas C. Schmidt

December 1999

The dissertation of Priya Narasimhan is approved

Committee Chairperson

September 1999

i

September 1999

(©Copyright by
Priya Narasimhan

1999

11

For my parents, Kala and Nallan Chakravarty Narasimhan,
who taught me to work hard and dream big,
and who made all of this possible through
their love, encouragement and sacrifices

v

ACKNOWLEDGMENTS

Durgam Kaj Jagath Ke Jete

Sugam Anugrah Tumhare Tete

(All the difficult tasks in this world

are rendered easy through Your Grace)
— Hanuman Chalisa by Tulsidas

I would like to thank God for making it possible for me to come here five years ago, for
granting me the good fortune to work on a research problem that I enjoyed, and for seeing
me through the ups and downs that every Ph.D. engenders.

My parents have sacrificed a good many years of their lives to make my education
possible. As difficult as it was for them, they have always understood when the pressures
of my research sometimes made 1t impossible for me to visit them or to be with them as
often as I would have liked. This dissertation i1s dedicated to my parents — thank you for
seeing me through every step of the way, for praying for me during times of trouble, and for
rejoicing with me over every little triumph.

Nitya (my sister and apartment-mate of four years), thank you for always being there
for me with your sympathetic ear, your shoulder (well-worn by now), your unquenchable
optimism, and your great cooking! Rajeev, thank you for your solid advice, your support
of my ambitions, and for keeping me focussed during difficult times.

I would like to thank Professors Louise E. Moser, Michael Melliar-Smith, Steven But-
ner, Rachid Guerraoui and Douglas Schmidt for agreeing to serve on my Ph.D. dissertation
committee, for reading through the dissertation in its various stages, and for giving me the
feedback that shaped the dissertation into its ultimate form. Thank you also for your willing-
ness to accommodate my defense and dissertation filing dates into your respective schedules.

I would especially like to thank my advisors, Louise E. Moser and Michael Melliar-Smith,
for teaching me so much over the past four years, and for inspiring me with the example
of their hard work and their intensity. Louise, thank you for teaching me how to put my
thoughts into words, and how to turn out a good paper. Michael, thank you for opening
the door that brought me to UCSB five years ago. Thank you both for all the knowledge
and experience that you have shared with me so freely, and for giving me the exposure and
the opportunities that have helped my career.

I would like to thank Doug Schmidt, for being available to answer technical questions
on CORBA or on programming in general. Doug, thank you for looking out for me, for
publicizing my work, and for being a great source of information and knowledge. T would
like to thank Rachid Guerraoui for seeing me through the entire course of my research —
right from my very first publication on Eternal through to my dissertation. Rachid, thank
you for your support of my work, and for your technical insights that have often helped me
to see things in a different light.

I would like to thank all of the faculty at the BMS College for Women (Bangalore, India),
in particular, Rathnamma, Mookambika, Umadevi and Swarnagowri, who believed in me
during my undergraduate days, and continue to do so to this day. I would also like to thank
Dr. Bhaskar N. Rao, one of the best teachers that I have ever been privileged to know, for
introducing me to the joys of electrical engineering.

Special thanks are due to Albert Alexandrov and Professor Klaus Schauser (Computer
Science Department at UCSB) for introducing me to interceptors, and for letting me use
their code. T would particularly like to thank Steve Rago (Programmed Logic Corporation)
for extensive discussions on operating system hooks for interception.

Dr. Murthy Devarakonda (IBM Research), thank you for your encouragement that led
to the interview with IBM Research, and for following up on my career since. Dr. Stuart
Tewksbury, thank you for taking the trouble to give me the benefit of your wisdom. Dr.
Shalini Yajnik (Lucent Technologies), thank you for all the interesting and useful personal
and technical discussions that we have had over the past year. Ramanathan Krishnamurthy
(Object-Oriented Concepts, Inc.), thank you for being a good friend to me over the past
ten years.

I would also like to thank all of my colleagues in the Computer Networks and Distributed
System Laboratory who shaped this work in one way or another. Mike, thank you for being
the best sounding board in the world for every one of my fledgling ideas. Thank you for
letting me benefit from your vast system administration and programming knowledge —
you are a joy to know! Ravi, thank you for helping me cut my teeth in this lab when 1
first started, and for sharing your knowledge of Totem with me. Kim, thank you for the
experience and the collaboration on the Immune system that made the project worthwhile.
Thank you for the tiramisu that you brought in to cheer me up! Ruppert, thank you for
your continuous assistance with all of my questions about Totem. Fabrice, thank you for
building a wonderful air defense demonstration that allows me to show off my code. Lauren,
thank you for your moral support during stressful times.

This research has been supported by the Defense Advanced Research Projects Agency in
conjunction with the Office of Naval Research and the Air Force Research Laboratory, Rome,

under Contracts N00174-95-K-0083 and F3602-97-1-0248, respectively.

vi

VITA
1990 B. Sc.

Departments of Physics, Mathematics and Electronics
BMS College for Women, Bangalore, India

1995 M. S.
Department of Electrical and Computer Engineering
University of California, Santa Barbara

1995-99 Graduate Student Researcher
Department of Electrical and Computer Engineering
University of California, Santa Barbara

PUBLICATIONS

Object-Oriented Programming of Complex Fault-Tolerant Real-Time Systems,
L. E. Moser, P. Narasimhan and P. M. Melliar-Smith, Proceedings of the IEEE Computer
Society Second International Workshop on Object-oriented Real-time Dependable Systems,
Laguna Beach, CA (February 1996), pp. 116-119.

Message Packing as a Performance Enhancement Strategy with Application to
the Totem Protocols, P. Narasimhan, L.. E. Moser and P. M. Melliar-Smith, Proceedings of
the IEEE Global Telecommaunications Conference, London, England, UK (November 1996),
pp. 649-653.

Consistency of Partitionable Object Groups in a CORBA Framework, P. Narasimhan,
L. E. Moser and P. M. Melliar-Smith, Proceedings of the IEEE Hawaui International Con-
ference on System Seciences, Maui, HI (January 1997), pp. 120-129.

Separation of Concerns: Functionality vs. Quality of Service, P. M. Melliar-Smith,
L. E. Moser and P. Narasimhan, Proceedings of the IEEE Third International Workshop on
Object-oriented Real-time Dependable Systems, Newport Beach, CA (February 1997), pp.
272-274.

Replica Consistency of CORBA Objects in Partitionable Distributed Systems,

P. Narasimhan, L. E. Moser and P. M. Melliar-Smith, Distributed Systems Engineering
Journal vol. 4, no. 3 (September 1997), pp. 139-150.

vil

Exploiting the Internet Inter-ORB Protocol Interface to Provide CORBA with
Fault Tolerance, P. Narasimhan, L. E. Moser and P. M. Melliar-Smith, Third USENIX
Conference on Object-Oriented Technologies and Systems, Portland, OR (June 1997), pp.
81-90.

The Interception Approach to Reliable Distributed CORBA Objects, P. Narasimhan,
L. E. Moser and P. M. Melliar-Smith, Panel on Reliable Distributed Objects, Proceedings
of the Third USENIX Conference on Object-Oriented Technologies and Systems, Portland,
OR (June 1997), pp. 245-248.

On Technologies in Computer Networks and Distributed Systems, P. M. Melliar-
Smith, L. E. Moser, K. Berket, R. K. Budhia, K. P. Kihlstrom, R. Koch, N. Narasimhan,
P. Narasimhan, E. M. Royer, M. D. Santos, A. Shum, and E. Thomopoulos, looking.forward
supplement to IEEE Computer, 5(3):2-6 (Fall 1997).

The Eternal System, .. E. Moser, P. M. Melliar-Smith and P. Narasimhan, Workshop
on Dependable Distributed Object Systems, OOPSLA’97, Atlanta, GA (October 1997).

Consistent Object Replication in the Eternal System, L. E. Moser, P. M. Melliar-
Smith and P. Narasimhan, Theory and Practice of Object Systems, vol. 4, no. 2 (1998), pp.
81-92.

Supporting Enterprise Applications with the Eternal System, L. E. Moser, P. M.
Melliar-Smith, P. Narasimhan, V. Kalogeraki and L. Tewksbury, Proceedings of the IEEE
Conference on Enterprise Neltworking and Computing, ICC/SUPERCOMM 98, Atlanta,
GA (June 1998).

The Realize Middleware for Replication and Resource Management, P. M. Melliar-
Smith, L. E. Moser, V. Kalogeraki and P. Narasimhan, Proceedings of the IFIP International
Conference on Distributed Systems Platforms and Open Distributed Processing Middleware
’98, The Lake District, England, UK (September 1998), pp. 123-138.

Fault Tolerance for CORBA, L. E. Moser, P. M. Melliar-Smith and P. Narasimhan,
OMG Technical Committee Document orbos/98-10-08, Object Management Group (Octo-
ber 1998). Technical Report 98-27, Department of Electrical and Computer Engineering,
University of California, Santa Barbara.

Providing Support for Survivable CORBA Applications with the Immune Sys-
tem, P. Narasimhan, K. P. Kihlstrom, L. E. Moser and P. M. Melliar-Smith, Proceedings of
the IEEE International Conference on Distributed Computing Systems, Austin, TX (May
1999), pp. 507-516.

viil

A Fault Tolerance Framework for CORBA, L. E. Moser, P. M. Melliar-Smith and
P. Narasimhan, Proceedings of the IEEE 29th International Symposium on Fault-Tolerant
Computing, Madison, WT (June 1999), pp. 150-157.

Replication and Recovery Mechanisms for Strong Consistency in Reliable Dis-
tributed Systems, P. Narasimhan, L. E. Moser and P. M. Melliar-Smith, Proceedings of
the ISSAT International Conference on Reliability and Quality in Design, Las Vegas, NV
(August 1999), pp. 26-31.

Using Interceptors to Enhance CORBA, P. Narasimhan, L. E. Moser and P. M.
Melliar-Smith, IEEE Computer, vol. 32, no. 7 (July 1999), pp. 62-68.

Multicast Group Communication for CORBA, L. E. Moser, P. M. Melliar-Smith, P.
Narasimhan, R. R. Koch and K. Berket, Proceedings of the IEEE International Symposium
on Distributed Objects and Applications, Edinburgh, Scotland, UK (September 1999), pp.
98-109.

The Eternal System: An Architecture for Enterprise Applications, L. E. Moser,
P. M. Melliar-Smith, P. Narasimhan, L. Tewksbury and V. Kalogeraki, Proceedings of the
IEEE 3rd International Enterprise Distributed Object Computing Conference, Mannheim,
Germany (September 1999), pp. 214-222.

Enforcing Determinism for the Consistent Replication of Multithreaded CORBA
Applications, P. Narasimhan, L. E. Moser and P. M. Melliar-Smith, Proceedings of the
IEEE 18th Symposium on Reliable Distributed Systems, Lausanne, Switzerland (October
1999), pp. 263-273.

Transparent Fault Tolerance for CORBA using the Eternal System, P. Narasimhan,
L. E. Moser and P. M. Melliar-Smith, Proceedings of the International Workshop on Reliable
Middleware Systems, Lausanne, Switzerland (October 1999), pp. 7-13.

Gateways for Accessing Fault Tolerance Domains, P. Narasimhan, L. E. Moser and P.
M. Melliar-Smith, Proceedings of the IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing Middleware 2000, New York, NY (April 2000).

Eternal: Fault Tolerance and Live Upgrades for Distributed Object Systems, L.
E. Moser, P. M. Melliar-Smith, P. Narasimhan, .. Tewksbury and V. Kalogeraki, Proceedings
of the IEEE Information Survivability Conference, Hilton Head, SC (January 2000).

Realize: Resource Management for Soft Real-time Distributed Systems, P. M.
Melliar-Smith, L. E. Moser, V. Kalogeraki and P. Narasimhan, Proceedings of the IEEE
Information Survivability Conference, Hilton Head, SC (January 2000).

1X

Patterns for Building Reliable Distributed Object Systems, P. Narasimhan, L. E.
Moser and P. M. Melliar-Smith, Theory and Practice of Object Systems (Spring 2000).

FIELDS OF STUDY

Major Field: Computer Engineering

Interceptors for CORBA
Professor L. E. Moser and Professor P. M. Melliar-Smith

Fault Tolerance for CORBA
Professor L. E. Moser and Professor P. M. Melliar-Smith

Survivability for CORBA
Professor L. E. Moser and Professor P. M. Melliar-Smith

ABSTRACT

Transparent Fault Tolerance for CORBA
by

Priya Narasimhan

Applications are increasingly being programmed using the CORBA distributed object
standard. CORBA’s Internet Inter-ORB Protocol (ITOP) and its mediating Object Request
Broker (ORB) allow CORBA objects to interact, transcending differences in their locations,
hardware architectures, operating systems and programming languages.

The Eternal system provides the fault tolerance that CORBA lacks. Because typical
applications are already quite complex, and because typical application programmers do
not have skills in fault tolerance, Eternal provides fault tolerance without requiring the
modification of applications, or the modification of complex commercial ORB code.

The transparency of Eternal’s fault tolerance infrastructure to both the application and
the ORB is possible through the use of interception technology. The Eternal Interceptor
transparently captures the ITOP messages exchanged between the CORBA objects of the
application, and diverts these messages to the Eternal Replication Mechanisms and Logging-
Recovery Mechanisms.

The Eternal system provides fault tolerance through object replication, with support for
active and passive replication, duplicate detection and suppression, state transfer, logging
and recovery. The use of the Totem reliable totally-ordered multicast protocol to commu-
nicate IIOP messages between replicated objects facilitates replica consistency. Eternal can
exploit other multicast group communication protocols, such as the SecureRing secure reli-
able totally-ordered multicast protocol, to provide support for effective majority voting for
CORBA applications.

Strong replica consistency is ensured for both passive and active replication, as replicas
fail and recover, and as operations are performed that update the states of the replicated
objects. Recognizing that most CORBA applications and ORBs employ multithreading, a
source of non-determinism, Eternal provides mechanisms to enforce determinism transpar-
ently, thereby ensuring replica consistency even for multithreaded applications.

Eternal has been deployed on seven different unmodified commercial CORBA ORBs.
Unmodified applications triply replicated by Eternal incur a 10% overhead in response time
compared to their non-fault-tolerant counterparts. The technology of Eternal forms the
basis of the forthcoming standard for Fault-Tolerant CORBA.

x1

Contents

1 Imntroduction

1.1

1.2

Common Object Request Broker Architecture

1.11
1.1.2

Interoperability with ITOP
What Does CORBA Lack?

Fault Tolerance for CORBA

1.2.1

1.2.2

1.2.3

Integration Approach
1.2.1.1 Electra
1.2.1.2 Orbix4Isis
1.2.1.3 Maestro Replicated Updates ORB
1.2.1.4 The AQuA Framework
The Service Approach
1.2.2.1 Distributed Object-Oriented Reliable Service (DOORS) . . .
1.2.2.2 Object Group Service (OGS)
1.2.2.3 Newtop Object Group Service
The Interception Approach
1.2.3.1 The Eternal System

2 Interception
Interceptors for CORBA

2.1

2.2

2.1.1

Implementation of Interceptors
2.1.1.1 System-Call Interception
2.1.1.2 Library-Routine Interpositioning
2.1.1.3 Comparison.

Interceptors for Fault-Tolerant CORBA

2.2.1

2.2.2
2.2.3

Socket Library Interposer
2.2.1.1 Default Behavior L
2.2.1.2 Interposed Behavior
Thread Library Interposer
Other Library Interposers
2.2.3.1 Overcoming Sources of Nondeterminism

x11

3 Replication Management

3.1 Strong Replica Consistency
3.2 Reliable Totally Ordered Multicast
3.2.1 The Totem System
3.2.2 Object Groups

3.3 Replication Styles
3.3.1 Passive Replication 0
3.3.1.1 Cold Passive Replication

3.3.1.2 Warm Passive Replication

3.3.2 Active Replication o
3.3.3 Comparison of Replication Styles
3.3.4 Interactions between Replication Styles

3.4 Duplicate Detection and Suppression
3.4.1 Operation Identifiers o0 L
342 FExample.

4 Logging and Recovery Management

4.1 Recovery for Different Replication Styles
4.1.1 Failure of an Active Replica
4.1.2 Failure of a Passive Replica

4.2 Structure of the Log Lo
4.2.1 Storing Checkpoints and Messages
4.2.2 Storing Operation Identifiers

4.3 Consistent State L
4.3.1 Application-Level Stateo
4.3.2 ORB-Level State
4.3.2.1 Request Identifiers o0

4.3.2.2 Socket Connections L.

4.3.3 Infrastructure-Level State

4.4 Object Quiescence
4.4.1 Conditions for Quiescence
4.4.2 TImplications of Quiescence Conditions

4.5 State Transfer L
4.5.1 Generating State Transfer Invocations
4.5.2 Synchronization of State Transfer
4.5.3 Incremental State Transfer

4.6 Interaction between the Mechanisms

5 Majority Voting
5.1 Secure Totally Ordered Reliable Multicast
5.1.1 The SecureRing System 0oL
5.2 Active Replication with Majority Voting
5.2.1 Support for Majority Voting

xiil

27
27
28
29
30
32
32
33
34
35
36
37
39
39
41

45
45
45
46
47
47
48
48
49
50
51
54
54
99
99
56
59
59
61
63
65

6

8

5.2.2 Imput Majority Voting

5.2.3 Output Majority Voting
5.2.4 Value Fault Detection
Multithreading
6.1 Replication of Multithreaded Objects
6.1.1 Inconsistent Active Replication
6.1.2 Inconsistent Passive Replication
6.2 Enforcing Determinism oL oo oo
6.3 Scheduling for Consistency o o
6.3.1 Remote Callbacks
6.3.2 Scheduling Identifiers 0oL
6.3.3 Scheduling Algorithm oL oo
6.4 Implementation in Eternal 0L
6.4.1 Example.
6.5 Handling ORB Concurrency Models
6.5.1 Thread-per-Request Model
6.5.2 Thread-per-Connection Model
6.5.3 Thread-per-Object Model
6.5.4 Thread Pool Modelo
Gateways
7.1 Fault Tolerance Domains,
7.2 Connection Establishment 00000
7.3 Encapsulation of ITOP into Multicast Messages
7.4 ORB-Related Issues
7.4.1 Using Existing ORBs 0o
7.4.2 Enhancements to Existing ORBs
Implementation and Performance
8.1 Challenges
8.1.1 Transcending ORB-Specific Mechanisms
8.1.2 Proprietary ORB Protocols
8.1.3 Connection Managementin ORBs
8.2 Performance
8.2.1 Throughput Measurements
8.2.2 CORBA Benchmarks
8.2.2.1 Primitive IDL Types and CORBA any
8.2.2.2 Arrays
8.2.2.3 Sequences
8.2.3 Different Levels of Fault Tolerance

x1v

75
76
77
78
79
81
82
84
84
86
88
90
90
90
90
91

93
94
97
98
100
100
101

9 Conclusion 117

9.1

Outstanding Challenges L o 118
9.1.1 ORBState 118
9.1.2 Partitioning and Remerging Lo 118
9.1.3 Live Upgrades e 119

XV

List of Figures

1.1
1.2
1.3

2.1

2.2

2.3

2.4

2.5

2.6

3.1
3.2
3.3

3.4
3.5

3.6
3.7

Common Object Request Broker Architecture.
Different approaches to fault-tolerant CORBA.
Structure of the Eternal system.

Possible implementations of an interceptor for CORBA as (a) a separate
process using the /proc-based approach, and (b) a shared library using the
library interpositioning approach. L
Snippet of C code for a /proe-based interceptor that is designed to catch the
poll() and stat() system calls of a process.
Resolution of a symbol at runtime (a) without library interpositioning, and
(b) using library interpositioning to provide an alternative symbol definition,
as well as access to the original symbol definition.
Enhancements provided by interceptors for fault-tolerant CORBA in the path
of (a) outgoing messages, and (b) incoming messages.
Sequence of steps for connection establishment and the communication of
ITOP messages between an unreplicated CORBA client and an unreplicated
CORBA server using the standard socket library routines.
Sequence of steps for connection establishment and the communication of
ITOP messages between a CORBA client replica and a CORBA server replica
using the Eternal Interceptor’s socket library interposer, in conjunction with
the Eternal Replication Mechanisms.

The Totem group communication system.
Object groups in the Eternal system.
Warm passive replication, with state updates being transferred at the end of

each operation.
Active replication. L
Sequence of steps in the interaction between an actively replication client

object with a passively replicated server object.
Assignment of invocation, response and operation identifiers.
Use of operation identifiers in duplicate detection and suppression under fault-

free conditions. L

XVl

4.1

4.2

4.3

4.4

4.5

4.6

4.7
4.8

4.9

5.1
5.2

5.3
5.4

6.1
6.2

6.3

6.4

6.5

6.6

6.7

Use of operation identifiers in duplicate detection and suppression under re-
covery conditions. oL 46
The logging and the garbage collection of operation identifiers by the Logging-
Recovery Mechanisms hosting replicas of an object A for different types of
communication (synchronous, asynchronous, invocation, response) involving
object A. . . L L 49
The Checkpointable IDL interface that must be inherited by every CORBA
object in the application to enable the checkpointing and transfer of application-
level state. L 50
Replica inconsistency due to different request identifiers from existing and
recovering replicas. In this example, only application-level state i1s being

retrieved and transferred. o000 52
Combinations of replicas and replication styles that could lead to inconsistent
replication when replicas collocated within the same process share data. . . . 57
Combinations of replicas and replication styles that can ensure replica con-
sistency when replicas collocated within the same process share data. 59
Generating the get_state() and the set_state() invocations for state transfer. . 60
Synchronization of state retrieval and state assignment for consistent repli-
catlon. L 62

Interaction between the Replication Mechanisms and the Logging-Recovery
Mechanisms of the Eternal system for (a) outgoing messages, and (b) incom-

ING MESSAZES. .« v v et e e e e e 64
The SecureRing group communication system. 69
Eternal’s Replication Mechanisms enhanced with support for majority voting

on received invocations and responses. 71
Active replication with input majority voting on invocations. 73
Active replication with output majority voting on responses. 73
Inconsistency with active replication of multithreaded objects. 77

Inconsistency with passive replication of multithreaded objects when (a) the
primary replica is initially operational, and (b) the primary later fails and

the backup replica becomes the new primary replica. 78
Sequence of actions of the operation scheduler at a replica of a MT-domain. . 80
Remote callback operations on a MT-domain. Scheduling identifiers assigned

by the operation scheduler enable the detection of remote callbacks. 83

Algorithm executed by the operation scheduler each time it is activated. The
operation scheduler is associated with a MT-domain D, whose logical thread-
of-control Tp executes the operation Ip with scheduling identifier sp. 85
Implementation of the MT-domain operation scheduler of the Eternal system
using the Interceptor, which is transparently co-located with the replica of
the MT-domain. 87
Snapshot of a MT-domain operation scheduler for a specific example. 88

xVil

7.1

7.2

7.3

7.4

8.1

8.2

8.3
8.4

8.5

8.6

8.7

8.8

Gateways bridge fault tolerance domains, and allow objects in one fault tol-
erance domain to communicate with those in another. Here, P; represents a
processor hosting some application objects.
Eternal’s gateways allow unreplicated clients to communicate with replicated
SETVETS. o o v v i vt e e e
Messages sent (a) between an unreplicated client and the gateway, (b) from
the gateway to a replicated object within a fault tolerance domain, and (c¢)
between replicated objects within a fault tolerance domain.
Actions of the gateway for incoming messages from (a) external unreplicated
clients outside a fault tolerance domain, and (b) replicated objects within a
fault tolerance domain.

Throughput for varying message sizes measured for a test application running
over VisiBroker for C++ on Solaris 2.x.
The round-trip time for an invocation is a measure of (a) the time taken
by the ORB’s marshaling/unmarshaling mechanisms and the communication
infrastructure when the objects are unreplicated, and (b) the additional time
due to Eternal’s Mechanisms and the Totem protocols when the objects are
replicated and managed by Eternal.00
The IDL interface through used in the benchmarks.
Round-trip times for the benchmark application for invocations that involve
primitive IDL types as individual entities.
Round-trip times for the benchmark application for invocations that involve
CORBA anys that encapsulating primitive IDL types.
Round-trip times for the benchmark application for invocations that involve
CORBA arrays encapsulating primitive IDL types.
Round-trip times for the benchmark application for invocations that involve
CORBA sequences encapsulating primitive IDL types.
Performance of the Eternal system.

XVl

Chapter 1

Introduction

The distributed computing model is appropriate for many applications, especially those
that require the sharing of resources across a network, the distribution of workload for load
balancing purposes, or the localization of services for increased availability. Most distributed
computing applications are based on the client-server model, where client software requests,
and obtains services from, server software that is typically not on the same machine.

Another powerful and widely used design and programming methodology is the object
model. The notions of structure (data) and behavior (methods to access and modify the
data) are combined into a single entity, called an object, that can be accessed only via
a published or a well-known interface. The object model encompasses the concepts of
abstraction, encapsulation, inheritance and polymorphism. The power of the object model
lies 1n 1its ability to separate interface from implementation, to promote modularity and
the reuse of components, to provide for the hierarchical composition of interfaces, and to
support the substitutability of objects with matching interfaces.

The integration of the distributed computing model and the object model leads to dis-
tributed object computing. Objects are distributed across machines, with client objects
invoking operations on, and receiving responses from, remote server objects. Both the
client’s invocations, and the server’s responses, are conveyed in the form of messages sent
across the network.

1.1 Common Object Request Broker Architecture

There are several distributed object computing models. One of these, the Common Object
Request Broker Architecture (CORBA) [20, 54], was established by the Object Management
Group' in 1989 as a standard for distributed object computing. Since then, the CORBA

1The OMG is a nonprofit consortium of over 800 corporations, government agencies and academic insti-
tutions that was established to develop an interoperable distributed object computing standard, CORBA.
The University of California, Santa Barbara is a member of the OMG.

2 Introduction

Client —
Object
R —)
Method
Client
L Stub
Interface Implementation
Repository Repository
Dynamic Client ORB Server Dynamic Object
Invocation Stub Interface Skeleton Skeleton Adapter
Interface Interface Interface Invocation
‘ Object Request Broker (ORB) Core
‘ Operating System Communication
Medium

¢—ﬁ Hardware Patform

Figure 1.1: Common Object Request Broker Architecture.

standard has grown in popularity and in its ability to meet the needs of commercial and
critical distributed object applications. The same set of standard specifications for CORBA
is translated into implementations by different vendors onto diverse operating systems and
platforms.

CORBA uses a purely declarative language, the OMG Interface Definition Language
(IDL), to define interfaces to objects. The IDL interfaces are subsequently mapped, through
an IDL compiler provided by an implementor of CORBA, onto specific programming lan-
guages. These IDL compilers respect the OMG-standardized IDL-to-language mappings for
C, C++, Java, Smalltalk, etc. A CORBA client object wishing to make use of the services of
a CORBA server object needs to know only the server object’s IDL interface, and never the
programming-language-specific implementation of the server object. This has the advantage
that the code for the client and server objects need not be written in the same programming
language.

CORBA applications can transcend the various sources of heterogeneity and incompat-
ibility that can arise in typical distributed applications. CORBA’s language transparency
implies that client objects need to be aware of only the IDL interface, and never of the
language-specific implementation, of a server object. CORBA’s interoperability implies
that a client object can interact with a server object, despite differences in platforms and
operating systems on which the client and the server objects are hosted. CORBA’s location
transparency implies that client objects can invoke server objects, without worrying about
the actual locations of the server objects.

As shown in Figure 1.1, the key component of the CORBA model is the Object Request
Broker (ORB), which acts as an intermediary between the client and the server objects, and
shields them from differences in platform, programminglanguage and location. The CORBA

1.1 Common Object Request Broker Architecture 3

application developer codes the interface of every application object in CORBA IDL, and
an IDL compiler transforms the server object’s interface description into a language-specific
client-side stub and a server-side skeleton. The stub is compiled into the client’s code, and
the skeleton 1s compiled into the server’s code.

When a client object invokes an operation on a server object, the request passes through
the server object’s stub on the client side. Before passing the request onto the ORB, the
stub marshals the request into the format appropriate for the operation. Instead of using
the IDL stub (which represents a “static” invocation interface), a client object may use the
Dynamic Invocation Interface (DII) to select the object type and operation at runtime. The
Interface Repository serves as a storehouse for the interface definitions of all the objects in
the distributed system. Its role i1s crucial to dynamic invocation because it allows the client
object to request the ORB to retrieve the target server object’s IDL interface.

Upon receiving the client object’s request through the stub, the client-side ORB locates
the server object, establishes a connection to the server object, and dispatches the request
to the server-side ORB. The server-side ORB consults the Implementation Repository to
determine if the server object is currently operational. If not, the server-side ORB, by
means of the Portable Object Adapter (POA), activates the server and prepares it to receive
requests. The Portable Object Adapter then uses the server object’s skeleton on the server
side to pass the invocation onto the server object. After the server object performs the
operation, it returns a response, which the server-side ORB routes back to the client that
invoked the operation. It is possible for a CORBA object to assume simultaneously a client
role for one operation, and a server role for a different operation. By handling the discovery
of servers, as well as the routing of requests, on behalf of client objects, the ORB provides
for location transparency.

CORBA also encompasses a rich suite of basic services that almost every application
requires. CORBA’s Common Object Services [51] include Naming, Property, Event and
Lifecycle services, each of which is also specified in terms of standard IDL interfaces, and
implementations of which are intended to be provided by ORB vendors for use by CORBA
application programmers. This frees the CORBA application developer from the burden of
having to design and to write the code for such commonly-used functionalities.

One of the aims of CORBA is to promote the interworking of objects across heteroge-
neous platforms, transcending differences in hardware architectures, operating systems or
programming languages. CORBA makes this possible through its interoperability specifi-
cations.

1.1.1 Interoperability with IIOP

The CORBA standard’s General Internet Inter-ORB Protocol (GIOP) is a set of spec-
ifications for mapping the messages exchanged by objects, through the ORB, onto any
transport protocol that meets a minimal set of requirements. The GIOP interface is
compact, and consists of a set of well-defined message formats for inter-object commu-
nication — Request, Reply, CancelRequest, CancelReply, LocateRequest, LocateReply,
MessageError, Fragment and CloseConnection. The transport protocol onto which GIOP
1s mapped must be connection-oriented, reliable and byte-stream-oriented, and must provide
notification of connection loss.

4 Introduction

The Internet Inter-ORB Protocol (ITOP) is the concrete OMG-standardized mapping of
the GIOP specifications onto the TCP/IP protocol suite. Every conformant implementation
of CORBA must include support for ITOP, regardless of the hardware or software platform
of choice. As additional support for interoperability, CORBA mandates that every CORBA
object be uniquely identified in a platform-independent and vendor-independent way that
can be interpreted by every CORBA-conformant ORB. This identification takes the form
of a stringified handle, known as an Interoperable Object Reference (IOR). At a minimum,
an object’s IOR contains information about the host and the port on which the object is
prepared to receive requests.

Because the structure of an IOR is prescribed in the CORBA standard, an IOR generated
by one ORB can be interpreted by a CORBA-conformant ORB from a different vendor.
Thus, a client object, having obtained the IOR of a server object, can use its ORB to
retrieve a reference to the server object from the IOR, even if the client and the server
objects use different ORBs. The client can then invoke the server using this reference,
provided that the client-side and server-side ORBs communicate over IIOP. The coupling
of IORs with ITOP allows objects hosted by different ORBs to interact.

Thus, the role of IIOP is crucial to CORBA because it provides a single protocol standard
to which all conformant implementations of CORBA must adhere, and also because it
enables CORBA applications hosted over IIOP-enabled ORBs to transcend differences in
platform, hardware architecture and vendor-specific mechanisms. The attractiveness of IIOP
manifests itself not only in the interoperability of different ORBs, but also in its adoption by
other enterprise applications. For instance, the latest release of the Java Development Kit
(JDK 1.2) contains a standard extension called RMI-ITOP [67] to enable the interworking
of Java’s Remote Method Invocation (RMI) facilities with CORBA applications. Such
non-CORBA applications can avail themselves of the services of CORBA objects within a
distributed system, merely by being able to “talk” TIOP.

1.1.2 What Does CORBA Lack?

Currently, CORBA applications cannot interact with distributed objects communicating
over protocols that do not conform with the GIOP specifications. However, if CORBA
objects are, in fact, required to communicate with applications that use a different protocol,
it is left to the ORB developer to rewrite the transport-level mappings of the ORB, or to
build ORB-level mechanisms to enable “pluggable protocols” [30, 55]. In either case, access
to, and considerable modification of, the source code of the implementation of CORBA is
required to provide the support for adding a new protocol. Furthermore, an ORB that
has been modified in this way may no longer conform to the CORBA standard. Instead,
it 1s desirable to map the TIOP messages of CORBA objects, in a transparent manner
and without modification to the ORB, onto different protocols for interoperation with non-
ITOP-enabled systems. Such mechanisms would enable legacy systems using protocols other
than IIOP to take advantage of CORBA’s other facilities, without requiring the legacy
applications to be modified. Furthermore, the CORBA standard itself may not need to be
modified if the protocol adaptation were transparent.

Another deficiency in the CORBA standard is its lack of debugging or profiling mecha-
nisms or services. Nevertheless, some of the commercial ORBs are integrated with vendor-

1.2 Fault Tolerance for CORBA 5

specific tools to enable CORBA programmers to “watch” some of the ORB’s message-level
interactions, e.g., the smart proxy and filter mechanisms provided with Iona Technologies’s
Orbix [23]. However, to exploit these tools, the application developer must understand the
mechanisms and must incorporate the required “hooks” for them within the application
code. Furthermore, these mechanisms provide only for limited and specific types of prob-
ing, and cannot be easily extended or customized as required by the application. Instead,
CORBA should be extended to provide profiling tools that would allow an application and
its messages to be transparently traced, without the need to embed any special code into
the application. Such a facility could serve not only for debugging, but also for monitoring
the system and for measuring the system performance.

Although the current CORBA standard supports location transparency, language trans-
parency and interoperability, it makes no provision for other desirable features such as fault
tolerance. The fault detection mechanisms that currently exist in CORBA are rudimen-
tary, and mostly consist of returning either system or user-defined exceptions if an object
or a processor “dies.” Of course, some commercial ORBs provide primitive support for the
fail-over of stateless server objects, e.g., the smart agent mechanism of Inprise Corpora-
tion’s VisiBroker ORB [22]. However, it is left to the CORBA application programmer to
implement consistent fault tolerance and recovery.

Today’s applications are sufficiently complex in themselves. It is therefore undesirable to
embed fault tolerance into the application, which would increase the application complexity
and the application development timescale. Instead, the difficulties of providing fault toler-
ance, recovery and consistency should be handled transparently and should not be exposed
to the application programmer, who is not necessarily experienced in dealing with such is-
sues. Transparent fault tolerance for CORBA has the advantages of allowing the CORBA
application programmer to focus on the application logic, and to leave the fault tolerance
to experts. This would result in the speedier development and deployment of fault-tolerant
CORBA applications, with a lower risk of getting the fault tolerance technology wrong.

The Object Management Group (OMG) has recognized the need to provide fault toler-
ance for CORBA applications by issuing a Request for Proposals (RFP) [52] for building
fault-tolerant CORBA applications through the use of entity redundancy. One of the OMG’s
objectives 1s that the augmentation of CORBA with fault tolerance should impact the ex-
isting CORBA standard minimally. Another requirement of the OMG’s RFP is that strong
replica consistency must be maintained as operations are performed that change the states
of the replicated entities.

1.2 Fault Tolerance for CORBA

Distributed object applications can be made fault-tolerant by replicating their constituent
objects, and distributing these replicas across different computers in the network. The
idea behind object replication is that the failure of one replica (or of a processor hosting a
replica) of an object can be masked from a client of the object because the other replicas
can continue to perform any operation that the client requires of the object.

A significant body of work exists in the area of fault-tolerant distributed object systems.
These include systems that are not based on CORBA, such as Arjuna [56], FRIENDS [15],

6 Introduction

FilterFresh [5] (for Sun Microsystems’ Java RMI model) and COMERA [72] (for Microsoft’s
DCOM model). However, different approaches [18, 46] have been developed for providing
reliability specifically for applications based on the CORBA standard. These approaches are
alike in their use of object replication to provide fault tolerance. However, the approaches
differ in a number of aspects — the degree of transparency to the CORBA application, the
degree of modification to the CORBA ORB, the specific mechanisms for achieving replica
consistency, and the level of replica consistency provided.

Initial efforts to enhance CORBA with fault tolerance took an integration approach,
with the fault tolerance mechanisms embedded within the ORB itself. With the advent of
Common Object Services in the CORBA standard, other research efforts have taken a service
approach, with the provision of fault tolerance through service objects above the ORB. The
novel interception approach that we have developed allows the transparent insertion of fault
tolerance mechanisms underneath the ORB. Interception achieves the best of the integration
and the service approaches, while providing other benefits as well.

1.2.1 Integration Approach

The integration approach to providing new functionality to CORBA applications involves
modifying the ORB to provide the necessary support. The extent of the modification to
the ORB depends on the functionality that is being added, with the likelihood that the
resulting modified ORB is non-compliant with the CORBA standard. However, because
the mechanisms form an intrinsic part of the ORB, the new functionality can be made
available in a way that is transparent to the application.

Thus, an integration approach to providing fault tolerance for CORBA implies that the
replication of server objects can be made transparent to the client objects because the fault
tolerance mechanisms are integrated into the ORB. Furthermore, the details of the replica
consistency mechanisms are buried within the ORB, and can be hidden from the application
programmer.

1.2.1.1 Electra

Developed at the University of Zurich, Electra [36, 37] is a fault-tolerant ORB that exploits
the reliable totally ordered group communication mechanisms of the Horus toolkit [69] to
maintain replica consistency. As shown in Figure 1.2(a), adaptor objects linked into the
ORB and into the applications convert the ORB’s messages into the multicast messages of
the underlying Horus toolkit. In Electra, the Basic Object Adapter (that has been replaced
with the Portable Object Adapter in CORBA 2.x) of the CORBA 1.x standard is enhanced
with mechanisms for creating and removing replicas of a server object, and for transferring
the state to a new server replica.

With Electra’s use of the integration approach, a CORBA client hosted by Electra can
invoke a replicated server object just as it would invoke a single server object, without
having to worry about the location, number, or even the existence, of the server replicas.

Unfortunately, as a side-effect of the integration approach, it is not possible for any
commercial off-the-shelf implementation of CORBA to exploit the technology of Electra
without undergoing significant modification to the transport-level mappings of the ORB.

1.2 Fault Tolerance for CORBA 7

Application
icati Object
e Object |
Group
+ Service v
Application CORBA ORB

Modified CORBA ORB J v

v 11OP Interception

Adaptor Objects \ DI/ps and Replication

CORBA ORB Reliable Multicast

Reliable Multicast

Ratform Hatform

Integration Approach Service Approach I nter ception Approach
@ (b) ©

Figure 1.2: Different approaches to fault-tolerant CORBA.

1.2.1.2 Orbix-+Isis

Developed by Iona Technologies, Orbix+Isis [24] was the first commercial offering in the
way of fault-tolerant CORBA. Like Electra, Orbix+Isis involves significant modification to
the internals of the ORB to accomodate the use of the Isis toolkit [7] from Isis Distributed
Systems for the reliable ordered multicast of messages.

The implementation of a CORBA server object must explicitly inherit from a base class.
Two types of base classes are provided — an Active Replica base class that provides support
for active replication and hot passive replication, and an Event Stream base class that
provides support for publish/subscribe applications.

The replication of server objects can be made transparent to the client objects. Orbix-
specific smart proxies can be used on the client side to collect the responses from the
replicated server object, and to use some policy (deliver first response, vote on all responses,
etc) to deliver a single response to the client object.

1.2.1.3 Maestro Replicated Updates ORB

Developed at Cornell University, Maestro [70] is a CORBA-like implementation of a dis-
tributed object layer that supports IIOP communication and that exploits the Ensemble
group communication system [68]. The ORB is replaced by an IIOP Dispatcher and multi-
ple request managers that are configured with different message dispatching policies. One
of these request managers, the Replicated Updates request manager, supports the active
replication of server objects. “Smart” clients have access to compound ITOP object refer-
ences (also known as compound TORs) consisting of the enumeration of the ITTOP profiles of
the replicas of a server object. A “smart” client connects to a single server replica and, in

8 Introduction

the event that this replica fails, can re-connect to one of the other server replicas using the
information in the compound IOR.

In the typical operation of Maestro, a client object running over a commercial ORB uses
ITOP to access a single Maestro-hosted server replica, which then propagates the client’s
request to the other server replicas through the messages of the underlying Ensemble system.
However, the server code must be modified to use the facilities that the request managers
of Maestro provide. Maestro’s emphasis is on the use of IIOP and on providing support for
interworking with non-CORBA legacy applications, rather than on strict adherence to the
CORBA standard. Thus, Maestro’s replicated updates execution style can be used to add
reliability and high availability to client/server CORBA applications in settings where it is
not feasible to make modifications at the client side.

Electra and Maestro support the replication of server objects only, and provide no mech-
anisms for the replication of client objects. Furthermore, both systems allow only for the
active replication style. No mechanisms exist within either Electra or Maestro for the de-
tection of duplicate messages that arise due to active replication and that might corrupt the
states of objects if not suppressed.

1.2.1.4 The AQuA Framework

Developed jointly by the University of Illinois at Urbana-Champaign and BBN Technolo-
gies, AQuA [10] is a framework for building fault-tolerant CORBA applications. AQuA
employs the Ensemble/Maestro [68, 70] toolkits, and comprises the Quality Objects (QuO)
runtime, and the Proteus dependability property manager [60]. Based on the user’s QoS
requirements communicated by the QuO runtime, Proteus determines the type of faults
to tolerate, the replication policy, the degree of replication, the type of voting to use and
the location of the replicas, and dynamically modifies the configuration to meet those re-
quirements. The AQuA gateway translates a client’s (server’s) invocations (responses) into
messages that are transmitted via Ensemble; the gateway also detects and filters duplicate
invocations (responses). The gateway handlers contain monitors, which detect timing faults,
and voters, which either accept the first invocation/response or perform majority voting on
the invocations/responses from the object replicas.

AQuA provides mechanisms for majority voting at the application object level, to detect
an incorrect value of an invocation (response) from a replicated client (server). However, in
order for majority voting to be effective for applications that must tolerate arbitrary faults,
more stringent guarantees are required of the underlying multicast protocols. Because AQuA
uses the underlying Ensemble group communication system, which tolerates only crash
faults, AQuA does not provide for the detection, or tolerance, of processor commission
faults or message corruption faults.

1.2.2 The Service Approach

The service approach to extending CORBA with new functionality involves providing the
enhancements through a new service, along the lines of the existing Common Object Services
[61] that form a part of the CORBA standard. Because the new functionality is provided
through a collection of CORBA objects entirely above the ORB, the ORB does not need to

1.2 Fault Tolerance for CORBA 9

be modified and the approach is CORBA-compliant. However, to take advantage of the new
service, the CORBA application objects need to be explicitly aware of the service objects.
Thus, it 1s likely that application code requires modification to exploit the functionality of
the new CORBA service.

Using this approach, fault tolerance can be provided as a part of the suite of CORBA
Services. Of course, because the objects that provide reliability reside above the ORB, every
interaction with these objects must necessarily pass through the ORB, and will thus incur
the associated performance overheads.

1.2.2.1 Distributed Object-Oriented Reliable Service (DOORS)

The Distributed Object-Oriented Reliable Service (DOORS) [63] developed at Lucent Tech-
nologies adds support for fault tolerance to CORBA by providing replica management, fault
detection, and fault recovery as service objects above the ORB. DOORS focuses on pas-
sive replication and is not based on group communication and virtual synchrony. It also
allows the application designer to select the replication style (cold passive and warm passive
replication), degree of reliability, detection mechanisms and recovery strategy.

DOORS consists of a WatchDog, a SuperWatchDog and a ReplicaManager. The Watch-
Dog runs on every host in the system and detects crashed and hung objects on that host, and
also performs local recovery actions. The centralized SuperWatchDog detects crashed and
hung hosts by receiving heartbeats from the WatchDogs. The centralized ReplicaManager
manages the initial placement and activation of the replicas and controls the migration of
replicas during object failures. The ReplicaManager maintains a repository that contains,
for each object in the system, the number of replicas, the hosts on which they are running,
the status of each replica and the number of faults seen by the replica on a given host.
This repository, which forms part of the state of the ReplicaManager, is periodically check-
pointed. DOORS employs libraries for the transparent checkpointing [71] of applications;
however, duplicate detection and suppression are not addressed.

DoorMan is a management interface to DOORS that monitors DOORS and the underly-
ing system in order to fine-tune the functioning of DOORS and to take corrective action by
migrating objects whose hosts are suspected of being faulty and about to crash. DoorMan
collects and displays data about DOORS, and provides feedback information to DOORS
about the underlying computing platform, to improve its decision making.

1.2.2.2 Object Group Service (OGS)

Developed at the Swiss Federal Institute of Technology at Lausanne, the Object Group Ser-
vice (OGS) [17, 18, 19] consists of service objects implemented above the ORB that interact
with the objects of a CORBA application to provide fault tolerance to the application.

OGS is comprised of a number of sub-services implemented on top of the commercial
ORBs, Orbix and VisiBroker. Each of these sub-services is independent and 1s itself imple-
mented as a collection of CORBA objects. Messaging, multicast, monitoring and consensus
are sub-services, with interfaces specified using OMG IDL. These sub-services together pro-
vide support for consistent object replication.

The multicast sub-service provides for the reliable unordered multicast of messages des-
tined for the replicas of a target server object. The messaging sub-service provides the

10 Introduction

low-level mechanisms for mapping these messages onto the transport layer. The consensus
sub-service imposes a total order on the multicast messages, while the monitoring sub-service
detects crashed objects.

To exploit the facilities of the OGS objects, the replicas of a server object must inherit
from a common IDL interface that permits them to join or leave the group of server replicas.
Thus, in order to be replicated, the server objects must be modified. This interface also
provides methods that allow the OGS objects to transfer the state of the replicated server
objects, as needed, to ensure replica consistency.

OGS provides a client object with a local proxy for each replicated server with which
the client communicates. The server’s proxy on the client side and the OGS objects on the
server side are together responsible for the mapping of client requests and server responses
onto multicast messages that convey the client’s request to the server replicas. The client
establishes communication with the replicas of a server object by binding to an identifier
that designates the object group representing all of the server replicas. The client can then
direct its requests to the replicated server object using this object group identifier. Once a
client is bound to a server’s object group, it can invoke the replicated server object as if it
were invoking a single unreplicated server object. However, because the client is aware of
the existence of the server replicas, and can even obtain information about the server object
group, the replication of the server is not necessarily transparent to the client. Also, with
this approach, a CORBA client needs to be modified to bind, and to dispatch its requests,
to a replicated CORBA server.

Because the client and the server objects must explicitly employ the service objects,
the replication is no longer transparent to the application. Furthermore, the OGS objects
use the Dynamic Invocation Interface (DIT) and the Dynamic Skeleton Interface (DSI) of
CORBA, both of which adversely impact the performance of the application.

1.2.2.3 Newtop Object Group Service

Developed at the University of Newcastle, the Newtop [39] service provides fault tolerance
to CORBA using the service approach. While the fundamental ideas are similar to OGS
described in Section 1.2.2.2, Newtop has some key differences.

Newtop allows objects to belong to multiple object groups. Of particular interest is
the way the Newtop service handles failures due to partitioning — support is provided for
a group of replicas to be partitioned into multiple sub-groups, with each sub-group being
connected within itself. Total ordering continues to be preserved within each sub-group. No
mechanisms are provided, however, to ensure consistent remerging of the sub-groups once
communication is reestablished between them.

1.2.3 The Interception Approach

The interception approach involves “capturing” specific system calls or library routines used
by the application, and modifying their call parameters or return values, or even the calls and
routines themselves, to alter the behavior of the application, or to enhance the application
with a new and different functionality.

1.2 Fault Tolerance for CORBA 11

CORBA Application

Evolution
Manager
icati Client Server
R&pz!\:%g " Replica Replica B K{Aesource
e . IERISTIRIREE N anager
CORBA ORB CORBA ORB
—— | I10OP Messages
i L o Logging &
Logging & Renlication [replicaion Ly’
Recovery € cohani I Interceptor Interceptor Meoharisme Recovery
Mechanisms Meclhamsms Mechanisms

_ A Reliable _
Reliable Totally Ordered Reliable
Multicast Multicast Messages Multicast
Lo
Log ‘ Aatform Aatform 9

Figure 1.3: Structure of the Eternal system.

The advantages of this approach are that neither the ORB nor the objects are ever aware
of being “intercepted” and, thus, the new functionality is provided to the application in a
manner that is transparent both to the application and to the ORB. Thus, modification
of, or even access to, the source code of the ORB is not required. Moreover, the CORBA
application does not need to be modified or recompiled.

1.2.3.1 The Eternal System

The Eternal system [42, 45, 47, 48] that we have developed at the University of California,
Santa Barbara, exploits the interception approach to provide fault tolerance for applications
running over commercial off-the-shelf implementations of CORBA. The mechanisms imple-
mented in different parts of the Eternal system work together efficiently to provide strong
replica consistency with low overheads, and without requiring the modification of either the
application or the ORB.

In the Eternal system, the client and server objects of the CORBA application are
replicated, and the replicas are distributed across the system. Different replication styles
— active, cold passive, warm passive and hot passive replication — of both client and server
objects are supported. To facilitate replica consistency, the Eternal system conveys the IIOP
messages of the CORBA application using the reliable totally ordered multicast messages of
the underlying Totem system [1, 40], also developed at the University of California, Santa
Barbara.

The structure of the Eternal system is shown in Figure 1.3. The Eternal Replication
Manager replicates each application object, according to user-specified fault tolerance prop-
erties (such as the replication style, the checkpointing interval, the fault monitoring interval,
the initial number of replicas, the minimum number of replicas, etc.) and distributes the

12 Introduction

replicas across the system. The Eternal Resource Manager monitors the system resources,
and maintains the initial and the minimum number of replicas.

The Eternal Interceptor captures the ITOP messages (containing the client’s requests and
the server’s replies), which are intended for TCP/IP, and diverts them instead to the Eternal
Replication Mechanisms for multicasting via Totem. The Eternal Replication Mechanisms,
together with the Eternal Logging-Recovery Mechanisms, maintain strong consistency of
the replicas, detect and recover from faults, and sustain operation in all components of a
partitioned system, should a partition occur.

The Eternal Evolution Manager exploits object replication to support upgrades to the
CORBA application objects. The Replication Manager, the Resource Manager and the
Evolution Manager are themselves implemented as collections of CORBA objects and, thus,
can benefit from Eternal’s fault tolerance.

The types of faults tolerated by Eternal, and the underlying Totem system, are com-
munication faults, including message loss and network partitioning, and processor, process,
and object faults. Eternal can also tolerate arbitrary faults by exploiting protocols such as
SecureRing [28], also developed at the University of California, Santa Barbara, with more
stringent guarantees than are provided by Totem. To tolerate value faults in the application,
Eternal uses active replication with majority voting [44] applied on both invocations and
responses for every application object.

The technology of Eternal formed the basis of our response [13], in October 1998, to the
Object Management Group’s Request for Proposals on fault-tolerant CORBA. With our
close involvement in the ongoing OMG standardization process, it appears likely that the
technology of the Eternal system will form the basis of the forthcoming CORBA standard
for fault tolerance that is due in January 2000.

Chapter 2

Interception

CORBA currently lacks support for the use of alternative protocols, for the profiling and
monitoring of application objects, and for security and fault tolerance. To equip the ap-
plication with these additional features, the CORBA application programmer must either
build, or be able to use, the code that provides these features. Building such specialized
code requires the application programmer not only to invest substantial effort, but also to
worry about issues that are essentially outside the application domain. Using existing code
that provides these features, while involving less effort than building them, also requires
some level of understanding to manage the interaction of those features with the CORBA
application and the ORB.

An interceptor [50] is an entity that can alter the processing of requests and responses,
and the behavior of activities that are under the control of the ORB or the CORBA appli-
cation. Through the use of interceptors, it is possible to enhance CORBA applications, at
run-time, with additional features in a manner that is transparent to (and thus requires no
modification of) either the application or the ORB. The OMG has also recognized the value
of augmenting the CORBA standard with portable ORB-level interceptors [53] that can be
inserted at different points in the ORB’s processing.

2.1 Interceptors for CORBA

In the context of the Eternal system, an interceptor is a non-ORB-level, non-application-
level entity (a process or a shared library, depending on the specific implementation of
interception). The interceptor transparently “attaches” itself to every executing CORBA
object, without the object’s or the ORB’s knowledge, and is capable of modifying the object’s
behavior as desired, at run-time. The advantage of this kind of interceptor, over ORB-level
interceptors, lies not only in its transparency both to the ORB and to the application,
but also in the possibility of its implementation in an ORB-independent manner. For the
remainder of this dissertation, the interception of CORBA application objects refers to the

13

14 Interception

CORBA CORBA
Object Object
v v
‘ CORBA ORB ‘ CORBA ORB

[Library routines of interest

Shared Object
Interposer
‘ Inter ceptor ‘ I nter ceptor € >
Interposed
Image of System calls - Shared Object
Process of interest Shared Object
- Dependencies € J
Log and return Transmit using &
different protocol .
@ gwrl)pli)rf?ﬁng) (e.g., libility) Modify and return
0., to operating system it usi
Modify and return Log and return to (eg., comprssion) ;;?gsg'ttp‘gtg%;
to operating system operating system it
(e.g., compression) (e.g., pofiling) (e.g., eliability)
A\
Operating System ‘ Operating System
€Y (b)

Figure 2.1: Possible implementations of an interceptor for CORBA as (a) a separate process using
the /proc-based approach, and (b) a shared library using the library interpositioning approach.

use of non-ORB-level interceptors, such as the Interceptor of the Eternal system shown in
Figure 1.3.

Current operating systems provide “hooks” that can be exploited to develop interceptors.
With the Unix operating system, at least two possible implementations of interceptors exist.
The first of these approaches, the /proc-based implementation, provides for interception at
the level of system calls, and results in an interceptor that i1s a separate process. The
second approach, the library interpositioning implementation, provides for interception at
the level of library routines, and results in an interceptor that i1s a shared library. While the
techniques may differ, the intent and the use of the interceptor in both cases is identical,
and requires no modification of the intercepted CORBA objects, the ORB or the operating
system.

The specific system calls to intercept in a /proc-based implementation or the specific
library routines to redefine in a library-interpositioning implementation, depends on the
extent of the information that the interceptor must extract (from the ORB or the CORBA
application) to enhance the application with new features. The interceptor may capture
all, or a particular subset, of the system calls or library routines used by the CORBA
application, depending on the feature being added.

2.1.1 Implementation of Interceptors
2.1.1.1 System-Call Interception

The mechanisms underlying the /proc-based implementation have been developed in the
context of global file systems [2, 3], and serve to extend the functionality of standard oper-

2.1 Interceptors for CORBA 15

sysset_t sysCallsToCatch;

if ((process = open(“/proc/080117, O.RDWR)) == -1) {
/* Process cannot be intercepted */
exit(1);

/* Initializes the set of system calls to catch*/
premptyset(&sysCallsToCatch);

/* Specifies the system calls to intercept */
praddset(&sysCallsToCatch, SYS_poll); /* Catch the poll() system call
praddset(&sysCallsToCatch, SYS_stat); /* Catch the stat() system call

/* Enables the specified system calls to be caught on entry to the call,
i.e., before the system call is processed. */

ioctl(process, PIOCSENTRY, &sysCallsToCatch);

/* Enables the specified system calls to be caught on exit from the call,
i.e., after the system call has been processed. */

ioctl(process, PIOCSEXIT, &sysCallsToCatch);

/* The interceptor runs forever, executing an PIOCWSTOP ioctl
to wait for the process to stop on a specified system call, and a
PIOCRUN ioctl, to release the process after handling the system call. */

Figure 2.2: Snippet of C code for a /proc-based interceptor that is designed to catch the po11()
and stat () system calls of a process.

ating systems at the user level. An interception layer can transparently “attach” itself to an
executing process, in our case, a CORBA client or server, in order to monitor and control
its behavior. The client or server does not need to be modified or recompiled to exploit this
approach.

In the Unix System V operating system, the /proc local file system [16] on each computer
provides access to the image of each process currently hosted by that computer. The /proec
interface was originally introduced for debugging purposes. Debugging utilities such as
truss on Solaris 2.x are examples of commercial /proe-based interceptors.

Each entry in the /proc directory is a file whose name corresponds to the Unix process-
ID of a current process on the computer. For instance, on Solaris 2.x, a process executing
with process-ID 8011 would have the numerical filename entry /proc/08011 inside the /proec
file system. The files in the /proc file system, and thus the processes that they represent,
can be manipulated via a standard interface.

This standard interface, consisting of the open(), close(), read(),write() and ioctl()
system calls, and the praddset (), prfillset (), prdelset () and the premptyset () macros,
allows the image of each process to be accessed for either process monitoring or process con-
trol. An open() for reading and writing enables process control; a read-only open() allows
inspection but not control. The tracing mechanism is enabled by specifying, through this
interface, the system calls to “catch” for each process. Figure 2.2 shows a snippet of the in-

16 Interception

Object Implementation CORBA Object Object Implementation CORBA Object
o XYZ() «—> o XYZ() <>
Process Address Space Process Address Space v
Runtime resolution Runtime resolution
of symbol XYZ()) of symbol XYZ()
XYZ() libZ.so ® XYZ() libMyZ.so

- XYZ() libZ.so
Can use dynamic linking
facilities to locate the
origina definition of
symbol XYZ()

(€Y (b)

Figure 2.3: Resolution of a symbol at runtime (a) without library interpositioning, and (b) using
library interpositioning to provide an alternative symbol definition, as well as access to the original
symbol definition.

terceptor code that uses the /proc interface routines to specify that the pol1() and stat()
system calls are to be intercepted for a process with process-ID 8011. The arguments and
the return values of the intercepted system calls can be extracted, and can even be modified.
By appropriate “patching” of the arguments of these system calls, or even the function of
the system call itself, the behavior of the intercepted process can be altered.

As shown in Figure 2.1(a), the /proc-based implementation of the Eternal system’s
Interceptor views each CORBA client or server as a process that can be controlled via
the facilities of the /proc interface. Thus, Eternal’s Interceptor can monitor each CORBA
object for the lifetime of the object, for system calls related to memory management, network
communication or file access. For CORBA applications, the interactions between distributed
objects are of the greatest interest to Eternal, and, thus, the Interceptor is designed to
“watch” for specific system calls made by CORBA objects when they communicate over

ITOP.

2.1.1.2 Library-Routine Interpositioning

Instead of examining a process’s behavior at the granularity of system calls, the library inter-
positioning implementation of an interceptor can examine and modify a process’s behavior
at the granularity of library routines. The library interpositioning implementation exploits
the operating system’s runtime linker-loader facilities [11, 34, 66] that allow shared libraries
to be loaded into a process’s address space, at run-time, as a part of the process’s initializa-

2.1 Interceptors for CORBA 17

tion. These additional shared libraries can be mapped into a process’s address space after
the binary executable (that the process represents) is loaded into memory, and before any
of the compile-time shared library dependencies can be mapped into the process’s space,
as shown in Figure 2.1(b). The runtime linker achieves this effect with no modification, no
relinking and no recompilation of the application source code, and requires access only to
the binary executables of the application.

Library interpositioning exploits the fact that a compiled binary can have dynamic li-
brary symbols that remain intentionally unresolved until run-time. At run-time, the first
shared library in the process’s address space that resolves a symbol (i.e., provides a defini-
tion for the symbol) becomes the accepted source for that symbol’s definition for the lifetime
of the process. If subsequent shared libraries within the same process’s address space also
provide definitions of the same symbol, the first accepted symbol definition interposes on,
or hides, all of the definitions that follow for the same symbol.

Figure 2.3 shows the implementation of a CORBA object that requires access to the
function XYZ(). In the normal course of events, as shown in Figure 2.3(a), the definition for
the symbol XYZ() is resolved at runtime from the standard library 1ibZ.so. Figure 2.3(b)
shows a custom library interposer 1ibMyZ. so that also contains a definition for the symbol
XYZ(). When 1ibMyZ.so is inserted into the process’s address space ahead of 1ibZ.so,
the definition of the symbol XVYZ() as provided by the interposer is accepted ahead of the
default definition. The default definition of the symbol can still be located, and invoked (if
needed), by the library interposer using the dynamic linking facilities.

Thus, the definition of a symbol within a library interposer (i.e., a library that is inserted
into the process’s address space ahead of all other shared libraries) is accepted by the process
as the symbol’s default definition. The trick, then, 1s to insert custom or desired definitions
of symbols of interest into a library interposer, and then to let the runtime linker do its job.
The dynamic linked libraries (DLLs) of the Windows NT operating system provide similar
hooks that can be exploited to build interceptors [4].

The only requirement for the use of library interpositioning is that the application must
be dynamically linked to the shared libraries that we are interested in interposing. The
library interposer need not completely replace the library of interest, and can provide al-
ternative definitions for only those library functions or system calls of interest to the In-
terceptor. Through the extensive support for dynamic linking and libraries provided by
the Unix operating system, it is also possible for a function interposer to use the dynamic
linking facilities to find the address of, and invoke, the real definition of the function that it
replaces. This is very useful in adding to, or enhancing, a library routine without essentially
altering its functionality, e.g., in building profilers, debuggers and ITOP message parsers for
unmodified CORBA applications.

2.1.1.3 Comparison

With the library interpositioning technique, the granularity of interception or of process
modification is the library routine (and not the system call as it is in the /proc interception
case). This greatly reduces needless interception, and, thus, results in less overhead.

For instance, in Unix, a TCP/IP connection is opened with the socket() library rou-
tine (defined in 1libsocket.so), while a file is opened with fopen() (defined in 1libc.so).

18 Interception

However, both socket () and fopen() ultimately invoke the open system call on a file, with
the socket () case involving the special “device filename” /dev/tep, and the fopen() case
involving a regular filename in the file system. Thus, the interception of the open system
call will catch both types of files being opened. However, if the intent of interception is
to capture only TCP/IP communication, the interception of the open() system call leads
to more undesired interceptions (because of the additional intercepted accesses to regular
files). Instead, if interpositioning on the socket() library routine were used, regular file
system accesses would effectively never be “seen”.

Another benefit of library interpositioning is that a library interposer for one ORB can
be readily used with other ORBs. This is primarily because the point of interception is at
the level of library routines, which are more or less implemented in the same way across
different operating systems. System calls, on the other hand, tend to be very closely related
to the operating system, and are thus kernel-specific and largely undocumented!

For instance, to communicate over TCP/IP, all CORBA objects must ultimately use
sockets through the routines of a standard socket library. The socket library 1ibsocket.so
is, for the most part, generic, well-documented and similar across many variants of the
Unix operating system, although their implementations in terms of system calls may vary.
Thus, by making the library routines, rather than system calls, the point of interception, the
interception code does not need to be modified for different commercial ORBs. Section 8.1
describes some of the particular difficulties in building interceptors for different commercial
ORBs.

With the /proc interception technique, the interceptor is required to be implemented as
a separate process under whose control all CORBA application objects must be launched
for interception to be effected. After launching a CORBA object, the interceptor “attaches”
itself to the process containing the CORBA object through the /proc interface, and then
proceeds to intercept the system calls of interest. With the library interpositioning tech-
nique, however, because the interceptor is implemented as one of the shared libraries inserted
into the process space of a CORBA object, the interceptor is not a separate process in its
own right and, thus, the overhead of context switching (between the interceptor and the
intercepted application) is greatly reduced.

Of course, there are situations where a /proc-based interceptor is preferred over the
library-interpositioning interceptor. This is particularly the case when commercial ORBs
use proprietary libraries whose API is not documented or easily inferred. Furthermore, if
CORBA applications employ static linking, rather than dynamic linking, of libraries, it is
infeasible to use the library interpositioning approach. Only the /proe-based interceptor
can be used in such cases because all libraries (whether proprietary, statically linked, or
dynamically linked) must necessarily use system calls to communicate with the operating
system. Thus, the system calls invoked by the application code form an easier point of
interception than the unknown or statically linked library routines.

2.2 Interceptors for Fault-Tolerant CORBA

Perhaps the most striking use of interceptors is in their enhancement of CORBA with fault
tolerance, through the addition of multiple features, including those for message parsing,

2.2 Interceptors for Fault-Tolerant CORBA 19
Replica of Replica of
CORBA Object CORBA Object
v \
‘ CORBA ORB ‘ CORBA ORB
Interceptor’s Interface Interceptor’s Interface
4
‘ I nter ceptor ‘ I nter ceptor
IIOPMe%geS/ Deélivery of
110P Messages
and Dispatch
Profiling of Threads Profiling
K Monitors replicas and | Monitors repl icasand |
processor load for processor load for
resource management resource management
M g;a ||:R
Protocol Protocol
Adaptation Adaptation
Rdicble ‘E”“WS“'M”OP o9 | schedulin e o 1107 ey
for transmission using 9
M It as Reliabl m jesinto |1OP m es
SChedU“ng “ c reliable multicast protooo\ [— Mulltica;
dispatches Messages
operations
onto threads
Replication Replication
M anagement M anagement

Adds information to enable
detection and suppression
of duplicate operations

Detects and suppresses
duplicate operations

‘ Reliable Multicast System

‘ Reliable Multicast System

‘ Patform ‘ Platform

@ ()

Figure 2.4: Enhancements provided by interceptors for fault-tolerant CORBA in the path of (a)
outgoing messages, and (b) incoming messages.

thread scheduling, protocol adaptation and consistency management. The Eternal system
[42, 45, 47, 48] exploits interception in this manner to enhance CORBA with fault tolerance.
Eternal’s Interceptor allows fault tolerance to be provided transparently to the ORB and to
the application, by mapping the intercepted system calls or library routines onto the Eternal
Replication Mechanisms and the Eternal Logging-Recovery Mechanisms.

In the current version of the Eternal system, the Interceptor is implemented as a collec-
tion of library interposers, each interposer overriding a specific subset of a standard library
and, thus, providing specific enhancements. To divert the CORBA application’s TCP /IP-
based ITOP communication to the Replication Mechanisms, the Interceptor employs a socket
library interposer. To manage the activation and dispatch of operations to the different
threads in a multithreaded object for reasons of replica consistency, the Interceptor employs
a thread library interposer.

20 Interception

2.2.1 Socket Library Interposer

To facilitate the consistent replication of objects, the IIOP messages are conveyed over a
reliable totally ordered multicast protocol, instead of over TCP/IP. For this purpose, Eternal
employs the Totem system [40], not only for its high performance and its fault tolerance,
but also for its simple and elegant interface.

The Interceptor, collocated with the application objects in the process’s address space,
completely hides the alteration of the course of the IIOP messages from both the ORB and
the CORBA application objects. Thus, all communication between CORBA objects occurs,
without their knowledge, over the reliable totally ordered multicast protocol, instead of over

TCP/IP.

2.2.1.1 Default Behavior

Figure 2.5 shows the typical sequence [65] of library routines that a CORBA client and
server must invoke in order to establish a TCP/IP connection, and to communicate using
ITOP, using a connection-oriented protocol such as TCP/IP.

Default socket() Routine

The socket () routine is used by the CORBA server to create its listening socket (where
it receives client requests that lead to further connections being spawned). The CORBA
client uses the socket () routine to create a TCP/IP socket that eventually connects to the

CORBA server.

Default bind() Routine

The bind () routine is invoked by a CORBA server to bind itself to an address on which it
can subsequently listen for connection requests from clients.

Default 1isten() Routine

The 1isten() routine is invoked by a CORBA server to indicate its willingness to listen for
connection requests from clients.

Default accept() Routine

The accept () routine is invoked by a CORBA server to wait for a client to send a connection
request. The accept () routine takes the first enqueued connection request, and establishes
a new TCP/IP socket with the client that initiated the connection request. The CORBA
server uses this new socket descriptor to exchange IIOP messages with the CORBA client
at the other end of the connection.

Default connect() Routine

The connect() routine is invoked by a CORBA client to establish a connection with a
CORBA server.

Default setsockopt() Routine

The setsockopt() routine is invoked by the ORB, on behalf of the CORBA client or
server, to set options that affect the performance or efficiency of the socket. Because the

2.2 Interceptors for Fault-Tolerant CORBA

socket()

Standard library routine

!

bind()

Standard library routine

A

listen()
Standard library routine
socket()
A
Standard library routine accept ()

Standard library routine

‘ ¢

connect() Blocks until client connects
Standard library routing | < L>
Connection established
over TCPIP
\ 4
write()
— read()
Standard library routine ' 'Of;m‘é?icg'ton
Standard library routine

v

Server processes the request

v

v write()
read() Mf Standard library routine

from server

Standard library routine

CORBA Client CORBA Server

Figure 2.5: Sequence of steps for connection establishment and the communication of IIOP
messages between an unreplicated CORBA client and an unreplicated CORBA server using the
standard socket library routines.

22 Interception

CORBA client and server communicate over TCP/IP, some of these socket options may be
particular to TCP/IP. For instance, the TCP_NODELAY socket option used by ORBs such
as VisiBroker (from Inprise Corporation) [22] and TAO (from Washington University, St.
Louis) to allow TCP/IP clients to send small messages as soon as possible, without any
buffering delays.

2.2.1.2 Interposed Behavior

In order for the Eternal system to ensure that the inter-object communication occurs over a
reliable totally ordered multicast group communication protocol (instead of over TCP/IP),
both the client and the server must establish the socket to the Replication Mechanisms
instead. To achieve this without modifying the application, and without either the client
or the server ever being aware of it, a socket library interposer redirects all TCP/IP com-
munication to the Replication Mechanisms. The socket library interposer “replaces” the
socket library routines that CORBA objects use to connect and communicate over TCP /IP.
It is not necessary for the socket library interposer to completely replace all of the symbol
definitions within a Unix socket library such as libsocket. so.

The sequence of operations using the socket library interposer is shown in Figure 2.6.
The TCP/IP socket between the client and the server is now converted to a Unix domain
socket to the Replication Mechanisms. Because the socket library interposer preserves the
semantics of the socket operation, including valid return values, the client (server) continues
to believe that the peer endpoint of the socket is the server (client). This ensures that both
the client and the server continue to behave in a normal manner, and communicate with
each other using ITOP messages. The Replication Mechanisms, the real recipient of the
ITOP messages, convey them over the underlying multicast group communication system.

The fact that the socket library interposer maintains the illusion of a TCP/IP connection
to the CORBA client and server also implies that, once the socket 1s established, and
valid socket descriptors are returned to the client and the server, the IIOP messages are
automatically sent to the Replication Mechanisms using the socket descriptors. This implies
that the read() and the write() routines do not need to be interposed. They will simply
send and receive ITOP messaes through a valid socket descriptor, which the application and
the ORB “believe” refers to a TCP/IP socket but which, in fact, refers to the Unix domain
socket between the application and the Replication Mechanisms.

The socket library interposer does not need to interfere in the actual path of the ITOP
messages once the socket has been established. This is a tremendous advantage in terms of
performance because the Interceptor is absent in the application’s invocation-response path,
which is the critical path for determining an application’s performance.

While library interpositioning overrides the original definitions of the library routines,
it does allow for access to the original uninterposed definitions of the library routines,
should they be required. For instance, when the TCP/IP connection is converted into a
Unix domain connection to the Replication Mechanisms, while socket () is overridden to
convert an AF_INET socket to an AF_UNIX socket, this nevertheless requires access to the
uninterposed socket () routine to form the Unix domain socket.

The socket library interposer consists, in fact, of 140 lines of code written in C (because
the real socket library is written in C) that overlays only specific socket library routines,

2.2 Interceptors for Fault-Tolerant CORBA 23

including socket(), bind(), listen(), accept(), connect() and setsockopt(). Once
the socket is established, close() on the socket file descriptor (which now represents a
Unix domain socket instead of a TCP/TP-based socket) uses the standard library routine.

socket () Interposer

Both the client and the server are made to assume a client role with respect to the local
Replication Mechanisms on their machines. The reason for this is that the Replication
Mechanisms serve as the conduit for ITOP messages which are, in fact, conveyed through
the underlying multicast group communication protocol.

Thus, the socket () interposer invokes the real socket() routine to create an uncon-
nected Unix socket instead of the TCP/IP socket that the CORBA object intended. The
socket () interposer then invokes the real connect () routine to establish a connection be-
tween the object and the Replication Mechanisms. The valid socket descriptor corresponding
to the Unix socket is then returned to the CORBA object. Thus, any operation that the
CORBA object performs using this socket descriptor directly affects its connection with the
Replication Mechanisms.

bind() Interposer

With socket library interpositioning, the Replication Mechanisms handle all connection
establishment between CORBA client groups and server groups, thereby relieving a CORBA
server of its listener role. Thus, the bind() interposer is not required to do anything.
However, in order for the CORBA server not to receive errors from the invocation of the
bind () routine, the bind () interposer returns 0, indicating that the bind () was successful.

listen() Interposer

Because this functionality is now provided by the Replication Mechanisms, the listen()
interposer does nothing, but returns 0 to the CORBA server, indicating that the 1isten()
did not result in errors.

accept () Interposer

With library interpositioning, the accept() interposer “listens” for client connection re-
quests by executing a blocking read on the Unix socket that connects the CORBA server to
the Replication Mechanisms.

On receiving a connection request from a client object group, the Replication Mechanisms
write to this socket, thereby causing the read to unblock. The return from the read call
causes the accept () interposer to establish a connected Unix socket with the Replication
Mechanisms for the purpose of communicating with the client group. The CORBA server is
completely unaware of the actions of the accept () interposer, and continues to believe that
the accept() routine that it invoked is still blocked. The accept interposer returns the
socket descriptor of the newly established Unix socket that represents a virtual connection
with the CORBA client (through Eternal). The server uses this descriptor to exchange ITOP
messages over the socket, whose peer endpoint it believes is the client.

24

Interception

socket()

Forms Unix socket to the
Replication Mechanisms

!

bind()

Do nothing, but return 0,
indicating success

listen()

Do nothing, but return 0,
indicating success

socket()
A\ 4
Forms Unix socket to the
Replication Mechanisms accept()
Wait to open a new socket
for client communication
A
connect() Blocks until client group contacts

the server group through Eternal

Do nothing, but return O,

= T S RN >
indicating success Connection established between

the client and server groups
through the Replication Mechanisms

\ 4

write()

: : read()
Standard library routine | Reliable multicast message
containing |OP invocation

from client group Standard library routine

\

Server processes the request

v

Reliable multicast message

read()
containing 1OP response

Standard library routine from server group

Standard library routine

CORBA Client Replica CORBA Server Replica

Figure 2.6: Sequence of steps for connection establishment and the communication of IIOP mes-
sages between a CORBA client replica and a CORBA server replica using the Eternal Interceptor’s
socket library interposer, in conjunction with the Eternal Replication Mechanisms.

2.2 Interceptors for Fault-Tolerant CORBA 25

connect () Interposer

Because this functionality is now provided by the Replication Mechanisms, the connect ()
interposer does nothing, but returns 0 to the CORBA server, indicating that the connect ()
did not result in errors.

setsockopt () Interposer

Because the CORBA client and server intended to communicate over TCP /TP, some of these
socket options are particular to TCP/IP, and not suitable for the Unix sockets created by
the socket() interposer. These options need to be disabled through the setsockopt()
interposer.

2.2.2 Thread Library Interposer

The specification of multithreading within the CORBA standard provides no guarantees
about the order in which the ORB dispatches requests across the threads. The order of
execution of threads within an object determines the state of the object. Because the ORB
does not guarantee the deterministic dispatch of threads, the order of operations in two
replicas of the same object might be different and, thus, their states might be inconsistent
at the end of a sequence of thread executions.

To preserve replica consistency for multithreaded objects, or for processes containing
multiple objects that share data, the interceptor uses its thread library interposer to in-
troduce a scheduling component [48] to govern the order in which the threads and the
operations are dispatched, over and above the total order in which the messages containing
the operations are delivered to the ORB. The thread scheduler is described in detail in
Chapter 6.

Thread library interposers “replace” the thread library routines that multithreaded
ORBs and CORBA objects use to create and control threads. The thread library inter-
poser does not need to replace all of the symbol definitions, for instance, within the Solaris
thread library, libthread.so, or the POSIX thread library, 1ibpthread.so [29] but to
interpose only on the symbols of interest.

Of course, not all of the threads that the MT-domain or the ORB creates need to be
controlled. For instance, an MT-domain that assumes the role of a server must necessarily
“listen” for potential clients on a separate thread, and must spawn additional threads for
every new client. The listening thread that an M'T-domain server first spawns must not be
prevented from running because, otherwise, the MT-domain would not be able to function
in its role as a server. However, the additional threads that are dispatched to handle client
invocations must be controlled because they might modify the state of the MT-domain.

The thread scheduler can interwork with any multithreading model adopted by the
ORB. Moreover, the scheduler does not need to be in the path of outgoing messages from
objects, but only in the path of incoming messages, before they are delivered to the appli-
cation. Thus, the protocol adapter passes incoming ITOP messages (that it extracts from
the group communication messages received from the replication management component)
to the scheduler, which then determines the point in time at which the ITOP messages are
delivered to the target objects.

26 Interception

Because the protocol adaptation, consistency management, and thread scheduling of the
Eternal Replication Mechanisms operate deterministically, in concert with the underlying
reliable totally ordered multicast group communication system, the deterministic behavior
of the replicated objects is achieved, even in the presence of multithreading.

2.2.3 Other Library Interposers
2.2.3.1 Overcoming Sources of Nondeterminism

The use of replication for fault tolerance requires replica determinism, to ensure that no
undesirable or unforeseen side-effects cause the states of the replicas of an object to become
inconsistent. The Delta-4 project [57] employs a primary-backup, or passive, replication
approach to overcome the problems associated with nondeterministic replicas. This solution
can overcome the problem of nondeterminism only when the application is two-tiered, i.e,
there is a client object invoking a server object. Using the primary-backup approach does
not solve the problem of nondeterminism for arbitrarily tiered applications, i.e., where a
client invokes a server, which, in turn, acts as a client for a different server, and so on.

In the SCEPTRE 2 real-time system [6], nondeterministic behavior of the replicas also
arises from preemptive scheduling. The developers of SCEPTRE 2 acknowledge the limita-
tions of both active and passive replication of nondeterministic “capsules” for the purposes
of ensuring replica consistency.

In the interests of strong replica consistency, it is necessary to “sanitize” nondeterministic
library routines or system calls used by the application. The Transparent Fault Tolerance
(TFT) system [8] enforces deterministic computation on replicas at the level of the operating
system interface. TFT sanitizes nondeterministic system calls by interposing a software layer
between the application and the operating system.

The thread library interposer within the Interceptor of the Eternal system handles
one specific source of nondeterminism, namely, multithreading. This is addressed in de-
tail in Chapter 6. Other sources of nondeterminism include library routines or system
calls that return processor-specific information to the application. One such example is
gettimeofday(); we describe below the sanitization of this library routine.

gettimeofday() Interposer

When this C library routine is invoked by a replicated object, different replicas may obtain
different results, depending on their processor’s value for the time of day. Unfortunately, the
replicated object may use this information to update its internal state, and also to invoke
other replicated objects in the system.

Clearly, inconsistency of the replicas ensues if the states of the different replicas are
affected by different values for the time of day. A gettimeofday() interposer can use a
central, deterministic time-issuing authority to supply the value of the time of day to be
returned to the replicas that requested it. Of course, to prevent this time-issuing authority
from being a single point of failure, its state is checkpointed to stable storage each time it
is invoked, or the time-issuing authority is itself actively replicated.

Chapter 3

Replication Management

Fault tolerance in an object-oriented framework is provided by replicating objects. The
purpose of replication is to provide redundant, identical copies of an object so that the
object can continue to provide useful services, even though some of its replicas have failed,
or the processors hosting some of its replicas have failed. It is therefore crucial that all of
the replicas of the object have consistent state and deterministic behavior.

Eternal ensures strongly consistent replication both under fault-free operation and during
recovery. The Eternal Replication Mechanisms described in this chapter exploit the Totem
reliable totally ordered multicast group communication system to provide the necessary
support for replication under normal operation, i.e., when no faults occur in the system.
In the event of a fault, the Replication Mechanisms coordinate with the Logging-Recovery
Mechanisms described in Chapter 4 to maintain strong replica consistency.

3.1 Strong Replica Consistency

For ensuring strong replica consistency of the application, the Replication Mechanisms re-
quire that the application objects are deterministic in their behavior so that if two replicas of
an object start from the same initial state, and have the same sequence of messages applied
to them, in the same order, the two replicas will reach the same final state.

The mechanisms required for consistent replication vary with the replication style. For an
actively replicated server (client) object, each replica responds to (invokes) every operation.
It is relatively easy to mask the failure of a single active replica owing to the presence of
the other active replicas which are also performing the operation. For a passively replicated
server (client) object, only one of the replicas, designated the primary replica, responds to
(invokes) every operation. In the event that the primary replica fails, one of the non-primary
replicas is elected to be the new primary replica, which then resumes the operation of the
failed primary.

27

28 Replication Management

Eternal ensures strong replica consistency for all replication styles by providing Replica-
tion Mechanisms and Logging-Recovery Mechanisms that address:

¢ Ordering of operations. All of the replicas of each replicated object must perform
the same sequence of operations in the same order to achieve replica consistency. As
described in Section 3.2, the Replication Mechanisms achieve this by receiving the
ITOP messages of all of the objects on its processor, and then exploiting the underly-
ing reliable totally ordered multicast group communication system for conveying the
ITOP invocations (responses) to the replicas of a CORBA server (client). Eternal’s
use of reliable totally ordered multicast communication of the application’s messages
facilitates replica consistency under both fault-free and recovery conditions.

¢ Duplicate operations. Owing to the nature of replication, the potential for duplicate
messages exists, e.g., when every replica of a three-way actively replicated client object
invokes an operation on a replicated server object, every server replica will receive three
copies, or duplicates, of each invocation, one from each of the client replicas. Clearly,
such duplicate invocations must never be delivered to, or performed on, server objects,
and similarly, duplicate responses must never be returned to the client objects. The
mechanisms used to perform duplicate detection and suppression are described in
Section 3.4 of this chapter.

e Recovery. When a new replica is activated, or a failed replica is recovered, before it
issues an invocation, performs an operation, or issues a response, the new or recovered
replica must have the consistent state that the other replicas of the same object already
possess. The Replication Mechanisms transfer the state of one of the replicas to
any new replica in the case of active replication. In the case of passive replication,
the Replication Mechanisms transfer the state of the primary replica to the non-
primary replicas in accordance with the type (warm, cold) of passive replication that
i1s employed. The mechanisms for state transfer are described in Chapter 4.

e Multithreading. Unfortunately, many commercial ORBs and CORBA applications
employ multithreading, a significant source of non-determinism. For multithreaded
ORBs which allow for an object to execute multiple different operations simultane-
ously, the Replication Mechanisms exploit the Interceptor to provide additional mech-
anisms, described in Chapter 6, to ensure replica consistency, regardless of the ORB’s
or the application’s multithreading.

3.2 Reliable Totally Ordered Multicast

Replica consistency implies that all of the replicas of an object that execute an operation
must have the same, or consistent, state at the end of that operation. One way of ensuring
this, given that the replicated object is deterministic, is for all of the operational replicas of
an object to “see” the same sequence of operations in the same order, thereby resulting in
the same state at the end of each operation. This can be achieved by using reliable totally
ordered multicast messages to convey the invocations to the replicas of an object.

3.2 Reliable Totally Ordered Multicast 29

- Etemnd’s
Replication Mechanisms
T Object Group Interface
\ 4
- Process group membership
Rocess Group Layer *
- Wide-area network supprt
Multiple
Tododer Ring ' Totem
- Reliablem e delive
- Processor nﬁgberhip « Frotocol
- Local-area network support
Reliable Totally Ordered
Multicast Messages Ratform

Figure 3.1: The Totem group communication system.

Unfortunately, the current CORBA standard provides no support for reliable totally
ordered multicast protocols. Considerable modification to the transport layers of the ORB
would be required before an existing ORB could use such a protocol. Eternal’s Interceptor
enables the Replication Mechanisms to exploit the services of a reliable multicast protocol
without requiring the modification of either the ORB or the application. The Interceptor
captures the ITOP messages from the application and passes them to the Replication Mech-
anisms, which then use the Totem reliable totally ordered group communication system to
convey the messages across the network.

3.2.1 The Totem System

Typical applications consist of processes that cooperate or share information to perform a
task. Such a collection of processes is referred to as a process group, and can be considered
abstractly as a single unit. The membership of a process group is simply the list of all of its
constituents; the members of a process group can be distributed across multiple processors
in the network.

The Totem system [1, 40] shown in Figure 3.1 is a suite of group communication protocols
that provide reliable totally ordered multicasting of messages to processors operating in a
single local area-network, or in multiple local-area networks interconnected by gateways.

30 Replication Management

Each message has a unique timestamp assigned to it by the originator of the message.
These timestamps are used to deliver messages in a single system-wide total order that
respects Lamport’s causal order [33]. The Totem system also provides membership and
topology change services to handle the addition of new and recovered processors and pro-
cesses, the deletion of faulty processors and processes, and the partitioning and remerging
of the system.

The virtual synchrony model of Tsis [7] orders group membership changes along with the
regular messages. It ensures that failures do not result in incomplete delivery of multicast
messages or holes in the causal delivery order. It also ensures that, if two processors proceed
together from one view of the group membership to the next, then they deliver the same
messages in the first view. The extended virtual synchrony model [41] of Totem extends
the model of virtual synchrony to systems in which the network can partition and remerge,
and in which processors can fail and recover. Processors in different components of a par-
titioned network may deliver the same messages, and yet the order in which the messages
are delivered within each component of the partitioned network is consistent.

Totem provides a process group interface [35] that allows applications to be structured
into process groups, with Totem maintaining information about the current memberships
of all of the process groups that it supports across the system. The process group interface
exploits the services and guarantees of the underlying Totem protocols to provide similar
guarantees within and across process groups. Thus, Totem provides a system-wide total
order within and across all of the process groups within the system.

Through this interface, application processes can join a process group to perform tasks
of the application. A processor can support many process groups, and a process can belong
simultaneously to multiple process groups. The services of a process group can be invoked
transparently, with no knowledge of its exact membership or of the location of its member
processes. A process in the system can thus address all of the members of a process group
(including its own) as a whole, using Totem. A process can send messages to one or more
process groups, regardless of whether the process belongs to these groups. The multicast
messages are totally ordered within and across all receiving process groups.

The Eternal Replication Mechanisms employ the reliable totally ordered multicasts of
Totem to convey the IIOP messages exchanged between replicated objects, thereby facili-
tating replica consistency.

3.2.2 Object Groups

Analogous to the notion of a process group, an object group represents a collection of objects
that cooperate to provide some useful service. The members of such a collection of objects
could be identical or dissimilar, and could be hosted on the same processor or on different
processors. If all of the members of the group are identical in interface and implementation,
the object group is homogeneous.! This is a useful representation of a replicated object,
where the replicas of the object correspond to the members of the homogeneous object
group. In Eternal, an object group is equivalent to a replicated object in the system.

10On the other hand, a heterogeneous object group, whose member objects are dissimilar, can be used as
an abstraction for load balancing and management applications. For the remainder of this text, however,
the term “object group” refers to a homogeneous object group.

3.2 Reliable Totally Ordered Multicast 31

Replicas of a
CORBA Object

| CORBA ORB ‘ /
|
\
CORBA ORB CORBA ORB
CORBA ORB
ggg Hatform

Rltform " Fafom |
Totem

Hatform
Reliable Totally Ordered
Multicast Messages

Figure 3.2: Object groups in the Eternal system.

The utility of the object group abstraction lies in replication transparency and failure
transparency. While all of the details of the coordination and interaction between the group
members (replicas), the number of group members (degree of replication), the replication
style (active, cold passive, warm passive) and their exact location (distribution of replicas)
within the system are necessarily visible to the Replication Mechanisms, these details are
hidden from all of the clients of the object. This transparency implies that, from the
client’s perspective, the invocation of a replicated object 1s no different from that of a single
unreplicated object. Invocation of the group (replicated object) is transparently translated
into the invocation of its members (replicas). The object group membership mechanisms
enable the addition and the removal of replicas from an object group in a manner that is
transparent to the application.

In Eternal, both client and server objects can be replicated and can, thus, can be rep-
resented as object groups. Eternal exploits the reliable totally ordered multicasts of Totem
to communicate the invocations to, and the responses from, every object group. At the
client replica, the Interceptor captures the client’s IIOP invocation and passes it to the
Replication Mechanisms. The Replication Mechanisms, in turn, encapsulate the ITOP in-
vocation into a group communication message to be multicast by the underlying Totem
system. This is done for every client replica that sends the invocation. At the server end,
the receiving Replication Mechanisms extract the IIOP invocation from the incoming reli-

32 Replication Management

able multicast message. The Replication Mechanisms then deliver the IIOP invocation to
the destination server replica through the Interceptor. This is done for every server replica
that is to receive the invocation. A similar procedure is repeated for the ITOP response from
the replicated server to the replicated client. Because the IIOP invocations and responses
are conveyed through reliable totally ordered multicast messages, all of the server (client)
replicas of an object receive the same invocations (responses) in the same order, thereby
ensuring consistency of the states of the server (client) replicas.

3.3 Replication Styles

Eternal incorporates support for active replication, cold passive replication and warm passive
replication styles. The Eternal system allows the user to dictate the choice of replication
style for every application object (that is to be replicated) at system configuration time.
Equipped with the knowledge of system resources (processors, memory, etc.), the user can
also select the appropriate processors on which to locate the replicas, in the interests of
reliability and performance.

However, regardless of the replication style used, each replicated client (server) object
is unaware of its own replication, i.e., each client (server) replica is unaware that there are
other replicas of the same object. Eternal allows the application programmer to write the
application without worrying about replication; from the application’s perspective, com-
munication with a replicated object looks no different from communication with a single
unreplicated object. A replicated client (server) invokes (responds to) a replicated server
(client) object just as if it were invoking (responding to) a single unreplicated server (client)
object.

3.3.1 Passive Replication

For a passively replicated object, there exists a single designated replica, known as the
primary replica, that performs all of the operations for the replicated object. All of the
other non-primary (backup) replicas do not issue, or receive, invocations and responses.
The backup replicas do not perform any operations while the primary replica is operational.
Their sole purpose is to provide a pool of replicas from which a new primary replica can be
chosen, should the current primary replica fail.

When a passively replicated client object invokes an operation on a server object, only
the primary client replica issues the invocation. When a passively replicated server object
recelves an invocation, only the primary server replica performs the operation, and returns
the response. To support passive replication, the Replication Mechanisms of Eternal multi-
cast the invocation (response) from the primary client (server) replica to the server (client)
object group via the underlying Totem reliable totally ordered multicast group commu-
nication system. The total ordering of messages ensures that the state of the passively
replicated object after recovery is consistent with that of the passively replicated object
before the fault occurred. While the Replication Mechanisms at the primary replica deliver
all incoming invocations and responses to the primary replica, the Replication Mechanisms
at every backup replica receive, and record the incoming messages, but do not deliver them

3.3 Replication Styles 33

Passively Replicated Passively Replicated
Client Object A . Server Obj ect B

Rl Replica2 . -Replical Replica2 Replica3. |

(BengUp) (H’??ng:r?/) . - (Rrimary) (Backup) (Backup)

' . ¢ » v
Eternal Eternal Eternal Eternal Eternal
A 4 A A A ?
A
State Updates

Figure 3.3: Warm passive replication, with state updates being transferred at the end of each operation.

to the backup replica. This recording of messages is essential for duplicate detection and
recovery, in the event that the primary replica fails.

There exist different styles of passive replication that differ in the degree to which the
states of the backup replicas “lag” behind the state of the primary replica. The Eternal
system provides support for cold and warm passive replication. Eternal allows the user
to specify properties particular to passive replication at system configuration time. For
instance, on deciding to use passive replication for an object, the user can provide a preferred
location (processor) for the primary replica, the frequency of checkpointing (for cold or warm
passive replication) or the frequency of state transfer (for warm passive replication). The
user can also dictate a recovery sequence, i.c., the order in which backups are to be selected
for the role of the new primary replica, should the existing primary replica fail.

3.3.1.1 Cold Passive Replication

In the case of a cold passively replicated server object, the backup replicas are not even
loaded into memory, and thus do not come into existence until the primary replica fails.
However, using the user’s input at system configuration time, Eternal “knows” the locations
(processors) where the cold passive replicas must be created, when required.

Since there is only one replica, the primary replica, that exists at any point in time, to
provide fault tolerance, the primary replica’s state must be captured for use in the event
that it fails. At a frequency dictated by the user at system configuration time, Eternal’s
Logging-Recovery Mechanisms retrieve the state of the primary replica, and record this in a
log. The log will contain not only the last checkpointed state, but also the ITOP invocations
that have been delivered to the primary replica since the last checkpoint.

In the event that the primary replica fails, one of the cold backup replicas i1s loaded
into memory, and assumes the role of the new primary replica. Clearly, for the new primary
replica to “take over” from the old primary replica without violating the replica consistency,

34 Replication Management

the new replica’s state must be identical to the state of the old primary replica before the
old primary failed.

Thus, before the new primary can fully assume the role of the primary replica, its
state 1s initialized using the last checkpoint recorded previously by the Logging-Recovery
Mechanisms for the old primary replica. After this checkpoint is applied to the new primary,
the TIOP invocations that were logged after the previous checkpoint are also applied in the
order that they were received and subsequently logged. Only when this recovery process
is complete can the new primary start to issue or to receive any current invocations or
responses, or to perform operations that might affect its state. The recovery mechanisms
are described in detail in Section 4.1.2.

3.3.1.2 Warm Passive Replication

In warm passive replication, all of the backup replicas are created and initialized, and the
state of the primary replica is retrieved and transferred to all of the backup replicas at a
frequency that the user specifies at system configuration time. Hot passive replication is a
variant of warm passive replication, with the state transfer occurring at the end of every
operation on the primary replica. Thus, while the states of the backup and primary replicas
may differ while the primary replica performs an operation, their states are consistent at
the end of each state transfer.

Unlike cold passive replication, the warm passive backup replicas are loaded into memory
and are running. However, just as with cold passive replication, the Replication Mechanisms
do not deliver any incoming invocations or responses to the backup replicas. Instead, at a
user-specified frequency, Eternal’s Logging-Recovery Mechanisms retrieve the state of the
primary replica, and transfer this state to the backup replicas. Aslong as the primary replica
is running, the only messages that the Replication Mechanisms deliver to the backup replicas
are the messages that contain the state of the primary replica. If the primary replica fails,
a new primary replica is chosen from the backup replicas. The “lag” in the state of the
new primary replica (formerly a backup replica) and the old primary replica depends on the
frequency of state transfer. With warm passive replication, the states of the backups may
be obsolete far more often than if hot passive replication were used because the primary
replica’s state is transferred to warm backup replicas at a lower frequency than to hot backup
replicas. The state transfer mechanisms Logging-Recovery Mechanisms reconcile this “lag”
through the mechanisms described in Section 4.1.2.

Figure 3.3 shows a two-way passively replicated client object A interacting with a three-
way hot passively replicated server object B. Only the primary client replica issues the
invocation to the server object. The primary server replica performs the operation corre-
sponding to the invocation, and returns the response. Clearly, in the fault-free case of this
example, there is no potential for duplicate invocations (responses) because only a single
client (server) replica, the primary replica, issues the invocation (response).

Because hot passive replication is employed for server object B, when the primary server
replica completes the operation (which may update the state of the primary), the Logging-
Recovery Mechanisms at the primary server replica retrieve the primary replica’s updated
state, and transfer this state to the Logging-Recovery Mechanisms at the backup replicas.
The receiving Logging-Recovery Mechanisms deliver the state to the backup replicas. Thus,

3.3 Replication Styles 35

Actively Replicated Actively Replicated
Client Object A Ser‘v_e_r'Qb_J_e_ct_ B .
: . A= > P E
‘ Eternal U ‘ Eternal U Eternal ‘ Eternal U Eternd
A A A Ly ? (

. . . Duplicate responses
Duplicate invocation suppressed

suppressed

Figure 3.4: Active replication.

while the primary replica of object B performs the operation, the states of B’s backup
replicas may differ from that of the primary replica; however, the update operations at the
end of the operation ensure that object B’s replicas are consistent in state.

3.3.2 Active Replication

When an actively replicated client object invokes an operation on a server object, every
client replica issues the invocation. Similarly, when an actively replicated server object
recelves an invocation, every server replica performs the operation, and every server replica
returns the response.

To enable active replication, Eternal’s Replication Mechanisms multicast the invocation
(response) from every client (server) replica to the server (client) object group via the Totem
underlying reliable totally ordered multicast system. The underlying Totem system ensures
that all of the active server replicas of an object receive the same invocations in the same
order. Thus, the server replicas will perform the operations in the same order, and all of the
active client replicas will receive the responses in the same order. This ordering of operations
ensures that the states of both the client and the server replicas are consistent at the end
of the operation.

Figure 3.4 shows a two-way actively replicated client object A interacting with a three-
way actively replicated server object B. The two active client replicas issue the invocation
to the replicated server object. Each of the three server replicas performs the operation
corresponding to the invocation, and each of them returns the response. Because both
client replicas issue the same invocation, every server replica will receive two duplicate

36 Replication Management

invocations and, thus, will perform the operation twice, instead of only once (as the client
had intended). Similarly, there exists the danger that each client replica receives three
duplicate responses to its single invocation, resulting in its state being corrupted if all three
responses are delivered. In the interests of replica consistency, such duplicate invocations
and duplicate responses must be detected and suppressed; only one copy of every distinct
invocation or response must be delivered to the application.

The Logging-Recovery Mechanisms provides mechanisms, described in Section 3.4, that
detect and suppress duplicate invocations and duplicate responses, thereby preventing incon-
sistencies that might otherwise arise. Because duplicate message detection at the destination
1s wasteful of network bandwidth, Eternal provides for duplicate detection at the source as
well.

Figure 3.4 shows source-side duplicate detection and suppression through the use of
“outgoing message loopback.” At every client replica, the Replication Mechanisms mul-
ticast the invocation not only to the server replicas, but also to all of the client replicas.
At the Replication Mechanisms hosting every server replica, these received invocations are
intended for delivery to the server replicas. At the Replication Mechanisms hosting every
client replica, these invocations aid in duplicate detection and suppression. For instance,
in the figure, replica As’s invocation happens to be multicast by As’s Replication Mecha-
nisms before A;’s Replication Mechanisms can multicast A;’s invocation. A’s invocation
i1s multicast to the server object B as well as to the Replication Mechanisms hosting the
other replicas (in this case, only A1) of client object A. On “seeing” this invocation from
a fellow replica (A2) of the same client object (A), the Replication Mechanisms hosting A
can refrain from multicasting the invocation from its own replica (A1), which is a duplicate
of Ay’s invocation. Similarly, the duplicate responses from the server replicas By, By and
B3 can be suppressed by the Replication Mechanisms hosting the server replicas.

In an asynchronous distributed system, source-side duplicate suppression can never be
made completely effective. Thus, Eternal ensures that the duplicate messages that escape
detection at the source are detected and suppressed at the destination. Of course, duplicate
suppression at either the source or the destination hinges on the Replication Mechanisms’s
ability to detect that any two given invocations (e.g., A1’s and As’s invocations in Fig-
ure 3.4) or any two given responses (e.g., By’s and Bj’s responses in Figure 3.4) are, in fact,
duplicates of each other. The mechanisms that Eternal uses to detect duplicate messages
are described in Section 3.4.

3.3.3 Comparison of Replication Styles

In the case of cold passive replication, under normal operation, the cost of checkpointing
the primary replica’s state to a log must be considered. If the state of the object is large,
this checkpointing could become quite expensive. In the case of warm passive replication,
if the state of the primary is large, transferring this state to the backup replicas, even if it
is done periodically, could become quite expensive. The state transfer cost is incurred for
active replication only during recovery, and never during normal operation.

On the other hand, cold passive replication requires only one replica to be operational
and, thus, conserves processing power. While warm passive replication requires more repli-
cas to be operational, these backups do not perform any operations (other than receiving

3.3 Replication Styles 37

the primary replica’s state periodically), and also conserve processing power. With ac-
tive replication, every replica performs every operation, and therefore consumes an equal
amount of computational resources of the processor that hosts it. Thus, passive replication
has the advantage that it is less consuming of processing power, i.e., it does not require
the operation to be performed by each of the replicas. If the operation is computationally
expensive, the cost of passive replication can be lower (in the fault-free case) than that of
active replication.

For every operation invoked on an actively replicated object, a multicast message is
required to issue the operation to each target replica. This can lead to increased usage of
network bandwidth because each operation may itself generate further multicast messages
(as is the case with nested operations). For passive replication, because only one replica,
the primary client (server) replica, invokes (responds to) every operation, passive replication
may require fewer multicast messages. However, if the state of the primary replica is large,
the state transfer or checkpointing may require many multicast messages.

With active replication, recovery time is faster in the event that a replica fails. In fact,
because all of the replicas of an actively replicated object perform every operation, even if
one of the replicas fails, the other operational replicas can continue processing and perform
the operation. This is also true of warm passive replication if a backup replica fails.

However, if the primary replica fails, recovery time may be significant. For cold pas-
sive replication, recovery requires the reelection of a new primary, the transfer of the last
checkpoint, and the application of all of the invocations that the old primary received since
its last checkpoint. If the state of the object is large, retrieving the checkpoint from the
log may be time-consuming. For warm passive replication, recovery may be faster because
the warm backup replicas already have their states initialized to the last checkpoint of the
primary owing to the periodic state transfers.

The cost of using active replication is dictated by application-specific issues, such as the
number of replicas and the depth of nesting of operations. Active replication is favored if
the cost of multicast messages and the cost of replicated processing is less than the cost
of transmitting the object’s state to every replica at the end of the operation. Hybrid
active-passive replication schemes [21] have been considered, with the aim of addresing the
reduction of multicast overhead in active replication styles, as well as of achieving the best
of the active and passive replication styles.

3.3.4 Interactions between Replication Styles

While the Eternal system allows the user to choose between active and passive replication
styles for an application object, it ensures that this choice of replication style is transparent
to all of the other objects, as well as all of the replicas of the object itself. The replication
transparency that Eternal provides implies that actively replicated objects and passively
replicated objects are invoked by clients in exactly the same manner, although the Replica-
tion Mechanisms handle these invocations differently in each case, in a manner appropriate
to the replication style.

The most interesting of the interactions between replicated objects with different repli-
cation style are shown in Figure 3.5. Here, the client object A is actively replicated and the
server object B is hot passively replicated. The figure shows the sequence of steps in the

38 Replication Management

Actively Replicated Passively Replicated
Client Object Server Object
. Replical Replica 2
Replical Replica2 (Pimary) (Backup)

Eternal dispatches invocation
only to the primary

@ ©

Eterna Eternal Eternal @ Eternal
v A Duplicate invocation that A Receiver-end A
v has escaped sender-end | duplicate detection !

for sender-end
duplicate detection

@" Loopback" message I nvocation

Actively Replicated Passively Replicated
Client Object Server Object
)) Replical Replica 2
Replical Replica 2 (Primary) (Backup)
>
Frimary replica performs State transferred to
@ operation and returns results the backup replica
Eternal Eternal ‘ Eternal

A

Eternal retrieves
the primary’s state
and communicates it

ol ot
Response State Transfer tothebackup'ssite

Figure 3.5: Sequence of steps in the interaction between an actively replication client object with
a passively replicated server object.

interaction between the two replicated objects. Eternal’s Replication Mechanisms manage
the invocations in such a way that the client (server) replicas of object A (B) are never
aware of the passive (active) of object B (A), or even the fact that object B is replicated.
Also, by providing fault transparency, Eternal ensures that the client (server) replicas of
object A (B) are never aware of the failure of a server (client) replica.

3.4 Duplicate Detection and Suppression 39

Invocation (msg seq number = 120)

2nd child
Opefa“T 3rd child LI ST
. . peration
. operation Sop Gap Nimbe TNimbe SIS 0p essage
1st child A B |120 | 100 | 3 Invocatior)/
operation
.

< Invocation Ideptifier —

Operation -
_— . Identifier

_ <«—»
Parent I nvocation : :
(msg seq number = 100) <« Response Iderilifier — Y-

B A | 171 | 100| 3 |Response

Replicain

Replicain
o Group B

Group A

Response (msg seq number = 171)

Figure 3.6: Assignment of invocation, response and operation identifiers.

3.4 Duplicate Detection and Suppression

In addition to the information that CORBA packages with an invocation, Eternal sup-
plies unique operation identifiers that simplify the detection and suppression of duplicate
invocations and duplicate responses.

The Replication Mechanisms attach an Eternal-specific header to every IIOP message
that they multicast. The IIOP message, along with the Eternal-specific header, is encapsu-
lated into a multicast message, formatted appropriately for Totem. Neither the multicast
header nor the Eternal-specific header is intended to be delivered, or “seen”, by the applica-
tion objects. Their primary intent is to convey information essential for the proper operation
of the infrastructure consisting of the Replication Mechanisms, the Logging-Recovery Mech-
anisms and the reliable multicast protocol.

The Eternal-specific header contains various pieces of information that are useful to the
Replication Mechanisms in routing received messages. An important part of the Eternal-
specific header is the information that the Replication Mechanisms use for detecting dupli-
cate invocations and duplicate responses.

3.4.1 Operation Identifiers

To enable incoming response messages to be matched with their corresponding invocations,
the Logging-Recovery Manager inserts an invocation (response) identifier into the Eternal-
specific header for each outgoing ITOP invocation (response) message. For an outgoing
invocation at the client end, the invocation identifier is derived as shown in Figure 3.6. For
an outgoing response at the server, the Logging-Recovery Manager “remembers” and reuses

40 Replication Management

a portion of the invocation identifier for the invocation that resulted in this response. The
portion of the invocation identifier that is reused in its counterpart response identifier is
known as the operation tdentifier.

The operation identifier uniquely represents the entire operation that consists of the
invocation-response pair. Its uniqueness is derived from the use of the totally ordered
message sequence numbers of the underlying Totem protocol.

Consider the invocation A;p, on a replicated object A, as a result of which object A
dispatches multiple nested invocations. One of these nested invocations, say, the S4, th
nested invocation, denoted by Bj,,, is 1ssued by object A on another replicated object
B. Assume that B performs the operation corresponding to this invocation, and returns a
response B,.; to object A. The invocation B;,, and its counterpart response B,.; together
constitute a single operation.

The invocation identifier that forms part of the Eternal-specific header for the invocation
sent from A to B has the form

(T8, (Ta,s Sain,))s

and the response identifier that forms part of the Eternal-specific header for the response
sent from B to A has the form

(IByees (Tasnys Sai,))s

where
T4,,,= the totally ordered sequence number of the message containing A;p,
Tg,,,= the totally ordered sequence number of the message containing Bjy,
Tg,..= the totally ordered sequence number of the message containing By.s
Sa,,,= the sequence number of B;,, in the sequence of nested invocations by A.

The invocation and response identifiers are common in the last two fields (T4,,,,S4,,,);
these fields together constitute the operation identifier. The first part of the invocation iden-
tifier (Tp,,,) may differ for the same invocation from the different replicas of A. Similarly,
the first part of the response identifier (7,) may differ for the same response from the
different replicas of B. However, the operation identifier field of the invocation and response
identifiers is identically generated by the Replication Mechanisms at every replica of A and
of B.

The fields Tu,,,, Tp,,, and Tg,_, are derived from the totally ordered message sequence
numbers assigned by the Totem multicast group communication system. The system-wide
uniqueness of these timestamps (as a result of the total ordering) contributes to the unique-
ness of the operation identifiers, and thus, to the detection of duplicate messages.

In the example of Figure 3.6, T}, , corresponds to 100, Sy, , corresponds to 3, Tg, .
corresponds to 120 and Tg___ corresponds to 171. While only one replica of A4 and one replica
of B are shown, the operation identifier (100, 3) is identically generated by the Replication
Mechanisms at every replica of A and B. Thus, the invocation and response identifiers for
the operation contain the same unique operation identifier.

inv inv

3.4 Duplicate Detection and Suppression 41

Operation identifiers assist the Replication Mechanisms in associating the invocation
and the corresponding response that constitute the operation, because both the invocation
identifier and its counterpart response identifier have the same operation identifier. Eternal
records, for each source group on its processor, the invocation identifiers of all outgoing
invocations for which responses are expected. When a response arrives, Eternal delivers the
response only if the operation identifier field of the received response identifier corresponds
to the operation identifier field of the invocation identifier of an outstanding invocation.
Also, by using a transitive sequence of these operation identifiers, a complete sequence of
nested operations can be traced.

Operation identifiers are also useful in discarding duplicate invocations and duplicate
responses so that only non-duplicate messages are delivered to the destination group. By
the rules outlined above, the Replication Mechanisms hosting a client (server) replica assign
to each distinctinvocation (response), an operation identifier that is unique to the operation,
but has the identical value at the Replication Mechanisms hosting every replica of the client
(server). Thus, for every incoming message, the Replication Mechanisms can compare the
operation identifier fields of that message with others that it has received. If the operation
identifiers match, the receiving Replication Mechanisms can safely discard the duplicate
message, because it has a record of having “seen” the message previously, probably from a
different replica of the same sender object.

3.4.2 Example

Eternal provides support for nested operations as well. By a nested operation, we mean an
operation that results in the invocation of yet another operation or, in the terminology of
Eternal, the “parent” invocation of one replicated object giving rise to a “child” invocation
of another replicated object. The operation identifiers for duplicate detection, as described
in Section 3.4, serve the additional purpose of identifying, and associating parent operations
with, child operations.

Figure 3.7 shows an example of the use of operation identifiers in the detection of du-
plicate invocations and duplicate responses under fault-free conditions. With a nested op-
eration such as that shown in the figure, Eternal takes great care to ensure that duplicate
invocations and responses are suppressed and that the states of the replicas of all of the
objects involved in the nested operation are consistent after the entire operation, even in
the presence of faults.

Here, the actively replicated object A has three replicas and the passively replicated
object B has three replicas. Some client object (not shown in the figure) invokes a method
with invocation identifier (100, (75,5)) in object group A. Each of the replicas in A exe-
cutes the method corresponding to this parent invocation, resulting in the invocations of
other methods of other objects. One such child invocation (in fact, the fourth such child
invocation) is issued by 4 on B.

The timestamp of the parent invocation that resulted in the subsequent child invocations
1s 100. Because the method invocation on replicated object B is the fourth in the sequence
of invocations triggered by the execution of the parent invocation, at each replica in A, the
operation identifier for the invocation of B by A is (100,4).

42 Replication Management

Actively Replicated Object A

Invocation |-

of (75,5) - T Response

to (75,5)

:

- & o =

|121{100/ 4][[125[100[4| [128]100[4| [149[75 5| |146] 75]5| [143] 75]5]

Passively Replicated Object B
' ; 7 P :
1]
.................. Fimary...'. L Response
Replica \ \ to (100,4)
I 7 R | |
t 1 b 137(100/ 4
State Updates

Timestamp of this message carrying the child invocation
Timestamp of the message carrying parent invocation —
Operation sequence number of this child invocation

Figure 3.7: Use of operation identifiers in duplicate detection and suppression under fault-free conditions.

Because each of the three active replicas issues the invocation, the first of these in the
total order is the one to be delivered to B, in this case, the message with invocation identifier
(121,(100,4)). The other two duplicate invocations are suppressed because the Replication
Mechanisms for replica A; multicast a “loopback” message containing the invocation iden-
tifier (121,(100,4)). In this case, the Replication Mechanisms for replica A (As) receives
the “loopback” message before multicasting As’s (As’s) invocation with the same opera-
tion identifier (100,4) as contained in the “loopback” message. Because these operation
identifiers are identical, the Logging-Recovery Manager for As (Asz) suppresses As’s (As’s)
duplicate invocation.

It must be emphasized that the “loopback” messages are never intended for delivery to
the application, but are “seen” only by Eternal for duplicate detection and suppression at
the source. Of course, in an asynchronous distributed system, the “loopback” mechanism
cannot be made completely effective; and some duplicate messages may escape detection

3.4 Duplicate Detection and Suppression 43

at the source. However, Eternal’s Mechanisms also detect and suppress such duplicate
messages at the destination.

The primary replica in object group B then executes the method, after which the
Logging-Recovery Mechanisms coordinate the transfer of the state of the primary replica
to the backup replicas in object group B, and the Replication Mechanisms multicast the
response to object group A using the response identifier (137, (100, 4)). Note that the invo-
cation identifier (121, (100,4)) and the corresponding response identifier (137, (100, 4)) refer
to the same operation and thus have the same operation identifier (100,4).

At the end of the operation, the Replication Mechanisms at one of the replicas in object
group A multicast the response (to the client that issued the original parent invocation)
using the response identifier (143, (75,5)). When the Replication Mechanisms at one of the
other replicas in object group A “sees” this message, it suppresses its own replica’s response
for (75,5).

Of course, the most interesting problems in nested operations arise when a replica in the
“chain of invocations” fails, and subsequently recovers. The mechanisms of Eternal that
handle these problems are described in Chapter 4.

44

Chapter 4

Logging and Recovery
Management

In addition to providing object replication which allows the application to continue to pro-
vide useful services even if the replicas fail, an important part of fault tolerance involves
providing recovery to the failed replicas. Recovery [49] typically requires the activation of
a new replica (to replace the failed one), and the synchronization of the state of the new
replica with that of the other replicas of the object.

The Logging-Recovery Mechanisms that Eternal provides are responsible for recording
incoming invocations, incoming responses and checkpoints of the replicas hosted on a pro-
cessor. Typically, many replicas of different objects may be hosted on a processor and, thus,
the Logging-Recovery Mechanisms maintain a single physical log per processor, where the
log is indexed by the object group identifier.

4.1 Recovery for Different Replication Styles

4.1.1 Failure of an Active Replica

For an actively replicated object, fault recovery is relatively simple. Totem’s reliable totally
ordered multicast mechanisms ensure that an invocation or response has been dispatched
either to all of the remaining replicas of an object or to none of them. Consequently, the
operation will be performed by all of the remaining replicas or by none of them.

If an active replica fails while performing an operation, the remaining active replicas in
the object group continue to perform the operation and return the result. The failure is thus
transparent to the other replicated objects involved in the nested operation. Thus, active
replication yields substantially more rapid recovery from faults.

When a failed active replica is recovered, the state of the new or recovering replica
must be initialized with the state of an existing replica of the object. However, because

45

46 Logging and Recovery Management

Actively Replicated Object A

I nvocation I
of (75,5)

a T " Response
to (75,5)

= @

|121] 100 4 || [125[100 4] [128]100[4] [149] 75]5] [146] 75]5] [143] 75]5]

By

Duplicate
" Response

to (100,4)
100/ 4
State Updates J
Timestamp of this message carrying the child invocation

Timestamp of the message carrying parent invocation —
Operation sequence number of this child invocation

Figure 4.1: Use of operation identifiers in duplicate detection and suppression under recovery conditions.

a recovering replica may continue to receive normal invocations and responses during the
state transfer, such invocations and responses must be enqueued during the state transfer,
and applied to the recovered replica after the state transfer 1s complete.

4.1.2 Failure of a Passive Replica

In the case of passive replication, the effect of the failure of a replica depends on whether
the failed replica is a primary or a backup. If a backup replica fails, 1t is simply removed
from the group by the object group membership mechanisms while the operation continues
to be performed. Thus, the failure of a backup replica is transparent to the other object
groups involved in the nested operation.

If the primary replica fails, one of the backup replicas is chosen to be the new primary
replica and, thus, must be restored to the state that the old primary replica had just before it
failed. Because the old primary replica is no longer available once it has failed, the primary’s

4.2 Structure of the Log 47

state (while it is operational) must be continuously or periodically captured and stored so
that it 1s available for recovery if the primary replica fails. Just as with active replication,
invocations and responses that arrive during recovery must be enqueued for delivery to the
new primary replica only after its state has been initialized.

Consider the warm passively replicated object B in Figure 4.1. In keeping with warm
passive replication, the state of the backup replicas is identical to that of the primary before
A’sinvocation of B. The operation identifiers are assigned by the Mechanisms using the rules
described in Section 3.4. The primary replica B; receives A’s invocation (121, (100,4)) with
operation identifier (100,4), and performs the operation corresponding to the invocation.
Because B is passively replicated, the Logging-Recovery Mechanisms at the backup replicas
receive and store, but do not deliver, the invocation to their respective backup replicas.

Suppose that the primary replica B; fails after it returns a response to A’s invocation,
but before its state can be transferred to the backup replicas. Eternal elects a new primary
replica from among the backup replicas. Through infrastructure state that it maintains
for the replicated object B, the Logging-Recovery Manager realizes that, while object A’s
invocation was delivered to the old primary it never captured, the updated state of object
B after the operation.

Thus, the Logging-Recovery Mechanisms at the new primary replica Bs deliver the
“incomplete” invocation (121, (100, 4)) (that the Logging-Recovery Manager had stored on
receipt) with operation identifier (100,4) to Bs. Being deterministic, the new primary replica
Bj issues a response that has the same content and the same operation identifier (but a
different message timestamp) as the one that the replicas of object A might have received
from the old primary. The operation identifier (100,4) contained in the response to object
A from both the old and the new primaries enables the Logging-Recovery Managers at the
replicas of object A to detect and suppress these duplicate responses. Thus, while duplicate
detection 1s not essential in passive replication under normal operation, it is required for
ensuring strong replica consistency for passive replication under recovery.

4.2 Structure of the Log

The Logging-Recovery Mechanisms log messages, checkpoints and operation identifiers. The
log also contains an enqueuing facility for the synchronization of state transfer.

4.2.1 Storing Checkpoints and Messages

The messages that are logged are those that arrive at the Logging-Recovery Mechanisms,
through the totally ordered message sequence provided by the underlying Totem group
communication system. The messages are verified to be non-duplicate messages before they
are logged. Each entry in the log contains an incoming non-duplicate IIOP invocation or
response along with its FEternal-specific header. The Eternal-specific header contains the
operation identifer essential for duplicate detection. The operation identifiers are stored
separately, and garbage collected independent of the logged messages, to enable faster du-
plicate detection.

For all replication styles, the log must store the operation identifiers to enable duplicate
detection. However, for actively replicated objects, the log does not need to store any

48 Logging and Recovery Management

checkpoints or messages until recovery is initiated. At the point of recovery for an active
replica, the mechanisms for synchronizing state transfer handle the logging of the checkpoints
and the messages in such a way that replica consistency 1s guaranteed.

For a warm passively replicated object, the backup replicas already have their states
initialized to the last checkpoint of the primary. However, in the interests of bringing up a
new backup replica, this last checkpoint must be stored. Also, in the event that the primary
replica fails, the messages following the last checkpoint must also be stored.

4.2.2 Storing Operation Identifiers

The duplicate detection scheme described in Section 3.4 requires the Logging-Recovery
Mechanisms to store information about the operation identifiers of messages that it has
“seen” previously. Fortunately, because the operation identifier is derived from the to-
tal order of messages, the fields of the operation identifier are monotonically increasing.
If (Ta,,,,S4,,,) is the operation identifier of a message from object group A4 to object
group B, the next message from object group A to object group B will have an opera-
tion identifier (T;‘mv,S;xmv), such that one of the following two conditions holds: either

(T, = Tains Sary > Sann Y or {Th, > Ta,,,, Sa,, > 1}

In either case, the Replication Mechanisms do not need to store the entire history of
operation identifiers that it has ever “seen” for messages from object group A to object
group B; only the last operation identifier that the Replication Mechanisms have received
for a specific destination group, from a specific source group, needs to be stored. Messages
from object group A to object group B that contain operation identifiers that occur earlier
in the sequence than this last-seen operation identifier can be safely discarded as duplicate
messages. Thus, for every source object group A that sends messages to a destination object
group B, the Replication Mechanisms hosting every replica in B must record the operation
identifier associated with the last-received non-duplicate message from A to B. Figure 4.2
shows the list of operation identifiers that the Logging-Recovery Mechanisms maintain.

iy)

4.3 Consistent State

Maintaining strong replica consistency involves ensuring that the replicated object has con-
sistent state, even as its replicas perform operations that update their states, and even as
replicas fail and recover. The deterministic behavior of an application object ensures that
its replicas will have the same state after applying the same sequence of operations in the
same order, starting from the same initial state. However, this is just one aspect of strong
replica consistency — the recovery of a failed replica introduces additional complications.
Every replicated CORBA object can be regarded as having three kinds of state: application-

level state, known to, and programmed into the application object by, the application pro-
grammer, OR B-level state, maintained by the ORB that hosts a replica of the object, and
wnfrastructure-level state, invisible to the application programmer and maintained for the
replicated object by Eternal’s infrastructure.

4.3 Consistent State

49

| Message | Direction | Logging at Replicas of A | Garbage Collection Point
Synchronous On object A Operation identifier logged Receipt of next invocation
invocation to detect duplicate invocations (synchronous/asynchronous)
from the sender replicas from the same sender group
Asynchronous | On object A Operation identifier logged Receipt of next invocation
invocation to detect duplicate invocations (synchronous/asynchronous)
from the sender replicas from the same sender group
Synchronous From object A | Operation identifier logged Receipt of the response
invocation to detect “loopback” duplicates | from the invoked group
and to match the response
Asynchronous | From object A | Operation identifier logged Next invocation from
invocation to detect “loopback” duplicates | object A
Synchronous To object A Operation identifier logged Receipt of next response
response to detect duplicate responses from the same sender group
from the sender replicas
Synchronous From object A | Operation identifier logged Next response from
response to detect “loopback” duplicates | object A
Figure 4.2: The logging and the garbage collection of operation identifiers by the Log-

ging-Recovery Mechanisms hosting replicas of an object A for different types of communication
(synchronous, asynchronous, invocation, response) involving object A.

For strong replica consistency, however, a fault-tolerant system must identify and main-
tain consistent ORB-level state and consistent infrastructure-level state across all of the
replicas of a CORBA object, in addition to consistent application-level state.

Eternal’s Logging-Recovery Mechanisms ensure that all of the replicas of an object are
consistent in the three kinds of state. State transfer to a new or recovering replica includes
the transfer of application-level state from an existing replica to the new replica, the transfer
of ORB-level state from the ORB hosting an existing replica to the ORB that hosts the
new replica, and the transfer of the infrastructure-level state from the Logging-Recovery
Mechanisms managing an existing replica to the Logging-Recovery Mechanisms that manage
the new or recovered replica.

4.3.1 Application-Level State

Application-level state is represented by the values of the data structures of the replicated
object. Typically, the application-level state is visible to, and completely determined by, the
application programmer. Of the three kinds of state, the application-level state is possibly
the easiest to retrieve and to restore.

To enable application-specific state to be captured, the application programmer must
ensure that every replicated CORBA object inherits the Checkpointable interface, shown
in Figure 4.3. Because 1t is not possible to anticipate the structure, or the contents, of the
application-level state of every conceivable application object, the application-level state is
defined in a generic way to be of the type sequence<octet>>.

This inherited IDL interface has two methods, (get_state()) and (set_state()), both of
which are intended to be implemented by the application programmer. The get_state()

50 Logging and Recovery Management

/] Generic definition of application-level state
typedef sequence<octet> State;

/| Exceptions associated with application-level state transfer
exception NoStateAvailable {};
exception InvalidState {};

/] Interface to be inherited by every replicated object
interface Checkpointable

// Retrieves application-level state
State get_state() raises(NoStateAvailable);

/] Assigns application-level state
void set_state(in State s) raises(InvalidState);

1

Figure 4.3: The Checkpointable IDL interface that must be inherited by every CORBA object
in the application to enable the checkpointing and transfer of application-level state.

method, when invoked on a CORBA object, returns the current application-level state of the
object. The set_state() method, when invoked on a CORBA object, with the application-
level state (that has been retrieved by an earlier get_state() invocation) as a parameter,
overwrites the current application-level state of the invoked object with the value of this
parameter. Alternatively, an interface with methods for incremental state retrieval and
assignment could be used; this is discussed briefly in Section 4.5.3.

In the case of an actively replicated object, the application-level state must be retrieved
through a get_state() invocation on an existing active replica, and transferred to a new or
recovering active replica through a set_state() invocation. In the case of passive replica-
tion, the application-level state of the primary replica must be retrieved using a get_state()
invocation, and the state thus obtained must be either stored in a log (cold passive replica-
tion), or transferred to the backup replicas after every invocation (hot passive replication).
The three phases of the recovery — the retrieval (get_state()), the transfer, and the assign-
ment (set_state()) of application-level state are essential to replica consistency, and must be
initiated through the totally ordered message sequence.

4.3.2 ORB-Level State

When an ORB hosts a CORBA object, the ORB provides location transparency to the
object, and manages all connection-level and transport-level information on behalf of the
object. This requires that the ORB maintain some information, at runtime, on behalf of the
object. This information allows the ORB to control the dispatch of incoming invocations
to the object, the creation of threads within the object, the creation of sockets to support
client connections, and the dispatch of outgoing requests. Although specific to the CORBA
object, this information is, however, completely hidden from the object, due to the nature of
the ORB’s mediating role in CORBA. Furthermore, this ORB-level information is not a part
of the CORBA standard, and no standard interfaces exist for extracting this information
from the ORB, or assigning values to it.

4.3 Consistent State 51

When a CORBA object is replicated, each replica of the object is hosted by a different
copy of the same ORB on a different processor. For an actively replicated object, if the object
and the ORB are both deterministic, and if every replica processes the same sequence of
invocations in the same order, both the application-level state and the ORB-level will be
consistent across all replicas, at the end of every operation.

However, in the case of recovery, consistent state is more difficult to achieve. Even if
the application-level state of the new or recovering replica is initialized by a transfer of
application-level state from an existing active replica, the two replicas (the existing replica
and the recovering replica) will not be consistent in state because the respective ORB-level
information will differ. Similarly, in the case of passive replication, if the primary replica fails
and a backup replica takes over as the new primary replica, consistent replication cannot be
ensured through the transfer of application-level state (from the old primary replica’s logged
checkpoints to the new primary replica) alone; the ORB-level state of the old primary must
be checkpointed and transferred to the new primary replica’s ORB to ensure strong replica
consistency.

The ORB-level state consists of the values of the data structures (last-seen request
identifier, threading policy, etc.) stored by the ORB, at runtime, on behalf of the object.
For the strongly consistent replication of a CORBA object, the values of these different
“pieces” of the ORB-level state must be identical at every replica of the object, as replicas
perform operations, and as replicas fail and recover.

Unfortunately, these “pieces” of ORB state are hidden within the data structures of the
ORB. This internal representation of the ORB-level state is not standardized (and indeed,
such standardization would be contrary to the OMG’s philosophy of standardizing interfaces,
and not their implememtations), and thus, not sufficiently identical across different ORBs.
Furthermore, the ORB-level state for a replicated object may be represented in a form that
1s specific to the ORB vendor or to the implementation of CORBA that is used. Thus, in
the current state of the CORBA standard and the current commercial implementations of
CORBA, 1t is infeasible to maintain strongly consistent replication of an object if its replicas
are hosted by different ORBs. For all practical purposes and for the rest of the text, it is
assumed that a strongly consistent replicated object has all of its replicas running over the

same ORB.

4.3.2.1 Request Identifiers

One of the most basic “pieces” of ORB-level state is the request identifier that the ORB
hosting an object inserts into every outgoing ITOP request message from the object. The
ORB generates this request identifier on a per-connection basis for each client object that
it hosts, and this request identifier is inserted into the corresponding ITOP reply message
by the target server object when it responds to the invocation. On receiving the TIOP
response, the client-side ORB first compares the request identifier embedded in the TIOP
response message from the server with the value that it assigned for the the client’s IIOP
invocation of the server. Only on verifying that the returned request identifier matches the
expected (transmitted) request identifier will the client-side ORB deliver the response to
the client that issued the corresponding request.

52 Logging and Recovery Management

Existing replica Existing reolica Recovering replica
of object A of ob?eftp A) of object A
Invocation of A
o' pictenyes e
(response to get_state()) * (set_state() invocation)
A4 v :
tﬁ?’(’fﬁn Last-seen Last-seen
s [on oo ol | o o
identifier . identifier N identifier
- A
Request : . -
identifier - Application-level - Application-level
- tate retrieval ; Stete assignment (b)
(a.) ‘ 350 ‘ Request bOdY/ " (response to get_state()) " (set_state() invocation)
<« —> . :
Header V
Eternal’s Mechanisms Eternal’s Mechanisms Eternal’s Mechanisms

A
Reliable multicast message : . .
for invocation . Reliable multicast message for .

application-level state transfer :

Existing replica Recovering replica
of object A - of object A
Invocation of Invocation of
method X method X
of object B of object B
Last-seen Last-seen
outgoin: outgoing
ORB ugong ORB ougorn
identifier identifier
Request
Request . e
(© identifier identifier
‘ ‘ 351 ‘ ‘ Request body / ‘ ‘ 1 ‘ ‘ Request body
P E— D
Y Header Header
4
Eternal’s Mechanisms Eternal’s Mechanisms
i i essag Reliable multicast message
i 5;?2?1?/'&3%::03& . ° i for invocation

Figure 4.4: Replica inconsistency due to different request identifiers from existing and recovering
replicas. In this example, only application-level state is being retrieved and transferred.

4.3 Consistent State 53

Eternal provides mechanisms to handle the consistency of “pieces” of ORB-level state
such as request identifiers. However, to demonstrate how replica consistency could be vio-
lated if request identifiers were not handled during recovery, consider the example of Fig-
ure 4.4. For the purpose of the example, assume that all of Eternal’s Mechanisms, but for
those that ensure consistent ORB-level state, are present.

Figure 4.4(a) shows an existing replica of an actively replicated object A that issues an
invocation (say, of method X of object B). This request carries the request identifier 350,
as issued by the ORB hosting this replica. Assume that the replica receives the response to
this invocation, and that a new replica of the object A is now launched. Before delivering
any further invocations, assume that Eternal’s Mechanisms retrieve the application-level
state from the existing replica (by invoking the get_state() method), multicast this state
to the Mechanisms hosting the new replica. The receiving Mechanisms assign this state to
the new replica (by invoking the set_state() method). Although Eternal, in fact, transfers
ORB-level state as well as application-level state, for the purposes of this example, we will
assume that the ORB-level state is not being handled.

The last outgoing invocation from the existing replica carried the request identifier 350,
which its ORB “remembers.” Unfortunately, because the ORB hosting the new replica does
not “know” about this piece of information which it must store in its data structures, the
ORB assigns the initial value 0 for the last-seen request identifier. Once the new replica is
recovered, assume that both replicas now dispatch the same invocation (again, invocation
of method X of object B), as shown in Figure 4.4(c). The ORB hosting the existing replica
assigns the request identifier 351 to its replica’s outgoing invocation, and the ORB that hosts
the recovering replica assigns the request identifier 1 to its replica’s outgoing invocation. The
two invocations are identical in intent, and in the body of the request; they differ only in
the request 1dentifiers that they carry.

The duplicate detection that Eternal performs ensures that only one of these invocations
will be delivered to the target server object B. If the delivered invocation happens to be
the one with the request identifier 1, then the server object B will return an ITOP response
that encapsulates this request identifier 1. Unfortunately, when this response is delivered
to the ORBs hosting the two client replicas of object A, only the ORB that assigned this
request identifier 1 (which happens to be the ORB hosting the recovered replica) will deliver
the message to its replica. The ORB that hosts the existing replica will detect a mismatch
between the request identifier (351) that it sent and the request identifier (1) that it received.
Thus, the ORB will not deliver the response to the existing replica, which will be blocked,
waiting forever for the server object to return a response.

Thus, if a new replica of the object 1s launched, the ORB that hosts the new replica
must store the same request identifier as that stored by ORBs hosting existing replicas of
the same object. Otherwise, even if a response is received by the ORB hosting a new client
replica, the response will never reach the client replica because of a mismatch between the
returned request identifier and the request identifier that the new client’s ORB (incorrectly)
expects.

The request identifier information is buried within the ORB. With the use of vendor-
specific “hooks” into the ORB, the Eternal system could extract the current request identifier
from the ORB. However, it may not always be possible to obtain such “hooks” from an ORB
vendor; even if those “hooks” were provided, using them may not always be easy. Fortu-

54 Logging and Recovery Management

nately, the request identifier information is visible from outside the ORB, in the messages
that are sent by the ORB. By parsing every outgoing message from the ORB, Eternal’s
Replication Mechanisms can discover, and store, the ORB’s setting for the current request
identifier. Furthermore, by ensuring that the stored value is transferred from the Replica-
tion Mechanisms hosting an existing replica to the Replication Mechanisms hosting a new
replica, at the point of recovery, the Eternal system can ensure that all outgoing messages
from the new replica are appropriately “patched” with the correct request identifier.

4.3.2.2 Socket Connections

The ORB handles all of the connection establishment and management on behalf of every
object that 1t hosts. The information that it must manage includes the identifiers and the
states of the sockets that an application object is currently using, the order in which these
sockets were established, and the buffered messages at these sockets. In addition, the ORB
must store information about the two endpoints of each socket, and the options that may
be assigned to the socket (such as the TCP_NODELAY option).

An existing replica of an object will have many established socket connections that the
replica uses to communicate with other objects in the system. When a new replica of the
same object is launched, because the new replica has not yet communicated with other
objects in the system, and because the new replica does not “know” about the connection
history of the existing repica, the new replica is not likely to have the established connections
of an existing replica. It is particularly important that the connections of the existing
replica be set up identically for the new replica. Otherwise, it may not be possible for the
ORB hosting the new replica to deliver incoming messages to the replica, or to establish
connections for the new replica to communicate with other objects at a later point.

Fortunately, all of the socket establishment is handled by Eternal’s Interceptor on be-
half of the ORB. Thus, although the ORB “believes” that it handles all of the connections,
Eternal manages connections transparently to the ORB. This enables the Replication Mech-
anisms hosting an existing replica to “probe” the Interceptor for the connection history of
the replica. Eternal can then transfer this information to the Replication Mechanisms, and
thus to the Interceptor, hosting a new replica. The Interceptor that receives this informa-
tion can then mimic the connection history of the existing replica for the new replica, and
establish the appropriate connections in the correct order.

As in the case of the request 1dentifier, with the provision of vendor-specific “hooks” into
the ORB, it is entirely possible to extract the connection information from the ORB itself,
rather than from the Interceptor.

4.3.3 Infrastructure-Level State

Infrastructure-level state is independent of, and invisible to, the replicated object as well as
to the ORB, and involves only information that Eternal deems necessary for maintaining
consistent replication.

The infrastructure-level state is independent of the application-level state and the ORB-
level state, and consists of the list of operation identifiers for the outstanding invocations
for which the existing replicas (in the same group as the new or recovering replica) are

4.4 Object Quiescence 55

awaiting responses. It also contains information essential for duplicate detection and garbage
collection of the log, including the list of last-seen operation identifiers from every sender
group. Much of this information is stored by the Logging-Recovery Mechanisms on behalf
of every replica, as outlined in Section 4.2.

Because this infrastructure-level state is completely visible to Eternal (being part of
what Eternal itself maintains), it is relatively easy for the Logging-Recovery Mechanisms to
piggyback this state onto the application-level state and the ORB-level state that they must
transfer to the Logging-Recovery Mechanisms hosting a new replica. The Logging-Recovery
Mechanisms that receive the three kinds of state will assign the application-level state first,
the ORB-level state next, and finally, the infrastructure-level state before allowing the new
replica to receive or process any regular incoming invocations or responses. The retrieval,
as well as the assignment, of the three different kinds of state must appear to be a single
atomic action so that the state transfer of the three kinds of state occurs at a single logical
point in time.

4.4 Object Quiescence

Eternal’s Logging-Recovery Mechanisms ensure that all of the replicas of an object are con-
sistent in application-level, ORB-level and infrastructure-level state. The frequency of state
retrieval or checkpointing is determined on a per-replicated-object basis, by the user, at the
time of deploying the application, when all other fault tolerance properties (replication style,
number of replicas, location of replicas, etc) for the replicated object are also determined.

The user-specified checkpointing frequency serves only an advisory purpose. It informs
Eternal’s infrastructure how often the Logging-Recovery Mechanisms can issue a get_state()
invocation on the replicated object. By no means does this guarantee that the replicated
object will perform this operation immediately, and will therefore respect the checkpointing
frequency. For instance, the replicated object may be in the middle of another operation, or
it may be blocked waiting for a response, ete. In such cases, the get_state() will be enqueuned
and delivered to the replicated object in the course of time. To decide on the appropriate
time to deliver the get_state() invocation, the Eternal system must determine the moment
that the object is quiescent, and capable of receiving a new invocation.

4.4.1 Conditions for Quiescence

In general, if an object is non-quiescent, it is performing an operation after having received
an invocation, and thus, its state may be undergoing modifications. If a non-quiescent object
were to be checkpointed, then different replicas of the object might be at different points of
the execution, and different checkpoints may be obtained for the replicated object. Thus,
state must be checkpointed for an object only when the object is quiescent.

Additional complications arise due to shared data between objects that are collocated
within the same process. Ideally, in the interests of replica consistency, the application should
be programmed such that objects collocated within the same process are independent, self-
contained entities that never share data structures that are outside of any of the objects,
e.g., global variables that are not member variables of any of the objects. Otherwise, even

56 Logging and Recovery Management

as the state (which will necessarily include the shared data) of an object within the process
is being retrieved, another object collocated within the same process could be modifying
the shared data.

Unfortunately, it may not always be possible to enforce such “clean” application pro-
gramming. Thus, without the assurance that the application will never contain collocated
application objects that share data, the Eternal system must assume that shared data may
exist in the application, and must enforce strong replica consistency taking this into account.

Effectively, if an object shares data with other objects within the same process, even if
the object is currently not performing any operations, it does not immediately qualify for
quiescence. An object can be regarded as quiescent for the purposes of state transfer if:
Condition 1: No threads are actively executing within the object
Condition 2: No threads are actively executing that may modify data that the object
shares (e.g., global variables) with other collocated objects within the process
Condition 3: No synchronous invocations have been delivered to the object for which the
object has not returned a response
Condition 4: All oneway invocations that have been delivered to the object have com-
pleted execution
Condition 5: The object is not blocked from receiving new invocations due to any syn-
chronous invocation that it has issued for which it 1s awaiting a response.

Asynchronous one-way calls that the object has issued do not matter because the object
is not waiting for a response from the call.

These conditions for quiescence are not specific only to the delivery of the get_state()
invocation — they must be verified both for the transfer of state to and from the object
and for the delivery of every new incoming invocation to the object. For strong replica
consistency, every replicated object must be quiescent at the beginning of each invocation.
With the assurance of “clean” application programming, condition 2 above can be safely
eliminated because the object’s state will never be dependent on shared data. However,
conditions 1, 3, 4 and 5 must be enforced, regardless of the existence of shared data.

4.4.2 Implications of Quiescence Conditions

The Logging-Recovery Mechanisms cannot retrieve the state from an existing replica of an
object unless the conditions in Section 4.4.1 are met. Thus, checkpoints must be coordinated
among the different objects collocated within the same process. For instance, when two
different objects are collocated in the same address space, ¢.e., within the same process, and
the two objects share data, either object may update the shared state independently. As a
consequence of this shared state, state cannot be retrieved until both objects are quiescent
according to the conditions stated above. Unfortunately, the shared state enforces some sort
of dependency between the two objects, and, thus, the need for coordinated checkpointing
[12, 43].

To achieve replica consistency, the moment of quiescence must be determined 1dentically
for all of the replicas of an object, regardless of the process in which these replicas are located,
and regardless of the other objects with which the replicas are collocated. The implication
of this is that the unit of quiescence must be identical for every replicated object for the
purposes of state retrieval or assignment. Thus, the replicas of an object must be located

4.4 Object Quiescence

57

Process P; Process P,

(©

C)

Figure 4.5: Combinations of replicas and replication styles that could lead to inconsistent repli-
cation when replicas collocated within the same process share data.

Replicated
Object A

Replicated
Object B

Actively
Replicated
Object A

Cold Passively
Replicated
Object B

Cold Passively
Replicated
Object A

Cold Passively
Replicated
Object B

Process P,

Process P;

Process P,

Process P,

(b)

(d)

()

Process P,

Process P,

Actively
Replicated
Object A

Warm Passively
Replicated
Object B

Cold Passively
Replicated
Object A

* Warm Passively
Replicated
Object B

Warm Passively
Replicated
Object A

Warm Passively
Replicated
Object B

in 1dentical processes, and collocated with identical replicas of other objects within those
processes. As shown in Figure 4.5(a), it is not possible for a strongly consistent replicated
object A to have one of its replicas A; collocated with a replica By of object B (where B

58 Logging and Recovery Management

shares data with A;) in a process Pi, and another of its replicas A, by itself in another
process Ps. If this were allowed, the moment of quiescence would be determined differently
for the replicas of object A in the different processes P; and P,. The differing moments of
quiescence would mean that, if a get_state() invocation were dispatched to object A, replica
A1 would actually execute the invocation at a different moment in time from replica A,.
This would mean that the single get_state() invocation issued on the replicated object would
result in different responses (with potentially different states contained in them) from the
different replicas of the object.

Figures 4.5(b)-(f) show other combinations of collocated replicated objects with different
replication styles that can result in inconsistent replication when the collocated objects share
data. For instance, in Figure 4.5(e) with two collocated cold passively replicated objects
with shared data, clearly the backup replicas A; and By are not even loaded into memory.
Thus, although they are shown in the figure, these backup replicas do not exist, and only
the primary replicas As and Bj are performing every operation, and updating, separately
in the two processes P; and Ps, the data shared common to both A and B. The value of
this shared data is likely to differ across the two processes so that, if the primary replica
As fails, and A; must now take over as the new primary replica, the different values of the
shared data in the processes P; and P, will lead to inconsistency.

Another consequence of the conditions for quiescence is that different replication styles
(active replication, cold passive replication, warm passive replication) for objects collocated
within the same process cannot be mixed. All objects located within the same process that
share data must have the same replication style.

Thus, the replicas of object A must necessarily be located in identical processes P; and
P5, and collocated with the same set of objects, and with objects with the same replication
style. Figures 4.6(a), (b) and (c) indicate valid possibilities for P, and P that would enable
consistent replication in the presence of data shared between collocated objects. Thus,
although replication, consistency and recovery are managed on a per-replicated-object basis,
in the presence of shared data, the effective unit of replication must be the process. “Peer”
processes are those that contain the same set of object replicas with the same replication
style; thus, the quiescence and state of peer processes will be determined identically.

Of course, the notion of peer processes must be continued to be maintained as replicas
within these processes fails. Particular care must be taken in the case that a replica located
within a process fails. If the failed replica is collocated with replicas of other objects within
the same process address space, there is likely to be shared state. In this case, the entire
process must be terminated, and all of the replicas within the process must be killed. While
this may seem drastic, if such action is not taken, quiescence might be determined differently
for this process than for its peer processes. Thus, the states of the operational object replicas
within a process may become different from the states of the corresponding object replicas
within the peers of the process.

In the interests of strong replica consistency, and without the assurance of “clean” ap-
plication programming, the process 1s the effective unit of quiescence, state retrieval, state
assignment, failure and activation.

4.5 State Transfer 59

Process Py Process P, Process Py Process P, Process Py Process P,
i Pi Warm Passively ; .
/\ 2 e X m b I AT

Object A [SR\ [02\ ObjectA [\ 2\ Objecth

! | | \ | = |
Actively | \ Warm Passively | ‘ \ B \ :
Replicated | B, Replicated | By | | 5 | ColdPassvely
Object B anaw ‘ Object B | Yrimay | [Replicated

\Dau \ara/ \al/ \Dara/ \Daa_) \Daa_j

(0

Flgure 4.6: Combinations of replicas and replication styles that can ensure replica consistency
when replicas collocated within the same process share data.

4.5 State Transfer

The Replication Manager (shown above the ORB in Figure 1.3) is responsible for the creation
and the activation of new replicas of application objects. The activation of a new replica of
an object must trigger the transfer of state to the new replica.

For reasons of efficient and consistent recovery, the state transfer is performed by the
Logging-Recovery Mechanisms (underneath the ORB), rather than by the application or
by the Replication Manager above the ORB. Thus, the Replication Manager above the
ORB only needs to communicate the activation of a new replica to the Logging-Recovery
Mechanisms to initiate recovery.

4.5.1 Generating State Transfer Invocations

Because the Logging-Recovery Mechanisms assume responsibility for state retrieval and
assignment, they are the sole invoker of the Checkpointable interface of the replicated
objects that are above the ORB.

The Logging-Recovery Mechanisms are located underneath the ORB, and are not im-
plemented as CORBA objects themselves. This means that the Mechanisms do not have
access to the ORB, and to a direct means of communicating with CORBA objects. How-
ever, to allow the invocation of the Checkpointable interface, there must be some means
of communication between the application objects above the ORB and the Mechanisms un-
derneath the ORB, without requiring the mediation of the ORB. To do this, the Eternal
system exploits the Interceptor, as well as a simple ITOP Message Engine located within the
Mechanisms.

Figure 4.7 shows two replicas of a replicated object A, where A; is an existing replica,
and A, is a new replica. For every replica hosted by Eternal, the Interceptor first establishes
a separate Unix socket from each CORBA object to Eternal’s Mechanisms underneath the
ORB. This socket, labelled Socksy in the figure, is not used for normal ITOP message com-
munication between replicated CORBA clients and servers. Instead, Sockgsy is dedicated for
use by the Logging-Recovery Mechanisms for the purpose of dispatching the get_state() and
the set_state() invocations to the object. The figure also shows a regular socket, Sockap,
that is used for the normal exchange of ITTIOP messages between replicated object A (one of
whose replicas is shown in the figure) and replicated object B (not shown in the figure).

60 Logging and Recovery Management

Existing Replica A, New ReplicaA,
(of object A) (of object A)

Sock
o ‘\ / Sock, Socky, ‘\ ,Sock

: T : e
: : . : No communication
: Regular communication set_state()

?rf\t/B(S:taa@ttig(rz with replicated object B invocation here as yet

- - - -

IIOP v

Message [State |

Engine Etemal’s Eternal’s

Mechanisms Mechanisms
4

Multicast message for set_state()

Figure 4.7: Generating the get_state() and the set_state() invocations for state transfer.

The ITOP Message Engine that the Mechanisms use does not have any knowledge of
ORBs, stubs or skeletons; it 1s a simple piece of code that is capable of fabricating valid
ITOP invocations given the object key of the target object, the byte ordering of the system,
the name of the method to be invoked, and the parameters for the method. The messages
are fabricated according to the standard GIOP message formats.

For state retrieval from an object, given the object key of the target object, the ITOP
Message Engine can generate a valid ITIOP invocation for the get_state() invocation. By ex-
ploiting the special socket Socksy that has been established by the Interceptor, the Logging-
Recovery Mechanisms dispatch the Eternal-fabricated ITOP invocation to the object. The
ITOP invocation can be delivered to the ORB hosting the target object which, in this case,
happens to be the replica A; of object A. The ORB hosting A; receives this invocation, and
because the invocation has been properly formatted according to the GIOP specifications,
the ORB will deliver this to replica A;. All that the ORB requires is that the replica A;
actually exist, which is indeed the case because replica A; already exists.

The return value contained in the TIOP response to the get_state() invocation on the
existing replica Ay is the application-level state, which is received by the Mechanisms that

4.5 State Transfer 61

host replica A;. This return value must be turned into the parameter for the set_state()
invocation on the new replica As. The ITOP Message Engine in the Mechanisms is capable of
parsing the response to the get_state() invocation, extracting the application-state embedded
in the body of the response, and fabricating a set_state() IIOP invocation with this extracted
application-level state as the parameter.

In addition, the Logging-Recovery Mechanisms at A; piggybacks the ORB-level state
and the infrastructure-level state corresponding to the existing replica A; onto this Eternal-
fabricated set_state() ITIOP invocation. The resulting message, containing the three kinds of
state, 1s multicast to all of the Logging-Recovery Mechanisms hosting replicas of the object.

The Logging-Recovery Mechanisms at the new replica As receive this message, and use
the embedded infrastructure-level state and the ORB-level state in the message to initialize
the infrastructure-level state and the ORB-level state, respectively, that the Mechanisms
start to maintain for A;. The Eternal-fabricated ITOP message for set_state() invocation
is delivered to Socksr that the Interceptor at A has established for communication with
the Mechanisms. When the ORB hosting A; receives this properly-formatted invocation
message, it delivers the message to replica A;. This 1s possible because the Replication
Manager has already created replica As.

4.5.2 Synchronization of State Transfer

During recovery, the application-level state must first be retrieved from an existing replica
or a log before it can be assigned to a new replica. Because of this necessary order of
operations, the get_state() invocation must be issued to the replicated object before the
set_state() invocation can be issued. Nevertheless, although these invocations have this
order imposed on them, the point in the incoming invocation sequence that the get_state()
appears for the existing replicas must correspond to the point in the incoming invocation
sequence that the set_state() invocation appears from the new replica. Otherwise, the
state retrieved by the get_state() invocation will not, in fact, be the state assigned by the
set_state() invocation.

Thus, in the transfer of state from an existing replica to a new or recovering replica,
it is particularly important that the retrieval of state from the existing replica and the
assignment of the retrieved state at the new or recovering replica occur at the same logical
point in time. The tricky issues of synchronizing the transfer of state are handled by the
Logging-Recovery Mechanisms.

The get_state() invocation must be delivered only to the existing replicas that have the
current consistent state of the replicated object; the set_state() invocation must be delivered
only to the new replica. Nevertheless, both invocations are received, in the totally ordered
sequence of multicast messages, by the Mechanisms hosting every replica of the object.
However, the receipt of the invocations results in different actions, depending on whether
the receiving Logging-Recovery Mechanisms host an existing or a new replica.

Figure 4.8 shows two replicas of a replicated object A, where A; is an existing replica,
and A, is a new replica, and the sequence of steps in synchronizing the state transfer of the
replicated object A.

At the existing replica A;, the Logging-Recovery Mechanisms deliver the get_state() invo-
cation as shown in Figure 4.8(i). However, because the new or recovering replica A3 has not

62

Logging and Recovery Management

Existing New
ReplicaA, ReplicaA,
(of object A) (of object A)

f

get_state() delivered to
the existing replica

get_state() triggers
enqueueing of messages
get_state()
(i)
Eternal’s Eternal’s
Mechanisms Mechanisms

Totally ordered sequence of multicast messages

Existlng New
ReplicaA ReplicaA
(of object A) A (of object K)

get_state() returns the
application-level state

(I | |) Invocation X get_state()
Set_state() | Invocation Y Invocation X
invocation

Invocation Y
Eternal’s Eternal’s
Mechanisms Mechanisms

Totally ordered sequence of multicast messages

Exisllng New
ReplicaA ReplicaA
(of object &) (of object A) /i

set_state overwrites get_state
at the head of the queue and
is delivered to the new replica

Invocation X dequeued and
delivered to the existing replica

Invocation Y
dequeued when
Invocation X <
COMPIEES ' ocztion v Invocation X
(V) set_state) vocation Y
Eternal’s Eterna’s
Mechanisms Mechanisms

Totally ordered sequence of multicast messages

Existi ng New
ReplicaA ReplicaA
(of object A) (of object A) &

get_state() being

processed by replica

Invocations enqueued till
get_state() retumns

Invocation X get_state()

(i) s

Eternal’s
Mechanisms

Eternal’s
Mechanisms

10ty oraerea sequerice of multicast messages

Existing New
ReplicaA, ReplicaA,
(of object A) (of object A)

Invocation X dequeued and
delivered to the existing replica

get_state()
Invocation Y Invocation X
(I V) set_state() ;VO:;:(V)
Eternal’s Eternal’s
Mechanisms Mechanisms

Totally ordered sequence of multicast messages

Exismg New
ReplicaA ReplicaA
(of object »&) (of object /f)

set 343()

retums
successfully

4

Invocation X delivered
when set_state() completeg

s;,slateo set_state() Invocation X
Invocation Y
. Eternal’s Eternal’s
(Vl) Mechanisms Mechanisms

1otally oraerea sequerice of multicast messages

Figure 4.8: Synchronization of state retrieval and state assignment for consistent replication.

4.5 State Transfer 63

yet been initialized with the correct consistent state of the replicated object, the get_state()
operation is not delivered to the new replica. Instead, the receipt of the get_state() invoca-
tion triggers the enqueueing of incoming IIOP messages by the Logging-Recovery Mecha-
nisms at the new or recovering replica.

While the existing replica A; is performing the get_state() operation, regular invocations
(such as Invocation X shown in Figure 4.8(ii)) might arrive for the replicated object A.
Because A; is in the middle of an operation, these incoming invocations will not be delivered
to A;. Because A, has not yet been initialized with the correct state, these invocations are
not delivered to As. The Logging-Recovery Mechanisms at both replicas enqueue the regular
incoming invocations.

The get_state() invocation completes, as shown in Figure 4.8(iii), and the TIOP Message
Engine within the Mechanisms converts the response of the get_state() into a set_state()
invocation, as described in Section 4.5.1. The set_state() invocation is multicast, along
with the ORB-level state and the infrastructure-level state. Once replica Ay returns the re-
sponse to the get_state(), it is free to process normal invocations, and the Logging-Recovery
Mechanisms that host 4; will deliver, in the order of their arrival, any invocations (such as
Invocations X and V') that were enqueued while 4; was processing the get_state().

When the set_state() invocation is received by the Logging-Recovery Mechanisms at the
new or recovering replica, as shown in Figure 4.8(v), this invocation moves to the head of
the incoming message queue (a position previously occupied by the get_state() message),
and 1is delivered to As. The remaining enqueued messages are applied after the application-
level state is transferred to the new or recovering replica, as shown in Figure 4.8(v). The
set_state() invocation, when received by the Logging-Recovery Mechanisms hosting the
existing replica A, will simply be discarded because A; already has the correct consistent
state of the replicated object A.

Thus, the logged get_state() invocation itself is never applied to the new or recovering
replica As; instead, its receipt by the Logging-Recovery Mechanisms is used to represent
the state synchronization point, in the totally ordered message sequence, at which the state
assignment must occur through its counterpart set_state() message.

4.5.3 Incremental State Transfer

The simplest mechanism for the transfer of large states between replicas of an object is to
suspend operations on the object, transfer the state, and then resume operations on the
object. This solution is appropriate when the state is not too large and can be transferred
quickly. A drawback of this scheme is the need to stop all operations on the object until
the state transfer is accomplished. More refined, though more complex, schemes allow
operations to be performed on the object while a large state is being transferred [38]. Such
a scheme is described below.

For active replication, one of the replicas is designated to perform the transfer. This
replica does not stop processing further operations while transferring the state. Rather, it
logs a preimage (the values of the updated parts of the state before the update) of each
update that it performs. First the existing state is transferred, and then the preimages are
transferred. The state initially transferred to the new replica may be incomplete, since the
state may have been partially updated after the transfer, but the new replica can reconstruct

64 Logging and Recovery Management

Replicaof a
CORBA Object
(source_group_id)

)) I nter ceptor
Logging-Recovery M echanisms
1/OP Message
State Transfer source_group_id o .
Handler target_group_id Replication M echanisms
Duplicate ‘IIOP MesaageHandIer‘ Object Group,
Detector ‘ Membership
and Information
Suppressor |7

11OP Message \

Group Communication
Message Handler
1

1|OP Message

-9 (@

Replicaof a
CORBA Object
(target_group_id)

)) I nter ceptor
Logging-Recovery M echanisms
State Transfer) . .
Handler target_group_id Replication M echanisms
||OP Message
: Duplicate JIIOPM&&ge Handler‘ Object Grou
Duplicate | Detector 1 Mjembershig)
Messages and Information
Suppressor T 4

;

\ /I:/Iembership
Regular Messages Messages
==l ||OP Message
/ T \ Group Commun’idclzation
- Non-duplicate m M essage Handler
Messages

Reliable
Multicast
LOg (b) Messages

Figure 4.9: Interaction between the Replication Mechanisms and the Logging-Recovery Mecha-
nisms of the Eternal system for (a) outgoing messages, and (b) incoming messages.

4.6 Interaction between the Mechanisms 65

the state by applying the preimages. During the transfer; the new replica performs no
operations, but rather logs all of the operations. Once the state transfer is completed, the
new replica processes the operations it has logged in order to bring its state into consistency
with that of the other replicas.

For passive replication, the procedure is similar, except that the postimages (the values
of the updated parts of the state after the update) are logged and transferred, instead of
the preimages, and the new or backup replicas do not log and process operations.

The advantage of this scheme is that a primary replica does not have to stop processing
its messages while transferring its state. However, extra load is imposed on the primary
replica since 1t continues processing and transfers its state simultaneously.

4.6 Interaction between the Mechanisms

The Logging-Recovery Mechanisms, operating in concert with the Replication Mechanisms,
provide for the consistent object replication of the CORBA application. The interaction
between Eternal’s Replication and Logging-Recovery Mechanisms is shown in Figure 4.9.

For every outgoing ITOP message that it receives from the Replication Mechanisms, the
Logging-Recovery Mechanisms insert, but do not record, a unique operation identifer into
the Eternal-specific header of the encapsulated message. For every incoming encapsulated
ITOP message, the Logging-Recovery Mechanisms use the information in the Eternal-specific
header to detect and suppress duplicate messages, and pass only non-duplicate messages
(along with sufficient information about the target object group) to the Replication Mech-
anisms for delivery to the application.

66

Chapter 5
Majority Voting

Applications such as those in the telecommunications industry, the medical field, and the
financial sector, place stringent requirements on the reliability and security of distributed
systems. These requirements arise primarily because such applications must provide con-
tinuous service and, thus, cannot be shut down. Unfortunately, it is precisely the critical
nature of these applications that makes them highly vulnerable to malicious attacks.

CORBA lacks the intrinsic support to meet the requirements of such critical applications.
The Eternal system extends CORBA to protect an existing CORBA application against
intrusions or accidents that damage some portion of the distributed system, or faults that
oceur within the system [44].

5.1 Secure Totally Ordered Reliable Multicast

To support critical applications that must tolerate arbitrary faults, including those that
arise from the incorrect behavior of the application itself, the Eternal system employs active
replication with majority voting for every client and server object of the application. Unfor-
tunately, the guarantees of the Totem protocols are insufficient to ensure effective majority
voting. Instead, Eternal exploits the SecureRing Protocols [27, 28] to communicate the
operations to the replicas, to maintain the consistency of the states of the replicas of each
application object and, in particular, to provide the higher levels of fault tolerance required
for majority voting.

5.1.1 The SecureRing System

The SecureRing Protocols provide the properties necessary for majority voting, and allow
for detection and removal of faulty processors. The protocols consist of a message delivery
protocol, a processor membership protocol, and a Byzantine fault detector as shown in
Figure 5.1. As with the Totem protocols, the services of the underlying SecureRing Protocols

67

68 Majority Voting

are made available to Eternal’s Mechanisms through the object group interface, which hides
the complexity of the protocols from the Eternal system.

Imposed on the communication medium is a logical ring with a token that controls the
multicasting of messages. To multicast a message on the ring, a processor must hold the
token. The processor membership consists of all of the processors that participate in the
sending and receiving of messages on this logical ring.

SecureRing’s message delivery protocol provides secure reliable totally ordered delivery
of messages that are multicast by the processors in the system. This ensures that all of the
non-faulty processors in the system deliver the same messages in the same total order and
that, if any non-faulty processor delivers a message, then, no non-faulty processor delivers
a mutant message having the same identifier but different contents.

SecureRing’s processor membership protocol reconfigures the system when one or more
processors exhibit faulty behavior. The membership protocol exchanges information via
special processor membership messages, and reaches agreement on and installs a new mem-
bership consisting of apparently non-faulty processors that are able to communicate with
each other.

SecureRing provides a local Byzantine-fault detector on each processor that monitors the
messages sent by the message delivery and processor membership protocols, and provides
its output to the membership protocol in the form of a list that contains the processors
currently suspected as being faulty by the local Byzantine fault detector. Such faults are
classified as omission faults and commission faults. An omission fault occurs when a process
omits to send a required message to one or more non-faulty processes; or repeatedly fails to
acknowledge the receipt of a required message. A commission fault occurs when a processor
sends mutant tokens, or sends a token that is improperly formed.

To ensure that a malicious processor cannot masquerade as another processor, the token-
holding processor digitally signs the token before multicasting it. In addition, to tolerate
faults involving message corruption during transit, the token transmitted by a processor
contains the message digests of the messages that the processor multicasts while it holds
the token.

The SecureRing protocols employ a public key cryptosystem such as RSA [59] in which
each processor possesses a private key known only to itself, and with which it can digitally
sign messages. Each processor can obtain the public keys of other processors to verify the
signed tokens that it receives. The protocols also employ a message digest function such as
MD4 [58] in which an arbitrary length input message is mapped to a fixed length message
digest.

Tolerating malicious faults comes with a cost, primarily due to the computation time
associated with the generation and the verification of the digital signatures on the token.
However, because only tokens (and not messages) are digitally signed, and because multiple
messages can be multicast with every acquisition of the token by a processor, a single digital
signature on the token can cover multiple messages.

5.2 Active Replication with Majority Voting 69

i from Value
Object Group Interface S

5
w v message Message
8 3 - - - Celivery Delivery
S . A information Protocol
) A
o
X

: processor
% : membership Processor
o information Membership
% : A suspects“ Protocol
s élist
0! -

: fault :
§ information|® anj?ntme

: A

: _T ‘ L Detector

\/ \/ \/ \/

Aatform

Figure 5.1: The SecureRing group communication system.

5.2 Active Replication with Majority Voting

Critical applications that must tolerate value faults, in addition to crash faults, require the
use of majority voting on all messages to be delivered to the application objects. Because
the Eternal system aims to support applications that must tolerate arbitrary faults, the
Replication Mechanisms employ majority voting on the invocations and responses delivered
to each application object.

To enable majority voting, a number of “copies” of the same invocation (response) must
serve as inputs to the voting algorithm, where each “copy” is sent by a different replica of the
same client (server) object. The voting algorithm uses these “copies” as inputs to produce a
single output “copy” of the invocation (response) for delivery to the application. To collect
these “copies”, Eternal employs active replication for every object of the application.

70 Majority Voting

In an environment where value faults are absent, these “copies” correspond to the du-
plicate messages discussed in Section 3.4, and the first non-duplicate receiveed message can
be safely delivered without the need for majority voting. However, in an application sub-
ject to arbitrary faults, any one of multiple client (server) replicas could send a corrupted
invocation (response). Thus, while the “copies” of the invocation (response) received at the
target object represent the same operation, they may differ in value or content, and may
not, in fact, be duplicates of each other.

5.2.1 Support for Majority Voting

To send messages to a target replicated object, the Replication Mechanisms do not need
to know the number, or the location, of the target replicas. However, to perform majority
voting on the copies of an invocation or response, the Replication Mechanisms need to
know how many copies of the invocation or response to expect. Thus, the voter within the
Replication Mechanisms hosting a target server (client) replica needs to know the current
number of replicas (the current degree of replication) of the actively replicated sender client
(server).

One way that the voters could obtain this information, is by having the Mechanisms
on every processor join a special base group that serves to disseminate membership changes
and membership information. For every new replica that is created for an object, or for
every replica of an object that dies, the new degree of replication (after the addition or
removal of the replica is effected) is reported to the base group, along with the identity (in
the form of the object group identifier that is uniquely assigned to the replicated object)
of the replicated object whose degree of replication has changed. Thus, the Replication
Mechanisms on every processor are always aware of the current number of replicas in every
replicated object in the system.

In the Eternal system, as shown in Figure 5.2, object group membership messages (gen-
erated by the object group interface due to the addition or removal of a replica) are received,
but not forwarded to the application, by every member of the base group. On receipt of such
messages, the Replication Mechanisms update the membership information that they must
maintain to perform majority voting. The base group poses some difficulties in terms of
scalability; it requires the Replication Mechanisms on every processor to belong to a group.
An alternative to the base group is to have the Eternal-specific header of every multicast
message contain the degree of replication of the replicated sender object. For the rest of the
text, however, we will discuss the base group approach.

The voting algorithm is deterministic and produces the same result for each invocation
(response) at every server (client) replica. For each invocation (response) from a client
(server) object, when the voter receives a majority of copies that it verifies as being identical
in value, the voting algorithm produces a single result, which the Replication Mechanisms
then deliver as an invocation (response) of (to) the target server (client) replica. For every
output result that the voter produces, the Replication Mechanisms discard all subsequently
received messages that are copies of the delivered invocation (response).

Figure 5.2 shows the interaction between the object group interface and the voting
mechanisms. The Replication Mechanisms on a processor maintain a single voter for every
object group (replicated object) one of whose members (replicas) it hosts. The Replication

5.2 Active Replication with Majority Voting

~ Server Replica Client Replica
(in object group G (in object group G)

[1OP Interceptor for I1OP Interceptor for
Server Replica Client Replica :
! 4
: ||OP Messages 5
2 Voter for Voter fol
: r
g : invocations V responses V
— on group Gg | to group G, R
S =% .
2 Value Object group \
cC Fault membership
o ! Detector information
= = | i
"(_U' ! Value Fault_ Vote | Membership
O messages messages
% : y Messages Messages
: for for
D: Messages group Gg group G¢
: for base group
Y o byzentine | securereliabletotally ordered
¥ fault detector group communication messages
Object Group Interface

Figure 5.2: Eternal’s Replication Mechanisms enhanced with support for majority voting on
received invocations and responses.

72 Majority Voting

Mechanisms receive all of the secure reliable totally ordered multicast messages destined for
the replicas that it hosts, and filters the messages based on their object group identifiers
of the target replicas. The Mechanisms then pass on to the voters only those messages
that are destined for the target replica with whose group identifier the voter is associated.
The voters then execute the voting algorithm to decide on the delivery, to their designated
replicas, of the messages that they receive.

5.2.2 Input Majority Voting

Input majority voting occurs on incoming invocations to replicated server objects. As shown
in Figure 5.3, in the case of input majority voting, the Replication Mechanisms at each of
the server replicas detect the copies of each invocation using the invocation identifiers in
the messages. The mechanisms for the detection of these copies and the assignment of the
invocation identifiers follow the rules outlined in Section 3.4 for duplicate detection. In this
case, these mechanisms serve to collect the copies of every distinct invocation to be fed to
the invocation, or input, voter.

By virtue of its membership in the base group, the Replication Mechanisms at each of
the server replicas know the current degree of replication, 7., of the replicated client object
or, alternatively, the number of copies of each invocation to expect from the replicated client
object. From its knowledge of 7., the Replication Mechanisms can determine the majority
number of client replicas.

As shown in Figure 5.2, when the Replication Mechanisms hosting a replica of a server
object (with object group identifier Gg) receive the copies of an invocation destined for
group (g, the Mechanisms dispatch these copies to the local voter Vi assigned for voting
on invocations destined for group Gg. The voter V; collects these copies, votes on them,
and produces a single invocation that is then delivered to the server replica through the
Interceptor.

5.2.3 Output Majority Voting

Output majority voting occurs on incoming responses to replicated client objects. As shown
in Figure 5.4, in the case of output majority voting, the Replication Mechanisms at each
of the client replicas detect the copies of each response using the response identifiers in
the messages. The mechanisms for the detection of these copies and the assignment of the
response identifiers follow the rules outlined in Section 3.4 for duplicate detection. In this
case, these mechanisms serve to collect the copies of every distinct response to be fed to the
response, or output, voter.

By virtue of its membership in the base group, the Replication Mechanisms at each of
the client replicas know the current degree of replication, 7, of the replicated server object
or, alternatively, the number of copies of each response to expect from the replicated server
object. From its knowledge of r,, the Replication Mechanisms can determine the majority
number of server replicas.

As shown in Figure 5.2, when the Replication Mechanisms hosting a replica of a client
object (with object group identifier G'¢) receive the copies of a response destined for group
G, the Mechanisms dispatch these copies to the local voter Vg assigned for voting on

5.2 Active Replication with Majority Voting

73

Actively replicated client Act|ve|y replicated server
invoking an operatlon PR .

v

A (.

Secure reliable totally ordered Mgjority voting
multicast for invocations on invocations

Figure 5.3: Active replication with input majority voting on invocations.

Actively replicated server

Actively replicated client r&‘p‘?r.“?"_r?g. to _t.h'e' quatl on

U ‘ U ‘ ‘ U ‘ Immune‘
System

U

A T

Majority voting Secure reliable totally ordered

on responses multicast for responses

Figure 5.4: Active replication with output majority voting on responses.

responses destined for group G¢. The voter Vg collects these copies, votes on them, and
produces a single response that is then delivered to the client replica through the Interceptor.

5.2.4 Value Fault Detection

As shown in Figure 5.2, the voter V7 (Vg) within the Replication Mechanisms can detect an
incorrect value of an invocation (response) sent by a corrupted client (server) replica. To
ensure that a value fault due to a corrupt replica 1s handled as a malicious processor fault,
the Replication Mechanisms on every processor within the system (and not merely those
that first detected the value fault through their voters Vi or Vg) must vote locally on the

same set of invocations and independently reach the same conclusion.

74 Majority Voting

To achieve this, each Replication Mechanisms use a value fault detector, as shown in
Figure 5.2. A voter V; (Vg), on detecting an incorrect value of an invocation (response),
multicasts to the base group, a Value Fault _Vote message encapsulating the set of copies
of the invocation (response) on which it voted. This special message is delivered to the value
fault detector within the Replication Mechanisms on every processor. Each of these value
fault detectors compares this set of copies to determine the identity of the corrupt client
(server) replica and, thus, the identity of the processor that hosts that replica.

The value fault detector on every processor then communicates the identity of the corrupt
processor to the local Byzantine fault detector (within the SecureRing Protocols on the same
processor) through a Value Fault_Suspect message. This special message is not intended
to be transmitted over the network, and is used solely for private notifications by the value
fault detector to the local Byzantine fault detector. Thus, every Byzantine fault detector
in the system will receive the same local notifications. The mechanisms of the SecureRing
protocols can employ these notifications to decide on, and effect, the removal of the corrupt
processor. The performance of the Eternal system for active replication with majority voting
is given in Chapter 8.

Chapter 6

Multithreading

Some of the issues surrounding replica consistency and multithreading have been addressed
for fault-tolerant systems that are not based on CORBA. In [64], a technique is employed
to track and record the nondeterminism due to asynchronous events and multithreading.
While the nondeterminism is not eliminated, the nondeterministic executions are recorded
so that they can be replayed to restore replica consistency in the event of rollback.

Many commercial ORBs and CORBA applications are multithreaded, primarily because
multithreading can yield substantial performance advantages and concurrency. However,
the specification of multithreading in the CORBA 2.2 standard [54] does not provide any
guarantees on the order in which a multithreaded ORB dispatches incoming operations. In
particular, the specification of the Portable Object Adapter (POA), which is a key compo-
nent of the CORBA standard, provides no ordering guarantees on the mechanisms that the
ORB or the POA use to dispatch requests across threads. The following i1s an excerpt from
the specification of the POA ([54], pages 9-12) in the CORBA standard:

“There are no guarantees that an ORB or POA will do anything specific about
dispatching requests across threads with a single POA. Therefore, a server pro-
grammer who wants to use one or more POAs within multiple threads must take
on all of the serialization of access to objects within those threads. There may
be requests active for the same object being dispatched within multiple threads
at the same time. The programmer must be aware of this possibility and code
with it in mind.”

Thus, the ORB or the POA may dispatch several requests for the same object within
multiple threads at the same time, and these threads may not necessarily execute in the
order in which the requests were received by the ORB or the POA.

In addition to ORB-level threads, the CORBA application may itself be multithreaded,
with the application-level thread scheduling having been determined by the application pro-
grammer. The application programmer must ensure the correct sequencing of operations,

75

76 Multithreading

and must prevent thread hazards. Careful application programming can ensure thread-safe
operations within a single replica of an object, without leading to race conditions or dead-
locks within that replica; however, it does not guarantee that threads and operations will be
dispatched, and will execute, in the same order across all of the replicas of the object. The
application programmer cannot be expected to understand the detailed issues surrounding
fault tolerance. Making the application programmer responsible for concurrency control
and ordering of dispatched operations and threads in replicated objects is unacceptable for
maintaining strong replica consistency in a fault-tolerant system.

This chapter describes how the Eternal system addresses these challenges through the
mechanisms [48] that it provides for guaranteeing consistent replication in the face of one
specific source of nondeterminism, namely, multithreading in the ORB or the application.

6.1 Replication of Multithreaded Objects

Several different concurrency models [61] are supported by current commercial ORBs. These
include thread-per-request, where a separate thread is spawned for each new invocation on
an object, and thread-per-object, where a single thread executes all invocations on an object.
Most practical CORBA applications consist of processes that contain multiple objects, each
having possibly multiple threads. Objects that are collocated within the same process may
access and update shared data; thus, irrespective of the threading model used by the ORB,
multiple threads may exist within each process. Because a server object may itself assume
the role of a client, we do not distinguish between the problem of multithreading for client
objects and server objects.

We use the term MT-domain to refer to any CORBA client or server that supports
multiple (application-level or ORB-level) threads which may access shared data, and that
contains one or more CORBA objects. The MT-domain abstraction is independent of the
concurrency model of the ORB, of the role of the MT-domain as a client or as a server, as
well as of the commercial ORB that hosts the MT-domain.

In Sections 6.1.1 and 6.1.2, we provide examples that illustrate how replica inconsistency
can arise in the active and the passive replication of MT-domains, respectively. In addressing
the specific problems posed by multithreading with regard to replica consistency, we assume
that all of the mechanisms of Section 3.1 that guarantee replica consistency for single-
threaded objects are already present, ¢.e., messages are delivered to the ORB in a totally
ordered sequence, duplicate operations are detected and suppressed, and state transfers are
provided for recovering replicas.

While these mechanisms suffice to guarantee replica consistency in the absence of multi-
threading, they serve only to facilitate, but not to guarantee, replica consistency when either
the ORB or the application is multithreaded. In particular, the totally ordered multicasts
ensure only that the ORBs that host the various replicas receive the same messages in the
same order. They do not guarantee that the ORBs will dispatch these incoming messages
onto the threads of the replicas in the same order.

We assume further that other sources of nondeterminism, e.g., system calls (such as
local timers) that return processor-specific information, are handled by other mechanisms,
such as the additional sanitizing interposers described in Section 2.2.3.1. We also assume

6.1 Replication of Multithreaded Objects 77

Actively Replicated Object

Repl icaR,

ReplicaR, -
Thread T, é\ / 5 Thread T, Thread T, é \ / 5 Thread T, -
SharedData /1\ SharedData
| @ ?epm?oﬂ = e
%fggjc?]of e AU WS %ﬁg;tjc{m/
Multithreaded ORB Multithreaded ORB

!

Reliable totally ordered reliable multicast messages

Figure 6.1: Inconsistency with active replication of multithreaded objects.

that all replicas of the application are located on the same type of platform, 1.e., use the
same vendor’s ORB,' run over the same operating system with identical processing speed,
memory, etc. In addition, we assume the deterministic behavior of the operating system.
With these assumptions, any replica inconsistency that arises in the examples discussed in
this chapter can be attributed solely to the multithreading of the ORB or the application.

6.1.1 Inconsistent Active Replication

For active replication, strong replica consistency means that, at the end of each operation
invoked on the replicas of an object, each of the replicas of the object has the same state.
The example shown in Figure 6.1 illustrates one instance of the replica inconsistency that
can arise when only the mechanisms for consistent replication for single-threaded ORBs
have been provided.

In the figure, R; and R» are active replicas of the same MT-domain. The ORB at each
replica receives messages in the same order, but dispatches two threads 77 and 7% to perform
different incoming operations on the replicas. The two threads are simultaneously active
within each replica, and can access and update shared data. Suppose that threads 77 and
Ty issue update operations A and B, respectively, on the shared data within the process,
and that operation B (A) is executed before operation A (B) in replica Ry (R2). Even if the
MT-domain is programmed to avoid race conditions and other thread hazards, the order of
operations in the two replicas of the MT-domain differs in this case, and, thus, their states

1In the current state of the art, although ORBs are implemented according to the same set of specifi-
cations, their implementations differ sufficiently that replicas of an object cannot run on different ORBs
without introducing some degree of non-determinism.

78 Multithreading

Passively Replicated Passively Replicated
MT-domain C ~ MT-domainC
Backup . Primary .

ReplicaC, New Primary

®

Replica C, ReplicaC; ReplicaC,
. Fals.
TL’; . Tl"% §‘7T2 Tl ‘: : 5
[\ /' / [
. \ - | .
e Ly |) .

Jac} ac| fo

O\ \ @\ /

[l
T || [o | ——
e 1 i
lsc | Reliable totally ordered
Reliable totally ordered @ @ multicast messages RCD
multicast messages @ @

@ (b)

Figure 6.2: Inconsistency with passive replication of multithreaded objects when (a) the primary
replica is initially operational, and (b) the primary later fails and the backup replica becomes the
new primary replica.

are likely to be inconsistent at the end of the update operations. Such replica inconsistency
can also arise when the ORB initially dispatches only a single thread, which later spawns
other threads within the same replica.

Of course, in a typical distributed application, the inconsistent state of a replicated MT-
domain may affect all other objects that it communicates with, even if these other objects
are inherently single-threaded. Thus, the replica inconsistency of one replicated object can
propagate to affect the consistency of other replicated objects.

6.1.2 Inconsistent Passive Replication

For passive (primary-backup) replication, strong replica consistency means that, at the end
of each state transfer, each of the replicas of an object has the same state. Passive replication
does not suffer from the problems caused by multithreading only in the very restrictive case
of a single unreplicated client invoking a primary-backup MT-domain that itself does not
invoke any other objects. In all other cases where a MT-domain is passively replicated,
the potential for inconsistency in the states of the replicas of the MT-domain exists. The
example shown in Figure 6.2 illustrates the problem of replica inconsistency for passive
replication.

In the figure MT-domain C' is passively replicated, with primary replica Cs and backup
replica Cy. Objects A, B, D and E (not shown) with which C' interacts are not necessarily
multithreaded or replicated, for that matter. The example focusses on the passive replication
of MT-domain (', and how C"”s multithreading results in the inconsistency of its replicas.

The invocation Iy (Ipc) of object A (B) on MT-domain C' requires thread T} (7%) to be
dispatched. If thread Ty (7T%) is dispatched, MT-domain C' will issue the nested invocation
Icr (Iep) to object E (D). Thus, MT-domain C' invokes two different nested operations
through its two threads, and must obtain results from both operations.

6.2 Enforcing Determinism 79

Consider the following sequence shown in Figure 6.2:

1. The primary replica C5 is initially operational. The ORB hosting C'; dispatches thread
T5 to handle invocation Ig¢ first.

2. Thread T5 issues a nested invocation Icp on object D.

3. The primary replica fails before handling invocation 4. The backup replica C}
becomes the new primary replica for MT-domain C'.

4. Multithreaded ORBs can dispatch operations and threads in any order, not necessarily
the received total order of operations. The ORB hosting the new primary replica C}
dispatches thread 77 to handle invocation I4¢ first.

5. Thread T} issues a nested invocation Iog on object F.

6. Before the new primary’s ORB handles invocation Ig¢, object D returns the response
Rep to the old primary’s nested invocation Iop. The receiving ORB delivers this re-
sponse to €, which is unable to handle this response to the nested invocation (I¢p)
that it has no knowledge of having issued.

The inconsistency arises precisely because of the nondeterministic behavior of multi-
threaded ORBs, and the lack of specification of the order of dispatch of the operations that
such ORBs receive.

6.2 Enforcing Determinism

A MT-domain is the basic unit of replication for multithreaded applications in the Eter-
nal system. To preserve replica consistency for MT-domains, the Eternal system provides
mechanisms that govern the order in which the threads (and operations) are dispatched
within each replica of a MT-domain, over and above the total order in which the messages
containing the operations are delivered to the ORB.

The Eternal system enforces deterministic behavior within a MT-domain by allowing
only a single logical thread of control, at any point in time, within each replica of the MT-
domain. Although multiple threads may exist in a MT-domain, all of them must be related
to (and required for the completion of) the single operation that “holds” the logical thread-
of-control. Furthermore, at most one of these threads can be actively executing; all of the
other threads must be suspended or awaiting a response.

The Eternal system controls the dispatching of threads and operations within every repli-
cated MT-domain, transparently both to the objects and threads within the MT-domain,
and to the multithreaded ORB that hosts the MT-domain. To achieve this, the Eternal sys-
tem employs a deterministic operation scheduler” that is inserted into the address space of
every replica of a MT-domain, and that maps incoming invocations to the thread-of-control
within the replica, or enqueues unrelated invocations for later dispatch.

2The scheduling of operations for replica consistency is orthogonal to the real-time scheduling of opera-
tions. The operation scheduler described here does not factor in any considerations for real-time operation.

80 Multithreading

Awan ting Invocation A
response to / \ completes and AB
Invocation C; frees thread of

control \ /

D|spa1c_h of Invocation C, \‘
Invocation A, dT.IVeOt < Aon esponse C, Dispatch of /
4 d| spaIched toA Invocation B;
o 5 s
f ol & s
Operation & s A Operation & ¢ Operation o
Scheduler X|A Scheduler X A Scheduler X|B;
X| |B X |B
X[C

>
—p
>

Totally ordered messages Totally ordered messages

Totally ordered messages ‘

— (G| |Bija - — & g

@ (b) (©)

Figure 6.3: Sequence of actions of the operation scheduler at a replica of a MT-domain.

Bi|A| - —>\c| |c| [BlA] ...

The scheduler dictates the creation, activation, deactivation and destruction of threads,
within the replica of a MT-domain, as required for the execution of the current operation
“holding” the logical thread-of-control. The scheduler is inserted into a position such that
it can override any thread or operation scheduling performed by either the nondeterministic
multithreaded ORB within the replica, or by the replica itself.

Operations are mapped identically onto the logical thread-of-control at all of the replicas
of a MT-domain, thereby ensuring that the same operation “holds” the thread-of-control at
each replica at any logical point in time. To enable this, the Eternal system ensures that
the scheduler at each replica of a MT-domain receives the same sequence of totally ordered
messages containing invocations and responses destined for the MT-domain. Based on this
incoming sequence of messages, the scheduler at each replica decides on the immediate
delivery, or the delayed delivery, of the messages to that replica. At each replica of a MT-
domain, the scheduler’s decisions are identical and, thus, operations and threads within the
MT-domain are dispatched identically at each replica. Consequently, all of the replicas of a
MT-domain associate the same operation with their logical thread-of-control at any point in
time. Thus, the logical thread-of-control is identically determined for the replicated object
as a whole.

6.3 Scheduling for Consistency 81

6.3 Scheduling for Consistency

While the MT-domain model may seem somewhat restrictive in terms of the effective con-
currency achieved in the application, those restrictions are necessary to achieve replica
consistency for replicated multithreaded CORBA applications. To ensure a single logical
thread-of-control within the MT-domain, the scheduler may delay or reschedule invocations
and responses on a MT-domain. This is necessary because another operation can assume
the MT-domain’s logical thread-of-control only when the current operation within the MT-
domain completes.

Thus, the scheduler enqueues, in the order of their arrival, all incoming invocations and
responses that are unrelated to the current operation or the logical thread-of-control. The
next operation to be scheduled on the MT-domain, upon release of the thread-of-control, 1s
the first operation that has been enqueued or, in the absence of enqueued operations, the
next operation that the scheduler receives.

Figure 6.3 shows a replica of a MT-domain, along with its operation scheduler, and the
sequence of actions of the MT-domain’s scheduler for the given totally ordered messages. All
of the replicas of the MT-domain are forced to behave identically, as the example illustrates.

The MT-domain in this example consists of two objects A and B, each capable of sup-
porting a thread. Invocations A;, B; and C; are destined for objects A, B and C' respectively
(object C'is in some other MT-domain not shown in the figure). The invocation A; gives
rise to a nested invocation C;; the invocation B; is independent of both A; and Cj.

At the start of the sequence of actions in Figure 6.3(a), there is no operation executing
in the replica of the MT-domain, and the thread-of-control is free to be assumed by the
next operation. Thus, the operation scheduler delivers the invocation A4; (which occurs
first in the total order of messages), leading to a thread executing within object A. The
scheduler assigns the MT-domain’s thread-of-control to the logical operation represented by
the invocation A; until A; completes.

The invocation A; on object A leads to the subsequent invocation C; on object ', and
A; can complete only when the response C). to the invocation Cj is returned to object A.
Because the thread-of-control has been assigned to A;, the scheduler delivers to the MT-
domain only those incoming invocations and responses that correspond to A;. In this case,
the only message in the total order that is related to A; is C.. Note that the invocation B; is
independent of A;. Thus, although B; has been received by the scheduler ahead of). in the
total order of messages, it is not delivered to its target object B until the thread-of-control
is released by A;. To deliver only those invocations related to the thread-of-control, the
scheduler requires some means of recognizing, and relating, the operations contained in the
totally ordered messages. Identifiers for associating operations with the thread-of-control
are discussed in Section 6.3.2.

Figure 6.3(b) shows the receipt of the response C, by the MT-domain, and its delivery
to object A, when the scheduler determines that its delivery is appropriate.

After processing the response C, object A completes the invocation A; and the thread-
of-control again becomes available. The scheduler also garbage collects threads that were
used by the thread-of-control. The MT-domain’s scheduler reassigns the thread-of-control
to the next invocation B;. The MT-domain’s scheduler then delivers the invocation B;,
leading to a new thread of execution within the target object B, as shown in Figure 6.3(c).

82 Multithreading

This delaying of invocation B; in favor of the response C, (although B; precedes C in
the total order of operations) does not itself introduce any inconsistency between the replicas
of the MT-domain. The reason is that the operation scheduler at each of the replicas of the
MT-domain arrives at the same scheduling decision regarding the delivery of C) before B;.

Replica consistency is thus maintained as a result of the deterministic behavior across
all of the replicas of a MT-domain through the totally ordered messages that they receive,
as well as the deterministic behavior within each replica of the MT-domain through the
identical scheduling of distinct operations onto a single thread-of-control.

Replica determinism, unfortunately but inevitably, reduces the degree of concurrency
within the application. However, if objects are indeed independent of each other, and do not
share data, they can be assigned to different processes and Eternal’s operation scheduler will
schedule them concurrently without restriction. The memory protection between processes,
provided by the operating system, ensures that objects in different processes do not share
data (unless they explicitly use shared memory techniques), and are indeed independent.

6.3.1 Remote Callbacks

A remote callback operation may lead to multiple nested remote invocations (as opposed to
local procedure calls) on the same MT-domain, each of which must be delivered and executed
in order for the operation to complete. Thus, for such a remote callback operation, the
single logical thread-of-control is realized through multiple threads within the MT-domain,
at most one of which is actively executing, while the others are suspended or awaiting a
response. In the example of Figure 6.3, the operation A; i1s not a remote callback on the
MT-domain because the execution of A; did not lead to further remote invocations on the
same MT-domain.

Figure 6.4 shows the interaction between a replicated MT-domain X and a replicated
MT-domain Y. Here, invocation I; on object A, when dispatched to the logical thread-of-
control in X, results in the invocation 75 of object C' in the MT-domain Y. The invocation
15 leads to a further nested invocation I3 on object B within the MT-domain X. I; requires
that Is completes, and I, requires that Iz completes. Thus, the invocation I3 must be
allowed to proceed inside every replica of X and return a response to object C' within every
replica of Y. Because the scheduler ensures identical behavior at all of the replicas of a MT-
domain, it suffices to consider replicas X; and Y7 (shown in the figure) of the MT-domains
X and Y, respectively.

To permit a second invocation I3 on a MT-domain X; that already has the invocation
I; pending a response, the scheduler for X; needs to verify that the second invocation is
a descendant of the first (parent) operation and that the parent operation is suspended.
A descendant of a particular parent operation is a nested invocation that arises from the
execution of the parent operation, and that must be allowed to execute in order for the parent
operation to complete. A descendant invocation may be a remote callback operation. In
this example, invocations I, and I3 are descendants of the parent invocation Iy, with I3
being a remote callback on the MT-domain X;.

After the scheduler for X; determines that 5 is a descendant of I; and that the thread
for I is suspended, awaiting a response (in this case from object C' in Y1), it proceeds
to activate a thread to handle invocation I3. If the thread executing /7 is not suspended

6.3 Scheduling for Consistency 83
Replica X, of MT-Domain X
ReplicaY; of MT-Domain Y
Active on X
Invocation I, Active gn
Invocation |,
Dispatch of
! i Unique sequence number
Invocation Iy :%I\Isojgglgl’?fl for &ei&;ﬁlly ordered
Invocation | 2 message containing |,
2
Sl Athrough Eternal ‘
's,
Eternal’s ~ Eternadl’s
Operation Scheduler for X, Operation Scheduler for Y,
Uni by
Totally ordered T Totally ordered fg?'&iﬁﬁT%ZQﬂ o
message sequence v message sequence message containing |,
ReplicaX, of MT-Domain X \]
Replica Y, of MT-Domain Y S S
—>
Identifier forQF;arem
Operation of |
Suspended on Active on Active ¢ ’
Invocation I Invocation I3 Invocat
Unique sequence number
for the totally ordered
message containing |5
S + N
Dispatch of Invocation 15 Invocation | S’s Sz
only if 1,'sthread is suspended through Etersnal
> Identifier for Parent
Operation of |5
Eternal’s ~ Eternd’s
Operation Scheduler for X, Operation Scheduler for Y,

T

Totally ordered
message sequence

Y

Figure 6.4: Remote callback operations on a MT-domain. Scheduling identifiers assigned by the

operation scheduler enable the detection of remote callbacks.

before I3 is allowed to start executing, the states of the objects within X; may become
inconsistent due to the multiple threads being active. The logical thread-of-control within
X7 1s still associated with the first invocation I; because all other operations within the
MT-domain are direct descendants of I;. Once the invocation I3 completes and B returns
a response to the invoking object (', the scheduler for X; disposes of the thread for I5.

A descendant remote callback on a MT-domain can generate further descendant re-
mote callback invocations on the same MT-domain. Thus, the MT-domain scheduler must
maintain a stack of invocations dispatched in the MT-domain. Every remote callback de-
scendant invocation is “pushed” onto the stack when it is dispatched onto the MT-domain,
and “popped” off the stack when i1t completes. The invocation at the top of the stack must
complete before any of the others below it in the stack can complete.

84 Multithreading

6.3.2 Scheduling Identifiers

To handle nested remote callback operations, the operation scheduler uses scheduling iden-
tifiers that allow the scheduler to associate parent and descendant operations at the MT-
domain level. These scheduling identifiers are internal to, and examined by, Eternal’s oper-
ation schedulers, and are never seen by the CORBA application or the ORB.

At the point that it dispatches an invocation I, onto the replica of the MT-domain that
it controls, the operation scheduler assigns I, the scheduling identifier s,5s,, where s, is the
sequence number of the message containing I,, and s, is the scheduling identifier of the
parent, if any, of /.

For the example of Figure 6.4, the MT-domain schedulers assign the identifiers s1, s251
and szszsy to the invocations Iy, I» and I, respectively. In this case, s; and sy (s3)
are (is) uniquely assigned by the scheduler at every replica of the MT-domain X; (7).
Furthermore, the same unique identifiers are generated within every replica of the MT-
domain X; (Y1) because these identifiers are derived, in an identical manner, from the
totally ordered messages that the operation scheduler at each replica receives.

To detect an incoming remote callback, the operation scheduler uses the scheduling
identifier to determine if the invocation is a descendant of any operation that has been
invoked, and is awaiting a response within the MT-domain. For instance, the scheduler at
X detects that invocation I3 is a descendant of I; due to the presence of I;’s identifier s; in
I3’s identifier s3s9s1. Once the scheduler verifies that an operation is indeed a descendant, it
waits for the currently executing thread-of-control within the MT-domain to suspend itself,
and then dispatches the descendant operation.

6.3.3 Scheduling Algorithm

To dispatch an operation to the thread-of-control, or to delay an operation that may lead
to replica inconsistency, each operation scheduler for a MT-domain replica maintains:

e The scheduling identifier sp, and semantics (synchronous or asynchronous), of the
current operation I/p being executed by the logical thread-of-control Tp within the
MT-domain. The scheduling identifier sp is used by the operation scheduler to detect
remote callback invocations. The scheduler compares the scheduling identifer of every
incoming operation with sp to determine any descendants of Ip. If an incoming
message is a descendant of Ip, or a response to an invocation issued by the MT-domain,
the operation scheduler dispatches it when all of the threads within the MT-domain
are suspended, or awaiting a response.

o A dispatch queue @,, of operations (invocations, responses and state transfer mes-
sages) waiting to be assigned to the thread of control when it becomes available. When
the current operation Ip completes, the operation scheduler can dispatch a new op-
eration from (),,. Operations that are not related to the thread-of-control in the
MT-domain are enqueued in the total order in which the operation scheduler receives
them. Operations that are descendants of Ip are scheduled for execution, in the order
of their arrival, ahead of all operations that are not descendants of Ip.

6.3 Scheduling for Consistency

85

switch (Reason for Activation)

/] The thread-of-control for the MT-domain is
// available to be assigned to a mew operation.
case THREAD OF _CONTROL RELEASED:
if (operation queue Q.p is not empty)
Ip = operation at the head of the dispatch queue Qop
sp = scheduling identifier for Ip
if (thread pool Qp, is empty)
Create new threads into Q.
endif
Tp = first available thread in Q.
Dispatch operation I'p onto the thread T'p
Push Ip onto stack of re-entrant descendant invocations
endif
return
endcase

/] A new operation intended for the MT-domain is

// delivered in the totally ordered messages

case INCOMING INVOCATION.OR RESPONSE:
Insert incoming message at the end of the dispatch queue Qop
return

endcase

/] The thread-of-control for the MT-domain is suspended on the
/] operation Ip. In addition to the original thread Tp,
// numDesc threads could be suspended due to any uncompleted
/] remote callback descendant operations of Ip. All of these
// threads are awaiting responses.
case THREAD OF _CONTROL_SUSPENDED:
if (dispatch queue Qop is not empty)
if (dispatch queue Qop has descendants of Ip)
IstackTop = Te-entrant descendant at the top of the stack
Increment numDesc
InumDese = first enqueued descendant of I iqchrop in Qop
if (Inumpesc completes operation I sqcrTop)
Remove I iqchTop from the stack of operations
else
Push I,umpesc onto the stack of operations
endif
tnumDese = scheduling identifier for I, ympese
if (thread pool Qp, is empty)
Create new threads into Q.
endif
ThnumbDese = first available thread in Qp.
Dispatch operation I,,ym pese onto the thread Ty, ympDese
endif
endif
return
endcase
endswitch

Figure 6.5: Algorithm executed by the operation scheduler each time it is activated. The operation
scheduler is associated with a MT-domain D, whose logical thread-of-control Tp executes the
operation Ip with scheduling identifier sp.

86 Multithreading

e A stack of the descendant remote callbacks that have been dispatched onto threads
within the MT-domain and that are awaiting responses. When the thread-of-control
becomes available, the stack 1s empty. The first operation Ip to be pushed onto the
stack 1s the one that assumes the thread-of-control Tp. Subsequently, descendants of
Ip that are remote callbacks on the MT-domain are also pushed onto the stack. The
invocation on top of the stack is removed from the stack as soon as it completes, and
an invocation is pushed onto the stack as soon as it is dispatched to a thread within
the MT-domain.

e A thread pool Q¢p, of pre-spawned threads to avoid the overhead of thread creation
with every new dispatch of an operation to a thread. This thread pool is used purely
for efficiency, rather than for correctness.

The operation scheduler at every replica of a MT-domain executes the deterministic
algorithm, shown in Figure 6.5, to schedule operations within the replica that it controls.
The execution of this algorithm is triggered by the occurrence of any of the following events:

e The release of the MT-domain’s thread-of-control when the current operation com-
pletes, allowing the next operation to be dispatched

e The suspension of all threads within the MT-domain, in anticipation of receiving a
response, allowing the delivery of a received response, or a new descendant distributed
callback invocation

e The delivery of a totally ordered invocation or response message to the operation
scheduler, requiring the scheduler to decide if the message should be enqueued, sched-
uled or dispatched.

6.4 Implementation in Eternal

As shown in Figure 6.6, the Eternal system transparently replicates the objects, and the
MT-domains, of the application. For every replica of a MT-domain or an object, the In-
terceptor transparently captures its IIOP invocation and response messages, which were
originally destined for TCP/IP, and diverts them instead to the Replication Mechanisms.
The Replication Mechanisms perform the encapsulation (retrieval) of TIOP messages to
(from) the messages of the underlying reliable totally ordered multicast group communi-
cation system. In addition, the Replication Mechanisms implements mechanisms for the
detection and suppression of duplicate invocations and duplicate responses, and for state
transfer and recovery, as described in Chapter 3 and Chapter 4.

The Eternal system provides an operation scheduler within the address space of each
replica of a MT-domain. Although each replica has its own scheduler, all of the schedulers for
the replicas of a MT-domain reach identical scheduling decisions. This deterministic behav-
ior of the schedulers ensures replica consistency for every MT-domain within the application.

The operation scheduler must operate at a level that allows it to govern the concurrency
within each object of the MT-domain, irrespective of the ORB’s multithreading policies. The
operation scheduler must receive all of the totally ordered operations, and decide on their

6.4 Implementation in Eternal 87

Replica of Operation I, on the

. thread-of-control T,
MT-Domain

Operation |,

and its reentrant
descendants
ORB
| »
2 o
Replication | €= Interceptor Thiead Operation Qop
hani Fool 2 Scheduler .
Mechanisms T, Dispatch
+) (— T i Queue
Stack of H
Religble Descendart
Totally Ordered & invocations
Multicast
* Thread-Level Socket-Level
Interposers Interposers
‘ Ratform A ; A
¢ Multicast Messages »
Thread creation by the Outgoing messages Totally ordered messages
ORB or the MT-domain from theMT-domain for the MT-domain from

the Replication Mechanisms

Figure 6.6: Implementation of the MT-domain operation scheduler of the Eternal system using
the Interceptor, which is transparently co-located with the replica of the MT-domain.

delivery to the application. In the Eternal system, the operation scheduler is implemented
at the level of the Interceptor, as shown in Figure 6.6.

The transparency of the Interceptor has the added advantage that the operation sched-
uler can perform its function without the modification of the ORB or the application. The
Interceptor also enables the scheduler to overide any dispatching or threading performed by
the ORB or the application, without either of them being aware of the scheduler’s existence.

By exploiting the socket library interposer of the Interceptor, the operation scheduler
can receive, transparently, all of the operations destined for the replica of the MT-domain.

The operation scheduler exploits the thread-level interposer of the Interceptor to provide
alternative implementations of some of the thread library routines in order to enable the
MT-domain’s operation scheduler to determine the status of the MT-domain’s thread-of-
control, as well as to control the creation, dispatch and destruction of threads spawned
within the M'T-domain.

Thus, the operation scheduler must examine every IIOP message, that it receives through
the totally ordered messages from the Replication Mechanisms, to determine if it contains
a method invocation or response. The combination of the socket-level and the thread-level
interposers ensures that the dispatch of threads that execute operations within a MT-domain
is dictated solely by the operation scheduler, rather than by the MT-domain or by the ORB.

88 Multithreading

MT-Domain Operati

Thread Id: 5 Thread Id: & Thread Id: 7
WAITING ACTIVE UNASSTGNED

Operation: print_page Operation: print_page Operation: N/A
Sched Id: [33] Sched Id: [90-B4-33] Sched Id: []

Thread-of-Control : Sched Id [33]
Stack Size : 2 invocations
Thread Pool Size : 3 threads
Dispatch Ouene : 2 operations

load_page(urlA)

64/33)

N\

Replica of .
< — MT-domain Replicaof
WebPagePrinter MT-domain

WebPagel_oader
print_page(html 1)

7
I

| 3

1 90 64133

print_page(html2)

Figure 6.7: Snapshot of a MT-domain operation scheduler for a specific example.

6.4.1 Example

Figure 6.7 shows the actions of the operation scheduler for a replicated multithreaded ap-
plication that i1s running over the Eternal system. The simple application was implemented
using ORBacus (from Object-Oriented Concepts) [55], a commercial implementation of
CORBA that provides for a variety of ORB concurrency models.

The application in this case consists of two MT-domains. One of these is a WebPagePrinter,
with a method print_page(), which takes an HTML document as a parameter. The other
MT-domain is a WebPageLoader, with a method load_page(), which takes the URL of
a web page as a parameter. Given an HTML document, the print_page() method can
understand and parse HTML sytax and print the text of the document.

An HTML document may have embedded URLs that refer to other Web pages. The

6.4 Implementation in Eternal 89

WebPagePrinter is intended to print all of the Web pages reachable from the HTML doc-
ument supplied as a parameter. To do this, the print_page() method first scans the
HTML document supplied as a parameter for any embedded URLs. An operation on the
WebPagePrinter completes only when all of the pages reachable from the original HTML
document, as well as the original HIML document itself, have been printed. The method
print_page() is essentially a recursive operation because it must trace all of the embedded
URLs in a given HTML document, and print each of the HTML documents at these URLs.
Because the print _page() method takes a HTML document as a parameter, rather than a
URL, it requires the assistance of the WebPageLoader to load a URL before it can print it.

In this example, the original HTML document html1 contains a single embedded URL,
urlA, which points to a HTML document (urlA does not itself contain any embedded URLs).
The print_page() method is invoked (invocation I;) on the WebPage-Printer and executes.
The WebPagePrinter scans the document htmll, and encounters urlA. This causes the
WebPagePrinter to invoke (invocation I3) the load_page() method of the WebPageLoader,
passing it the embedded URL, urlA, as a parameter. The load_page() method retrieves
the HTML document html2 at urld, and invokes (invocation I3) the print_page() method
of the WebPagePrinter to print html2. If html2 contained an embedded URL, there would
be yet another level of recursion.

Figure 6.7 shows a replica of the WebPagePrinter and a replica of the WebPageLoader. A
snapshot of the operation scheduler for the WebPagePrinter is also shown as it is running.
The operation scheduler for the replica of the WebPagePrinter assigns [; to thread id 5
within the replica with the scheduling identifier 33. The thread-of-control is assumed by
operation I;. The invocation I is subsequently issued by the WebPagePrinter as a result
of I, and must complete in order for the thread-of-control to be released. Thread id 5
suspends itself, awaiting a response to invocation [Is.

The invocation I» is dispatched within the replica of the WebPageLoader, with the
scheduling identifier 64-33. Invocation I3, issued by the WebPageLoader is a remote call-
back invocation on the MT-domain WebPagePrinter, and must execute in order for I, and
thus 77, to complete. The operation scheduler recognizes that I35 is a descendant through
the presence of the scheduling identifier (33) of invocation I; in the scheduling identifier
(90-64-33) of invocation Is.

The operation scheduler dispatches Is onto thread id 6. Meanwhile, other operations
(unrelated to the thread-of-control) might arrive at the WebPagePrinter. The operation
scheduler enqueues such operations until the thread-of-control is released. In this case,
the dispatch queue contains two such operations that are waiting to be serviced once Ij
completes. Although the operation scheduler has an unassigned thread (with thread id 7)
that is capable of executing one of the operations in the dispatch queue, the scheduler at
every one of the replicas of the WebPagePrinter will not dispatch this operation until the
thread-of-control is released.

Thus, the operation scheduler enforces a single logical thread-of-control, held in this case
by operation I;. The thread-of-control may be realized through multiple threads (thread
ids 5 and 6), although at most one of these threads is actively executing at any point in
time, while the others are suspended, awaiting a response. This deterministic scheduling
and dispatching of operations provided by the Eternal system maintains replica consistency
for nondeterministic multithreaded applications that are replicated.

90 Multithreading

6.5 Handling ORB Concurrency Models

Several different concurrency models [55, 61] may be used by multithreaded ORBs to dis-
patch requests to client and server objects within the application. Each of these models 1s
suited to particular applications; not every ORB implements all of the possible strategies.

The operation scheduler is transparent to the multithreading policies of the ORB; thus,
irrespective of the threading model of the ORB, the mechanisms of the operation sched-
uler can ensure the consistency of the replicas of a concurrency domain. The scheduling
algorithm, as well as the enforcement of the thread-of-control, are also independent of the
specific concurrency model (thread-per-request, thread-per-object, etc) adopted by the ORB
that hosts the MT-domain.

6.5.1 Thread-per-Request Model

In this model, the ORB attempts to spawn a new thread for each new request on a MT-
domain, even if this request is issued by the same client. While this enables remote callback
operations to proceed on MT-domains, the potential for replica inconsistency arises if two
threads executing the same, or different, requests within the same object update shared
data. The Interceptor ensures that all of the ORB’s attempts to spawn new threads are
handled through a thread library interposer.

The interposed thread creation routines ensure that the ORB-spawned threads are col-
lected into the dispatcher’s thread pool Q:p, from which threads are extracted for execution
by the CD’s operation dispatcher. One of the disadvantages of the thread-per-request model
is the cost of thread creation with each request. By enforcing a limit on the number of al-
lowable threads within the dispatcher’s thread pool @Q¢p,, and by using an interposed thread
creation routine that respects this limit, the scheduler can reduce the overhead of unneces-
sary thread creation.

6.5.2 Thread-per-Connection Model

In this model, the ORB spawns a thread to handle multiple requests between a CORBA
client object and server object. The potential for replica inconsistency arises if more than
one client contacts a single server object. This results in multiple threads executing within
the same object, with the potential for updates on shared data. From the point of view
of replication, the thread-per-request and the thread-per-connection models have the same
potential for replica inconsistency. The mechanisms of the scheduler that ensure replica
consistency for the thread-per-request model are therefore equally applicable to both. The
only difference is that the thread-per-connection model results in fewer calls to the interposed
thread creation routine than the thread-per-request model.

6.5.3 Thread-per-Object Model

In this model, the ORB spawns a single thread to handle all requests for a single CORBA
object. This can ensure replica consistency provided that the CORBA application consists
of executing processes that contain only a single object. Typical applications have multiple

6.5 Handling ORB Concurrency Models 91

CORBA objects wihin a single process, by design, so that these objects can share data, for
instance. In this case, the concurrency domain model imposed on the replicas of multi-object
processes ensures replica consistency.

6.5.4 Thread Pool Model

This model is similar to the thread-per-request model, but with the ORB having spawned
the threads ahead of time, to eliminate the overhead of thread creation at the time that the
request is received. This model has the same pitfalls with regard to replica consistency as the
thread-per-request model, and the mechanisms of the operation scheduler handle this model
in the same manner. However, in this model, the operation dispatcher employs a thread
pool to reduce the thread creation overhead while executing the scheduling algorithm.

92

Chapter 7

Gateways

Applications are increasingly spanning enterprises across the Internet, with the application
objects within one enterprise communicating with, and performing operations, on the appli-
cation objects of another enterprise. In this case, the reliability of the application as a whole
depends on the reliability of the objects in each of the communicating enterprises, which
are separated possibly by a considerable distance, as shown in Fig 7.1. Fach enterprise is
likely to be, and indeed should be, responsible only for the reliability of the objects under its
control, but each enterprise must nevertheless allow the objects of a different enterprise to
communicate with its own objects without compromising the consistency of the replicated
objects of either enterprise. The domain of control of the fault tolerance infrastructure of
each enterprise constitutes a fault tolerance domain; different fault tolerance domains can
be connected through a gateway.

The concepts of fault tolerance domains and gateways are not restricted to communica-
tion between enterprises. Internet-based applications such as stock trading involve customers
using Web browsers (typically unreplicated thin clients) to communicate with the servers
(typically replicated for fault tolerance) of a stock trading company. In this case, the un-
replicated Web browser should not have to be aware of the replication of the stock trading
servers, but can nevertheless benefit from the fault tolerance of the servers. The unrepli-
cated clients (the Web browsers) can be made to communicate with the replicated servers
(the stock trading servers) through a gateway that hides the replication of the servers. The
replicated server objects are managed by the fault tolerance infrastructure of the stock trad-
ing company, and the gateway serves as the “entry point” into the fault tolerance domain.
The gateway is a crucial element because 1t must “understand” the reliability mechanisms
inside the fault tolerance domain, as well as the unreliable semantics of the external client,
and must bridge between these different semantics and mechanisms, without compromising
the reliability of the objects within the fault tolerance domain.

A different motivation for a fault tolerance domain is that an application can have a
very large number of objects that require replication, and it might not be a scalable or
feasible solution to have a single fault tolerance infrastructure manage the replication of all

93

94 Gateways

New York

Wide-area Fault Tolerance Domain

Los Angeles Falil t, To_l erance P ? [nal n

Fault Tolerance Domain p -

Connection

P1

Customer in
Santa Barbara P2\ P4 Sl

(Unreplicated object with no -
support for fault tolerance)
Contain replicated objects supported
by fault tolerance infrastructures,

with communication over reliable multicast

Figure 7.1: Gateways bridge fault tolerance domains, and allow objects in one fault tolerance
domain to communicate with those in another. Here, P; represents a processor hosting some
application objects.

of these objects. Instead, it would be preferable to decompose the application into smaller
collections of objects, with each collection of objects being managed by a distinct fault
tolerance infrastructure, and therefore constituting a fault tolerance domain. Regardless
of the motivation for a fault tolerance domain, the gateway mechanism is identical and
essential.

The Eternal system constitutes the fault tolerance infrastructure (within the fault tol-
erance domain). While the fault tolerance infrastructure ensures strong replica consistency
within the fault tolerance domain, it is the responsibility of the gateway to ensure that
unreplicated clients wishing to contact replicated objects within the fault tolerance domain
(through the gateway) do not compromise the replica consistency of those replicated objects.

7.1 Fault Tolerance Domains

Eternal must allow the CORBA applications that it supports to communicate with unrepli-
cated objects that are necessarily outside the fault tolerance domain, i.e., Eternal’s domain
of control. Some of these unreplicated objects (e.g., a Web browser on a personal computer
that provides no fault tolerance) might not be supported by, or have access to, Eternal’s
fault tolerance infrastructure, and might run over standard IIOP-enabled ORBs.

Eternal ensures that these unreplicated objects outside the fault tolerance domain can
nevertheless communicate with the replicated objects that are under Eternal’s control inside
the fault tolerance domain. Furthermore, Eternal makes this communication possible with-
out the unreplicated object ever being aware of the existence of a fault tolerance domain, of
the replication of the objects within the fault tolerance domain, or of Eternal itself. Thus,
Eternal extends the replication transparency that it provides to the application objects
within the fault tolerance domain equally to unreplicated objects outside Eternal’s control.

7.1 Fault Tolerance Domains 95

The gateways that the Eternal system provides serve as the “entry point” for unreplicated
clients into the fault tolerance domain, and allow unreplicated external objects to invoke
replicated Eternal-managed objects.

Within a fault tolerance domain:

e All objects are replicated, with the replication managed by Eternal’s fault tolerance
infrastructure.

e Communication between replicated objects occurs through a reliable totally ordered
multicast protocol, thereby facilitating replica consistency, as described in Section 3.1.

e Replicated clients do not use the TCP/IP {host, port} information within the Inter-
operable Object Reference (IOR) of any of the server replicas to contact the replicated
server. Instead, the Eternal Interceptor transparently diverts the socket establishment
routines at every client replica to form a connection to the local Eternal Replication
Mechanisms, which then multicast the notification of the connection establishment to
the Replication Mechanisms hosting the server replicas.

Outside a fault tolerance domain:

e Objects are unreplicated, and are unaware of the internal mechanisms of, and the
replication within, the fault tolerance domain.

e Communication occurs through CORBA’s TCP/IP-based Internet Inter-ORB Proto-
col (ITOP).

e Clients use the TCP/IP {host, port} information within the Interoperable Object
Reference (IOR) of the target server to establish a connection with the server.

Unreplicated objects outside the fault tolerance domain must never be allowed to access
the replicated objects within the fault tolerance domain directly. Such direct communica-
tion, if permitted, can violate replica consistency. The reason is that the unreplicated client
can communicate only through TCP/IP, thereby implying that it would contact only one
of the server replicas, and invoke an operation on that replica alone.

If the server is actively replicated, and only the single invoked server replica performs
the operation, it can have a different state from the other replicas of the same server object,
resulting in inconsistent replication. If the server is passively replicated, and the single
primary replica is invoked, the primary replica can itself invoke other nested operations as
a result of the original invocation. If the primary fails before it receives the results of the
nested invocations, a new primary server replica will be elected. However, because the new
primary (formerly a backup replica) did not receive the original invocation, it will not be
to handle the returned responses from the nested invocations, and will also not be able to
return a response to the original invocation. Thus, to ensure replica consistency, the replicas
of an object must be contacted only through a reliable totally ordered multicast, and not
individually through TCP/IP.

To ensure this, additional mechanisms are provided by Eternal so that an IOR, published
by a replicated object within the fault tolerance domain “point” the external clients in the

96 Gateways

Fault Tolerance

Domain
Actively Replicated Server Object B
Unreplicated client object A
invoking operation on object B :
Gateway tonverts
TCHIP messages
into multicasts

and suppresses
duplicate responses

‘ Eternal U ‘ Eternal U ‘ Eternal U

Standard ORB ? T 4
unsupported by :
Eterna’s TCP/IP connection : Reliable totaJ ly ordered

infrastructure (I1OP messages) multicast messages

Dupli cate responses suppre&ed

Figure 7.2: Eternal’s gateways allow unreplicated clients to communicate with replicated servers.

direction of the IIOP-enabled gateway, rather than the target replicated object itself. How-
ever, the external client that uses this IOR is unaware of this. When using the information
in the IOR for connection establishment, the client implicitly assumes that the endpoint is
the real server and, thus, sends ITOP invocations (destined for the server) to the gateway.

Note that the gateway is not a CORBA object, but constitutes part of the mechanisms
provided by the fault tolerance infrastructure of Eternal. However, by receiving the un-
replicated client’s ITOP invocations without returning exceptions, and by forwarding the
replicated server’s IIOP responses to the unreplicated clients, the gateway appears to the
client to be a remote CORBA server object.

To perform the invocation (response) forwarding into (out of) the fault tolerance domain,
the gateway must be able to interpret the ITOP messages sent over TCP /TP connections from
outside the fault tolerance domain, as well as the reliable totally ordered multicast protocol
messages within the fault tolerance domain, and must provide the necessary translation
between them. This functionality of the gateway is shown in Figure 7.2.

Another aspect of the gateway is that it must “hide” the replication of the servers from
the external client. This involves detecting duplicate responses returned by the replicas of
the server, and filtering out only a single distinct response to the external client. In addition,
the gateway must itself be reliable so that it does not constitute a single point of failure.

7.2 Connection Establishment 97

7.2 Connection Establishment

In a typical CORBA application, a server object publishes its location {server_host, server_port}
through an Interoperable Object Reference (IOR). A client object wishing to contact the
server extracts the TCP/IP addressing information from the TOR, and establishes a con-
nection to the host and port specified in the IOR. Once the connection is established, the
client and the server can communicate over the connection using IIOP messages.

A client implicitly “believes” that a server’s IOR contains the {server_host, server_port}
information, unless informed otherwise through a LOCATION_FORWARD (where the end-
point contacted by the client provides a forwarding address to the actual server location)
by the remote endpoint, on receipt of the first IIOP message from the client.

When a gateway is used, every unreplicated external client must continue to “believe”
that the remote endpoint to which it connects (using the information in the server IOR) is
the server, when, in fact, the remote endpoint is the gateway. This can be done by ensuring
that the addressing information in the IOR, is the {gateway_host, gateway_port}, and also
by ensuring that the gateway always returns the expected ITOP responses to the client’s
ITOP invocations so that the client never suspects otherwise.

Eternal accomplishes the replacement of the {server_host, server_port} in the IOR, of each
server replica with the {gateway_host, gateway_port} through the use of its Interceptor.
There are several choices for the library symbols that the Interceptor could interpose to
perform the {host, port} replacement in the TOR.

The first and most obvious choice would have been to intercept the write() call when
the ORB attempted to write the IOR to a file or to a Naming Service. At this point, we
could have parsed the original IOR and performed the necessary {host, port} replacement.
This is not a good strategy because all other invocations of the write() call would also
have been caught, though not modified, by the Interceptor. Because write() is the popular
choice for transmitting messages over the network, writing to files, writing to the screen,
etc., interposing on the write() call leads to an unnecessarily large number of undesired
interceptions, and consequently, a higher overhead in the path of message transmission.
Of course, the number of undesirable interceptions can be reduced through the conditional
interception of the write() call, with the default definition of the write() call being used
subsequent to the TOR replacement.

A better choice is to interpose at the point that the server-side ORB queries the op-
erating system for the host and the port information, prior to publishing the IOR. By
interposing on the getsockname() call and/or the sysinfo() call (with the S_LHOSTNAME
command) to return the gateway_host and the gateway_port instead of the server_host and
the server_port, respectively, the IOR that the server-side ORB publishes automatically
contains the {gateway_host, gateway_port}. This eliminates the effort of having to parse
the TOR string to do the replacement, and also results in far fewer undesirable intercep-
tions. The gateway_host and the gateway_port are dedicated choices that are supplied to
the interceptor at system configuration time.

When an unreplicated client uses this IOR, the client-side ORB, implicitly assuming that
the host and port in the IOR refer to the server object, connects the client to the gateway.
The gateway now becomes the recipient of every IIOP message sent by the unreplicated
client, which continues to “believe” that the gateway is indeed the target server object. By

98 Gateways

CORBA
Service Context
{) .
Contains TCP Client Id (a)
for enhanced Client ORBs
] [
Gateway
Group Id

CT|'CP Ysource Target |Message| ernign Contains TCP Client Id b

ient Group | Group | Time i i

& & & samp |dentifier for enhanced Client ORBs ()
Some Filled in by the
Unused Replication Me)::hanisms
Value at the receiving end
vTCF’ Sol T M :

(urce arget essage :
Client | Group | Group | Time %pgﬁa?ig? (C)

Id Id Id stamp

«——— >« P >
Reliable Multicast Fault Tolerance I nfrastructure 110P Request or Reply Message
Header and Gateway Header . Py

Figure 7.3: Messages sent (a) between an unreplicated client and the gateway, (b) from the
gateway to a replicated object within a fault tolerance domain, and (c) between replicated objects
within a fault tolerance domain.

extracting the server’s object key (which the client-side ORB inserts into ITOP invocations
to identify the target server), the gateway identifies the target server, multicasts the client
invocation to the server object group. The gateway inserts sufficient information into the
multicast messages to enable it to associate the server’s response with the client’s invocation.

The gateway process must be continuously listening on the dedicated {gateway_host,
gateway_port} for connections from unreplicated clients. For each new client that contacts
the gateway, the gateway spawns a new TCP/IP socket to communicate solely with that
client, and uses the original socket to listen for further clients. The additional spawned
sockets are destroyed when the connection between the unreplicated client and the gateway
terminates.

Note that the replacement of the {server_host, server_port} in the IOR, does not affect
connection establishment or communication within the fault tolerance domain. Replicated
clients wishing to communicate with replicated servers within the fault tolerance domain
never use this TCP/IP-specific addressing information, but use instead the server’s object
group identifier to contact the replicated server through the fault tolerance infrastructure.

7.3 Encapsulation of IIOP into Multicast Messages

A gateway must encapsulate the TIOP invocations from the external unreplicated clients
into multicast messages for transmission to the target replicated server object within the
fault tolerance domain. Similarly, the corresponding ITOP responses, encapsulated within
the multicast messages returned by the replicated server object, must be extracted by the
gateway and returned to the unreplicated clients.

7.3 Encapsulation of ITOP into Multicast Messages 99

for (every received IIOP message) for (every received multicast message)
{ {
Obtain TCP client identifier Extract operation identifier
Map socket identifier to client identifier FExamine if message is a duplicate
Generate and record operation identifier if (non-duplicate message)
Generate message header containing:
— TCP client identifier Extract TCP client identifier
— Gateway group identifier (sender) Find corresponding socket identifier
— Server group identifier (receiver) Extract IIOP message
— Operation identifier Send ITOP message over the socket
FEncapsulate header and ITOP message identifier to the TCP client
into multicast message }
Send multicast message into the else
fault tolerance domain Discard duplicate message
} }
Messages from unreplicated clients Messages from replicated objects

Figure 7.4: Actions of the gateway for incoming messages from (a) external unreplicated clients
outside a fault tolerance domain, and (b) replicated objects within a fault tolerance domain.

When an ITOP-encapsulating message is multicast by the gateway into the fault tol-
erance domain, the message contains the gateway_group.id as the sender group, and the
server_group_id (determined by the gateway from the server’s object key embedded in the
client’s TIOP invocation) as the destination group. The message is received in total order
by the Replication Mechanisms hosting each of the server replicas. The replicated server
performs the operation, and the fault tolerance infrastructure multicasts the results to the
gateway. The replicated server assumes that the gateway that sent the ITOP invocation
is a CORBA client object. Eternal’s transparency through interception effectively ensures
that neither the unreplicated client, nor any of the server replicas, 1s ever aware of commu-
nicating through the fault tolerance infrastructure using reliable multicast. The gateway
(and, of course, the fault tolerance infrastructure itself) is the only party in the chain of
communication that is aware of the reliable multicast and the fault tolerance infrastructure.

When the replicated server returns the response to the gateway, the IIOP response from
each server replica is encapsulated by the Replication Mechanisms hosting that replica into
a multicast message. The message contains the server_group-id as the sender group, and the
gateway_group_id as the destination group. This information is insufficient for the gateway
to route the ITOP response to the client replica that invoked the operation because multiple
unreplicated TCP/IP-based clients might have invoked the same replicated server through
the gateway. The gateway has no way of discriminating between these clients.

Thus, every multicast message must contain additional information, inserted by the
gateway to identify each TCP/IP client that contacts the gateway. The resulting multicast
messages have the structure shown in Figure 7.3. For multicast messages exchanged between
replicated objects within the fault tolerance domain, the TCP/IP client identification is set
to some unused value. The gateway (as well as the fault tolerance infrastructure) uses the
destination group identifier, the source group identifier and the TCP/IP client identifier
collectively to route every message to its intended destination.

100 Gateways

Ideally, the client identification information ought to be supplied by the client-side ORB,
as discussed in Section 7.4.2. Because this is not the case with current ORBs, the gateway
can maintain a simple counter, one for each destination server group. For each incoming
TCP/IP client, the gateway first determines the server_group_id from the first ITTIOP message
received from the client. The gateway then uses the value of the counter corresponding to
that server group as the TCP/IP client identifier. The counter is then incremented, to serve
as the identifier for the next TCP/IP client for the same replicated server. The disadvantage
of the gateway-assigned client identifiers; over identifiers supplied by the client-side ORB,
1s discussed in Section 7.4.1.

Figure 7.4 shows the sequence of steps that the gateway executes for incoming IIOP
messages from outside the fault tolerance domain, and incoming multicast messages from
within the fault tolerance domain.

To ensure replica consistency, duplicate detection and suppression mechanisms are used
by Eternal’s fault tolerance infrastructure throughout the fault tolerance domain; the gate-
ways also employ these mechanisms for filtering duplicate responses from the replicated
server objects within the fault tolerance domain. The gateway returns only a distinct copy
of each response to the invoking external client. The duplicate copies of each response, if
not suppressed, would be delivered to the client object, and could cause the client object’s
state to be corrupted.

To detect duplicate copies of each response, both the fault tolerance infrastructure and
the gateway prepend the operation identifiers of Section 3.4 to each message that is multicast
within the fault tolerance domain, as shown in Figure 7.3.

7.4 ORB-Related Issues

7.4.1 Using Existing ORBs

Existing ORBs do not have the capability to traverse a list of profiles, and select the next
profile if the first one fails on connection. The disadvantage of this is that redundant
gateways are not possible. Clients might experience disconnection if the processor hosting
the gateway fails, and does not recover. The processor hosting the gateway is a single point
of failure. If the client ORB has the capability to understand only the first ITOP profile (the
standard TAGINTERNET_IOP profile), and if the gateway to which it connects using the
first profile fails, the client has no alternative but to abandon the request. Furthermore, the
client does not know the status of any invocations that it has already sent, for which it is
still awaiting responses.

An alternative to using multiple gateways is to have a cold passively replicated gateway.
In this case, the gateway’s state should be checkpointed often enough to allow it to be
recovered. However, clients will still be disconnected from the gateway if it fails, and must
have mechanisms to allow them to reconnect to the gateway, when it recovers.

In the case of redundant gateways, the new gateway to which the client connects (on
failure of the first gateway) has no way of “knowing” that this is the same client. The simple
counter mechanism, described in Section 7.3, is insufficient in this case to identify the client.
This means that, even if the new gateway receives the response for an outstanding invocation

7.4 ORB-Related Issues 101

sent by the client through the first gateway, the new gateway does not know which of its
connected clients should receive this response. Secondly, if the client were now to re-issue all
of the pending invocations to the new gateway, the new gateway could, in turn, re-issue these
invocations to the replicated objects within the fault tolerance domain, thereby corrupting
their state.

Thus, due to lack of client-side identification provided by the ORB, the gateway cannot
prevent duplication of client requests if

e The unreplicated client fails, recovers and resends its request (this is outside the fault
tolerance domain’s and the gateway’s control, and cannot be handled without extend-
ing some of the fault tolerance mechanisms to the unreplicated client)

e The gateway process fails, and then recovers, and the client reconnects to the gateway

e Redundant gateways are used, and the original gateway fails, and the client switches
to the next operational gateway

7.4.2 Enhancements to Existing ORBs

If only a single gateway is provided for a fault tolerance domain, it is insufficient to guarantee
the level of reliability that customers of Internet-based applications have come to expect.
For instance, if a customer uses an unreplicated Web browser to connect to a replicated
stock trading server through a gateway, the failure of the gateway could leave the customer
wondering about the status of any outstanding invocations issued on the stock trading
server. Because the gateway constitutes a single point of failure, the benefits of the server
replication are lost to the customer.

The use of redundant gateways requires additional intelligence on the part of the client-
side ORB to exploit the multiple gateways. Unfortunately, the required mechanisms are not
part of the current CORBA standard. In the absence of the required support in current
ORBs, we have implemented a thin client-side interception layer that mimics the support
that an enhanced client-side ORB would provide to allow unreplicated CORBA clients to
benefit from fault tolerance. Ultimately, though, as discussed in Section 7.4.2, we envisage
that the functionality of this interception layer should be incorporated into the client-side
ORRB itself.

According to the current CORBA standard, a profile contains addressing information
within an IOR. An object’s IOR can contain multiple profiles, with each profile designating
an alternative address for contacting the object. To allow the addressing information for
the multiple gateways to be made available to unreplicated clients, the Eternal Interceptor
“stitches” together the addressing information for each gateway into a single multi-profile
IOR.

On the client side, the thin interception layer is endowed with the capability of traversing
the profiles within the multi-profile IOR, should this be required. The interception layer
connects the client object to the first gateway listed in the multi-profile IOR, and inserts a

102 Gateways

unique TCP/IP client identifier into the service context® of each TIOP message sent out by
the client. The advantage of using the service context field is that it can be safely ignored
(as is the case here) by a server ORB that does not understand it. It is intended purely for
the consumption of the gateway.

For each ITOP request message that a gateway receives from a client, the gateway first
multicasts the message to the group of gateways. This is done so that every gateway in the
group has a record of the invocation in case the first connected gateway fails. The gateway
group then multicasts the message into the fault tolerance domain, and the gateway group
(and not the connected gateway alone) receives the response.

If the first gateway fails to respond, the client-side interception layer transparently skips
to the next profile in the multi-profile IOR, and connects the client to the next operational
gateway, and reissues any pending invocations. If the client object sent an invocation for
which a response was expected from the first gateway, the client-side interception layer
obtains it from the next operational gateway. This is possible because the client-side inter-
ception layer supplies the same unique client identifier for each of its requests, along with a
unique request identifier, which would make 1t possible for the new gateway to detect reinvo-
cations due to reconnection of the client-side interception layer to a different gateway. The
reason for the reinvocations is two-fold: firstly, it allows the client-side interception layer to
communicate the client’s unique identifier to the gateway, and secondly, the client-side in-
terception layer has no way of knowing if the first invocation ever reached the original failed
gateway. Each gateway also contains the intelligence to inform all of the other gateways in
the event that the client fails. In this case, the gateways can delete any state that they have
stored on behalf of the client.

The duplicate detection and suppression mechanisms described in Section 3.4, along with
the unique client identifier, and CORBA’s existing request identifier mechanisms, enable the
gateway to preserve the replica consistency within the fault tolerance domain, as well as
to protect the unreplicated client outside the fault tolerance domain from having its state
corrupted. Furthermore, the redundant gateways scheme enables the unreplicated client to
benefit from the fault tolerance of the server.

1The service context is a part of the IIOP request and reply messages, where the user may insert
information. If a receiving ORB cannot interpret this information, it will ignore it.

Chapter 8

Implementation and
Performance

The current implementation of the Eternal system is capable of providing fault tolerance to
unmodified CORBA applications using the following unmodified commercial ORBs:

Solaris 2.x on UltraSPARC workstations

VisiBroker [22] from Inprise Corporation

Orbix [23] from Tona Technologies

CORBAplus [14] from Expersoft (now Vertel)
ORBacus [55] from Object-Oriented Concepts Inc.
TAO [62] from Washington University, St. Louis
omniORB2 [32] from AT & T Laboratories, U.K.
ILU [26] from Xerox PARC

RedHatLinux 6.0 on Intel PCs

e VisiBroker [22] from Inprise Corporation
e ORBacus [55] from Object-Oriented Concepts Inc.
e omniORB2 [32] from AT & T Laboratories, U.K.

The current implementation of Eternal exploits library interpositioning, which is less
dependent on operating system specific mechanisms and has lower overheads than our initial
implementation, which was based on intercepting the /proc interface of the Solaris operating
system. Either approach (library interpositioning or using /proc) allows the mechanisms of
Eternal to be used with diverse commercial ORBs, with no modification of either the ORB
or the application. The only stipulation is that the vendor’s implementation of CORBA
must support ITOP, as mandated by the CORBA standard.

103

104 Implementation and Performance

The mechanisms that the Eternal system employs to ensure replica consistency are im-
plemented beneath the ORB and, thus, are made transparent to the application and to the
ORB through the use of interception.

8.1 Challenges

Although all of the commercial CORBA implementations conform to the CORBA standard,
each ORB employs certain vendor-specific mechanisms which detract, in some measure,
from 1ts interoperability with other ORBs. This is due to the different interpretations of
the CORBA standard on the part of the ORB vendors, who are responsible for translating
the CORBA standard into an ORB implementation.

Moreover, not all of the commercial ORBs can “talk” to each other successfully under
all circumstances. For instance, some of the ORBs tend to “pack” multiple GIOP messages
into a single entity for efficient transmission, while other ORBs expect to receive GIOP
messages that are not necessarily in this packed form. Because Eternal deals with the TIOP
interface of each ORB, it is possible to transcend the intrinsic differences between ORBs
by having the Eternal Replication Mechanisms perform some additional, and appropriate,
conversion between the ITOP formats of different ORBs.

Furthermore, ORBs that are optimized for specific purposes tend to use non-standard
or different system calls as part of the ITOP interface. For certain ORBs, Eternal intercepts
these additional system calls, and maps them transparently to Totem. Nevertheless, for
every ORB that uses system calls that Eternal does not handle as yet, the Interceptor and
the Replication Mechanisms need to be modified to extend their capabilities to these new
system calls.

One of our aims is to be able to operate Eternal in an environment of networked het-
erogeneous ORBs. However, we faced a number of challenges in building the Interceptor
to ensure that the approach worked successfully with various commercial implementations
of CORBA. The issues that had to be resolved dealt with vendor-specific features of the
different ORBs. Because the Interceptor interfaces to the ORB at one end and to the oper-
ating system at the other, it must be equipped to handle the use of possibly non-standard
mechanisms at either interface.

8.1.1 Transcending ORB-Specific Mechanisms

Different implementations of CORBA over the same operating system use different system
calls to communicate messages over the TCP /TP-based Internet Inter-ORB Protocol (ITOP).
In particular, the low-level implementation of input and output operations of CORBA clients
or servers can be optimized by the choice of different I/O-related system calls of the Unix
System V STREAMS interface. The read and write system calls, typically used for I/0O
operations, are not necessarily the most efficient because the buffer arguments of these
system calls are limited in size. On the other hand, STREAMS-based system calls such as
getmsg and putmsg allow for multiple messages to be conveyed to the kernel in a single buffer
argument. They also allow for control information to be passed along with the data. This
is particularly important for connection-related system calls, because the embedded control

8.1 Challenges 105

information typically represents a transport primitive that identifies the establishment or
the release of a connection, or other relevant connection-specific information.

In addition, ORBs such as the COOL ORB [25], tend to convey a considerable amount
of information through ioctl system calls, which are highly efficient for 1/O. The diffi-
culty with interpreting the ioctl system calls, as required of the Interceptor, is that the
system call 1s generic, but has many different formats, each depending on the context of
the system call, and the ioctl command used. While some of the ioctl commands (and
their associated data structures) are well documented, a large proportion of ioctl-related
information is embedded in the source code of the operating system, to which the system
developer does not necessarily have, or desire, access. This is particularly true of the ioctls
related to the STREAMS module sockmod, used for TCP/IP communication. One of our
biggest challenges, and accomplishments, to date has been the exhaustive interpretation of
the formats of the often poorly documented messages used by the kernel, to the extent that
the Interceptor ”understands” all protocol-related communication, irrespective of the ORB
being used, and of the specific operating system interface that the ORB vendor chooses to
employ.

8.1.2 Proprietary ORB Protocols

Another concern with the various commercial ORBs is their use of proprietary communica-
tion protocols instead of the Internet Inter-ORB Protocol (ITOP) mandated by the CORBA
standard. Vendors employ customized protocols for communication between CORBA ob-
jects to increase efficiency or to reduce the use of bandwidth for connection management.

For instance, Orbix 2.2 from lona Technologies typically uses the proprietary Orbix
protocol (instead of ITOP) for all communication between objects and a vendor-specific
daemon, orbixd. The daemon is required to be running continuously on every machine
that hosts Orbix-based CORBA servers. Its function is to assign ports to servers and to
enable clients to discover servers at runtime. Although Iona has enabled ITOP as the default
protocol for inter-object communication in their latest release (Orbix 2.3), communication
with orbixd is not necessarily via a standard protocol.

Furthermore, for reasons of security, certain ORBs tend to send ITOP messages in an
encrypted form. While these security mechanisms are desirable and required by the applica-
tion, they effectively prevent the Interceptor from understanding all of the IIOP messages.
We are currently developing mechanisms that will make it possible for the Interceptor to
function with no knowledge of the content of IIOP messages, to provide fault tolerance while
retaining the degree of security enforced by the application.

8.1.3 Connection Management in ORBs

A further source of problems is that commercial ORBs, such as Orbix, embed the vendor-
specific daemon’s, rather than the server’s; host name and port number in the IOR published
by the ORB for the server. Thus, clients contact the daemon first, with no knowledge of
the server’s location. The daemon then facilitates the connection establishment between
the client and the server. The client retains its connection to the daemon on the server’s
machine in addition to its connection with the server itself.

106 Implementation and Performance

3000 T T T T T

28007

2600

2400

2200

2000

1800

1600

Active replication

Throughput measured at the server (operations/sec)

[N
N
o
o

1200 -

1000 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000

Message size (bytes)

Figure 8.1: Throughput for varying message sizes measured for a test application running over

VisiBroker for C4++4 on Solaris 2.x.

An increasing number of commercial ORBs are now equipped with daemons that enable
communication between CORBA objects. While the intention of the vendor in implementing
a daemon 1s to reduce the burden of connection management on the client and the server,
the daemon has the disadvantage of being a single point of failure.

Also, for each client or server that opens a communicating TCP/IP connection, it is
essential that the TCP/IP connection remain open even if the connection endpoint dies. For
the interception approach, this is necessary because we map all communication over a single
TCP/IP connection (with a target object) onto a multicast connection to each of the target
object’s replicas. Thus, the existence of the TCP/IP connection is required as long as at
least one replica of the target object exists. However, the presence of the daemon hinders this
because the daemon manages all client-server communication. Specifically, when a server
replica dies, the daemon notifies the client replica at the endpoint of the death of the server
replica, through the connection between the daemon and the client. This forces the client to
tear down its TCP/IP connection, despite the existence of alternative server replicas. While
this 1s the correct behavior for normal unreplicated applications, it is undesirable from the
point of view of fault tolerance, as provided by Eternal.

8.2 Performance 107

In order for the Interceptor, rather than a vendor-specific daemon, to remain in control of
connection management and server activation, it was necessary to develop mechanisms that
supported interception of the daemon itself. Fortunately, in the case of Orbix, the daemon
is also endowed with an IDL interface, IT_daemon, which supports methods to register and
activate servers, to assign values to connection-specific parameters and to manage client-
server communication. Because the daemon possesses an IDL interface, its behavior (while
using its IDL interface) is similar to that of other CORBA objects, and it can be forced
to use IIOP for communicating with server and client objects. Although such an ORB
daemon can be treated as a CORBA object, it need not be replicated because it manages
information and objects that are local to a machine.

The interception of the daemon is trickier than that of other CORBA objects. The
reason is that the daemon encapsulates mostly vendor-specific information and may choose
to communicate this in protocols that are not a part of the CORBA standard. To transcend
the differences in connection management between different ORBs, and thereby to ensure
true interoperability, we are exploiting the interception approach for developing inter-ORB
adapter mechanisms. The intent of these mechanisms is to prevent application programmers
from worrying about the interoperability issues that currently arise between ORBs from
different vendors. By virtue of their functionality, the adapters will be the only part of
Eternal that handle ORB-specific details. We also anticipate that their use will decrease as
ORB vendors adhere more closely to common interfaces and to the CORBA standard.

8.2 Performance

The performance of Eternal has been measured for test applications running over different
commercial ORBs, and using different CORBA invocation semantics (synchronous, deferred
synchronous, asynchronous one-way), for different message sizes and for different types of
method parameters.

For Solaris 2.x on 167Mhz SPARC workstations, when application objects are replicated,
and Eternal’s Mechanisms are used to maintain replica consistency, test applications typ-
ically incur about a 10% increase in remote invocation/response time, as compared with
their unreplicated unreliable counterparts. For RedHatLinux 6.0 on 400Mhz Intel Pentium
processors, this overhead reduces to 2% to 3%.

8.2.1 Throughput Measurements

The overheads due to Eternal are determined by measuring the throughput of a simple
test application based on the VisiBroker 3.3 ORB for C++ running over the Solaris 2.5.1
operating system in a network of SPARC workstations connected by a 100Mbps Ethernet.
The test application involves a client object acting as a packet driver, sending a continuous
stream of invocations to the server object. Each invocation carries a fixed-length message to
the server object, asking the server object to echo the message. The throughput i1s measured
as the size of the message is varied from 1byte to 5500bytes.

In the unreplicated case, there is a single client object and a single server object, each
running on a separate SPARC workstation. In the replicated case, there are three active

108 Implementation and Performance

Client o Server
Replica Application Replica

< \

7
upcall downcall upcall downcall

Client o Server
Object Application Object \ . <
“ \ 7 unmarshaling marshaing f§ ORB ﬂ:ﬁiﬁﬁ?gg marshaling
upcall downcall A

upcall downcall

unmarshaling marshaling

<
") interception and interceptionand ¥
ORB 3%%(;2;? r?g marshaling replication management Etemal M

v

Network Totem

receipt transmission receipt transmission receipt transmission
x

receipt transmission
L=t

@ (b)

Figure 8.2: The round-trip time for an invocation is a measure of (a) the time taken by the
ORB’s marshaling/unmarshaling mechanisms and the communication infrastructure when the
objects are unreplicated, and (b) the additional time due to Eternal’s Mechanisms and the Totem
protocols when the objects are replicated and managed by Eternal.

replicas of the client object and three active replicas of the server object, with each replica
located on a separate SPARC workstation. The replica consistency is handled by Eternal’s
Mechanisms. The results for the unreplicated and replicated cases are shown in the graph
of Figure 8.1.

As the graph shows, the overheads due to Eternal’s interception, replication management
and multicasting are reasonable, being in the range of 10% or less for most message sizes.
As the message size increases, the throughput in the replicated case reduces gradually from
2630 messages/s for a 1-byte message to 1320 message/s for a 5500-byte message.

8.2.2 CORBA Benchmarks

The Distributed Systems Research Group of Charles University in Prague, Czech Republic,
has developed a suite of benchmarks [9] with several criteria for evaluating a commercial
ORB. The results of their benchmarks, as well as the code for their performance tests, are
available for Orbix, VisiBroker, omniORB2 and ORBacus.

This suite of benchmarks includes performance tests for measuring the dependence of
the round-trip invocation time on the type and the encapsulation of the parameters of the
method being invoked. The benchmark suite involves a single client object and a single
server object, with the client invoking every method of the server.

The server object implements the IDL interface through shown in Figure 8.3. This in-
terface comprises methods that take arguments of different IDL types — primitive IDL data

8.2 Performance 109

typedef float float_arr[256];
typedef double double_arr[128];
typedef long long_arr[256];
typedef short short_arr[512];
typedef unsigned long ulong_arr[256];
typedef unsigned short ushort_arr[512];
typedef char char_arr[1024];
typedef octet octet_arr[1024];
typedef any any_arr_1024[1024];
typedef any any_arr_512[512];
typedef any any_arr_256[256];
typedef sequence<float,256> float seq;
typedef sequence<double,128> double_seq;
typedef sequence<long,256> longseq;
typedef sequence<short,512> short_seq;
typedef sequence<unsigned long,256> ulong_seq;
typedef sequence<unsigned short,512> ushort_seq;
typedef sequence<char,1024> charseq;
typedef sequence<octet,1024> octet_seq;
typedef sequence<any,1024> any seq-1024;
typedef sequence<any,512> any seq._512;
typedef sequence<any,256> any _seq-256;
typedef string<1024> str;
interface through {
long infloat(in float x);
long indouble(in double x);
long inlong(in long x);
long inulong(in unsigned long x);
long inshort(in short x);
long inushort(in unsigned short x);
long inchar(in char x);
long inoctet(in octet x);
long inany(in any x);
long floatArray(in float_arr x);
long doubleArray(in double_arr x);
long longArray(in long.arr x);
long shortArray(in short_arr x);
long ulongArray(in ulong_arr x);
long ushortArray(in ushort_arr x);
long charArray(in char_arr x);
long octetArray(in octet_arr x);
long anyArray1024(in any_arr_1024 x);
long anyArray512(in any_arr 512 x);
long anyArray256(in any_arr_256 x);
long floatSeq(in float_seq x);
long doubleSeq(in doubleseq x);
long longSeq(in long_seq x);
long shortSeq(in short_seq x);
long ulongSeq(in ulong_seq x);
long ushortSeq(in ushort_seq x);
long charSeq(in char_seq x);
long octetSeq(in octet_seq x);
long anySeq1024(in any_seq-1024 x);
long anySeq512(in any_seq_512 x);
long anySeq256(in any_seq_256 x);
long StringString(in str x);

Figure 8.3: The IDL interface through used in the benchmarks.

110 Implementation and Performance

3.0
251 8
w
£
= 20 i
k=l
§ Active replication
g - Uses Eternal’s Mechanisms
s 15F 1 cati
2 |:| No replication,
“E’ Not supported by Eternal
e
= 10F 1
=}
o
3
@
0.5+ il
0

Foat Double Long ULong Short UShort Char Octet
Types of parameters in the invocation

Figure 8.4: Round-trip times for the benchmark application for invocations that involve primitive
IDL types as individual entities.

types (float, double, long, short, unsigned long, unsigned short, char, octet)
as separate entities, primitive data types contained in CORBA sequences, primitive data
types in the form of CORBA anys, and primitive data types contained in CORBA arrays.

For those methods of this interface that involve primitive types aggregated into a user-
defined IDL type (through a CORBA sequence or a CORBA array), the amount of data
being transferred with each invocation of the server object is normalized for the purposes of
comparison. As shown in the figure, every array or sequence type in the through interface
contains 1024 bytes (1kB) of data, regardless of the primitive IDL type that it contains.

These benchmarks primarily measure the round-trip time in a synchronous invocation
of one of the methods of the server object’s through interface. A synchronous invocation
implies that the CORBA client object blocks after issuing the invocation, and cannot send
another invocation until it receives the response from the server. When the benchmark ap-
plication is unreplicated, the round-trip time reveals the speed of the ORB implementation
(along with the platform and the communication infrastructure that supports the ORB) and
the overhead in passing parameters of specific types. When the objects of the benchmark
application are actively replicated, with Eternal’s Mechanisms maintaining replica consis-
tency using the Totem protocols, this round-trip time includes the additional overhead of
using Eternal’s infrastructure, as shown in Figure 8.2. The overhead due to Eternal encom-
passes the overhead due to interception, replication management and multicasting. These
overheads are useful to the CORBA application programmer in determining the choice of
data types to be used in method parameters, based on the efficiency of their transmission;
in addition, the overheads are useful to Eternal in estimating the cost of state transfer.

8.2 Performance 111

35
30 i
o
E 25t]
c
i
8
<] Active replication
£ 20r 1 - Uses Etemal’s Mechanisms
<]
© |:| No replication,
£ 15| i Not supported by Eternal
e
5
5
0? 10r .
0.5F i
0

Any - Any - Any - Any - Any - Any - Any - Any -
Hoat Double Long ULong Short UShort Char Octet

Types of parameters in the invocation

Figure 8.5: Round-trip times for the benchmark application for invocations that involve CORBA
anys that encapsulating primitive IDL types.

The benchmark application is designed to work for several different ORBs; we have
performed the tests for VisiBroker for C4++, version 3.3, on a network of six 167Mhz SPARC
workstations running Solaris 2.5.1.

8.2.2.1 Primitive IDL Types and CORBA any

The results from the benchmark experiments are shown in Figure 8.4 and Figure 8.5. The
overheads due to the Eternal system are more or less the same for all of the primitive data
types. Eternal’s overhead is as low as 13% in the case of a char parameter in the client’s
invocation, and as high as 20% in the case of a double parameter in the client’s invocation.
The absolute round-trip time is greatest in the case of marshaling a CORBA float with
Eternal’s Mechanisms.

In the case of the CORBA any parameters, the overhead varies significantly, depending
on the primtive IDL type that is being encapsulated in the CORBA any parameter. Eternal’s
overhead is as low as 6% for a CORBA any that represents a float value, and is as high as
21% for a CORBA any that represents an unsigned short value. The absolute round-trip
time is greatest in the case of marshaling an octet into a CORBA any.

8.2.2.2 Arrays

The results from the benchmark experiments are shown in Figure 8.6. The absolute round-
trip time for arrays is understandably larger than for primitive data types or anys. The
overheads due to Eternal vary significantly, depending on the primtive IDL type that is

112 Implementation and Performance

35

3.0 4

N
U"1
I

Active replication

207 | - Uses Eternal’s Mechanisms
No replication,
15F B |:| Not supported by Eternal

Round-trip time for invocation (ms)
[
o
T

0.5 1

Array - Array- Array- Array- Array- Array- Aray - Artay -
Hoat Double Long ULong Short UShort Char Octet

Types of parameters in the invocation

Figure 8.6: Round-trip times for the benchmark application for invocations that involve CORBA
arrays encapsulating primitive IDL types.

being aggregated into the CORBA array. Eternal’s overhead is as low as 6% for a CORBA
array that contains 256 floats, and is as high as 21% for a CORBA array that contains
1024 octets of data. The round-trip time is greatest in the case of the array of octets.

8.2.2.3 Sequences

The benchmark’s results are shown in Figure 8.7. The absolute round-trip time does not vary
much for the different types of data that are encapsulated into sequences. The overheads
due to Eternal also do not vary much, being more or less 20% for the different types. The
absolute round-trip time, as well as Eternal’s overhead, are very similar for a string of
length 1024 bytes and for a sequence of 1024 octets.

8.2.3 Different Levels of Fault Tolerance

The Eternal system can provide different levels of fault tolerance, depending on the needs
of the application, and the types of faults that the application must be protected against.

Systems that are designed for a high level of fault tolerance incur a high associated
overhead, primarily due to signature generation and verification, which are computationally
expensive operations that depend on modular exponentiation.

For a high level of fault tolerance, the Eternal system utilizes the SecureRing protocols
and CryptoLib [31], a library of routines for public and private key systems. Signatures
are computed by RSA decrypting a message digest using the private key, while verification

8.2 Performance 113

35

30 |]
@ L]
é 25
c
=]
® . I
Q L 4 Active replication
% 20 - Uses Eterna’s Mechanisms
<] I
« No replication,
g 15 . |:| Not supported by Eternal
e
2 10 | |
3
x

05 1

0 Seq- Seq- Seq- Seq- Seq- Seq- Seq- Seq- Swing

Foat Double Long Ulong Short UShort Char Octet

Types of parametersin the invocation

Figure 8.7: Round-trip times for the benchmark application for invocations that involve CORBA
sequences encapsulating primitive IDL types.

is performed by RSA encrypting the signature using the public key. Because the message
digest is a fixed size (16 bytes), the time required for signing is independent of the size of
the original message. However, signature generation time is highly related to key modulus
size; thus, a tradeoff exists between performance and the degree of security attained.

Both Totem and the SecureRing protocols have been designed to amortize the cost of
computing a signature over the number j of messages mq, ..., m; sent per token visit. This
parameter j can be tuned to achieve optimal performance for different applications

To measure the performance of Eternal for the different levels of fault tolerance, we used
a simple test application developed with the VisiBroker 3.2 ORB. The measurements were
taken over a network of six dual-processor 167 MHz UltraSPARC workstations, running the
Solaris 2.5.1 operating system and connected by a 100 Mbps Ethernet.

The client object of the test application acts as a packet driver, sending a constant
stream of one-way invocations at a specified rate to the server object. Each invocation is
contained in a fixed-length (64 bytes) ITOP message. The rate at which the server object is
invoked is varied at the client object; the throughput is measured at the server object.

The graph in Figure 8.8 shows the throughputs obtained with this test application for
the following cases, which are listed in the order of increasing level of fault tolerance:

e Case 1: Unreplicated client and server objects without the Eternal system. The
throughput is determined by the ORB mechanisms alone.

114

Implementation and Performance

Throughput measured at the server (invocati ons/sec)

3500 \ \

w
(@)
(@]
(@]

2500
2000 !
1500

1000

Majority voting
500 / Message digests -
Digital signatures
O | | | | |

No replication

X :
o 4 Nosecurity . o
. Active replication

o / No majority voting i

Active replication
Majority voting
Message digests

Active replication

0 50 100 150 200 250 300 350 400
Interval between invocations measured at the client (microseconds)

Figure 8.8: Performance of the Eternal system.

e Case 2: Three-way active replication of both client and server objects without ma-

jority voting. Reliable totally ordered multicasts without either the message digests or
the signatures are used. The throughput is dictated by the cost of interception, active
replication and multicasting, in addition to the costs of case 1. The Totem system is
employed in this case.

Case 3: Three-way active replication of both client and server objects with majority
voting. Secure reliable totally ordered multicasts with message digests are used. The
throughput is dictated by the cost of message digests, in addition to the costs of case
2. The SecureRing protocols are employed in this case.

Case 4: Three-way active replication of both client and server objects with majority
voting. Secure reliable totally ordered multicasts with message digests and digitally
signed tokens are used. The throughput i1s dictated by the cost of signatures, in
addition to the costs of case 3. The SecureRing protocols are employed in this case.

8.2 Performance 115

In the performance measurements for cases 2, 3 and 4, up to six multicast messages
are sent with each token visit, where each multicast message encapsulates possibly multiple
ITOP messages. While the cost of computing a single signature is spread over six messages,
the use of signatures is nevertheless computationally expensive, as can be seen from the
overheads of the Eternal system in case 4. However, the results indicate that the overheads
of the Eternal system without signatures (cases 2 and 3) are low. In particular, the overheads
are in the range of 7-15% for remote invocations for the triplicated clients and the triplicated
servers of case 2. In all of the cases, the overheads are quite reasonable given the level of
fault tolerance that the Eternal system provides.

The graph also indicates some transient behavior, attributable to the ORB, for cases 1,
2 and 3 when the time between consecutive invocations at the client is less than 100 us.
For such high message generation rates at the client, the ORB batches multiple one-way
invocations before transmission. While some performance benefit is gained from this activity
of the ORB, the unpredictability of the ORB’s batching, evident from the transient behavior
in the graph, can lead to undesirable fluctuations in the throughput of the application. This
behavior of the ORB is not as significant in case 4, where the computation of the signatures
dominates the CPU usage on each processor, effectively reducing the fraction of CPU time
allocated to other processing, such as the ORB’s batching of IIOP messages.

116

Chapter 9

Conclusion

Fault tolerance for CORBA could be provided entirely through CORBA service objects,
located above the ORB, with application-level interfaces written in IDL. While 1t is necessary
to expose some interfaces of the framework, particularly those for management, to the
application for ease of use and customization, it is less desirable to expose the more difficult
aspects of fault tolerance, such as replica consistency and fault recovery, through application-
level interfaces. Moreover, implementation of fault tolerance above a CORBA ORB is not
necessarily the most efficient approach due to the overhead of the ORB in the communication
paths.

On the other hand, fault tolerance for CORBA could be provided by embedding the fault
tolerance mechanisms within the ORB. Unfortunately, this involves modifying the ORB to
provide the necessary support. The extent of the modification to the ORB depends on
the ORB, as well as on the level of fault tolerance provided, with the likelihood that the
resulting modified ORB is non-compliant with the CORBA standard. However, because the
mechanisms form an intrinsic part of the ORB, the new functionality can be made available
in a way that 1s transparent to the application.

The novel interception approach that we have developed allows the transparent insertion
of fault tolerance mechanisms underneath the ORB. Interception achieves the best of the
integration and the service approaches, while providing other benefits as well. The Eternal
system exploits the interception approach to provide transparent fault tolerance to CORBA,
without requiring the modification of either the ORB or the application. Eternal comprises
a framework that combines Mechanisms inserted underneath the ORB for transparency and
efficiency, and Services implemented above the ORB for application-level control and ease
of use.

Eternal’s Services above the ORB include the Replication Manager that replicates each
application object, according to user-specified fault tolerance properties (including the choice
of replication style) and distributes the replicas across the system. Eternal’s Mechanisms
underneath the ORB include the Interceptor, the Replication Mechanisms and the Logging-
Recovery Mechanisms.

117

118 Conclusion

The Interceptor of the Eternal system transparently captures the ITOP messages ex-
changed between the application objects, and diverts the intercepted IIOP messages to the
Replication Mechanisms. The Replication Mechanisms, together with the Logging-Recovery
Mechanisms, maintain strong consistency of the replicas, and detect and recover from faults.

Eternal maintains strong replica consistency of the application objects, as replicas and
processors fail and recover, and as replicas perform operations that update their states.
Eternal provides additional transparent mechanisms to enforce deterministic behavior, and
to guarantee strong replica consistency, even in the face of multithreading in the ORB or in
the application.

In the Eternal system, both the client and server objects of the CORBA application can
be replicated, and support for nested operations is provided. Different replication styles —
active, cold passive and warm passive replication — are provided, with the user selecting the
replication style appropriate to the application object at system configuration time.

To facilitate strong replica consistency, the Eternal system conveys the ITOP messages
of the CORBA application using the reliable totally ordered multicast messages of the
underlying Totem system. Eternal can also tolerate arbitrary faults by exploiting protocols
such as those of the SecureRing system, with more stringent guarantees than are provided
by Totem. To tolerate value faults in the application, Eternal uses active replication with
majority voting applied to both invocations and responses for every application object.

The technology of the Eternal system formed the basis of our response to the Object
Management Group’s Request for Proposals on fault-tolerant CORBA. With our close in-
volvement in the ongoing OMG standardization process, the technology of the Eternal
system 1s likely to form the basis of the forthcoming standard for Fault Tolerant CORBA.

9.1 Outstanding Challenges
9.1.1 ORB State

A number of challenges still exist in providing fault tolerance for CORBA. Most of these
challenges surround the issue of strong replica consistency, and the factors that influence it.
One of these factors, the ORB state, is adequately addressed by Eternal for request identifiers
and socket connections. However, the part of the ORB state that stores information about
the threads in the application, and the specific multithreading policy employed by the ORB,
requires more synergy between Eternal and the ORB.

Unfortunately, multithreading is so closely tied to the ORB that any thread-level hooks
into the ORB will be necessarily vendor-specific. In the absence of such hooks, it is relatively
difficult to provide a way of extracting the thread-specific part of the ORB state from
underneath, or from above, the ORB.

9.1.2 Partitioning and Remerging

When a network partitioning fault occurs, every object group (replicated object) might
also partition into disjoint subgroups, each subgroup containing a subset of the original set
of replicas, located in a different component of the partitioned system. Thus, replicas in
the disjoint subgroups cannot communicate with each other. Different operations may be

9.1 Outstanding Challenges 119

performed by the replicas in the different subgroups, leading to inconsistencies that must
be resolved when communication is reestablished and the subgroups remerge.

In Eternal, for each replicated object, at most one primary subgroup is identified when
the network partitions. Each of the other components is then a secondary subgroup for that
object. At the point of remerging, while the Logging-Recovery Mechanisms transfer the
state of the replicas in the primary subgroup to those in the secondary subgroup, fulfillment
methods permit operations performed in the secondary subgroup also to be performed in the
larger merged subgroup. The fulfillment methods may need to handle special application-
specific conditions, and to resolve inconsistencies, by no means an easy task.

9.1.3 Live Upgrades

The Eternal system also exploits object replication to achieve more than fault tolerance.
The ability to mask the failure of an object or a processor can also be used to mask the
deliberate removal of an object or processor and its replacement by an upgraded object
or processor. For the upgrade of a processor, the replacement can be a different type of
processor. It is also possible, in several steps, to replace an object by another object with
a different interface or implementation, without stopping the system and without requiring
great system programming skill from the application developer. Over time, both hardware
and software components of the system can be replaced and upgraded without interrupting
the service provided by the system. Thus, our objective is a system that can run forever, a
system that is Eternal.

120

Bibliography

(1]

(8]

[9]

D. A. Agarwal. Totem: A Reliable Ordered Delivery Protocol for Interconnected Local-
Area Networks. PhD thesis, Department of Electrical and Computer Engineering, Uni-
versity of California, Santa Barbara, August 1994.

A. D. Alexandrov, M. Ibel, K. E. Schauser, and C. J. Scheiman. Ufo: A personal global
file system based on user-level extensions to the operating system. ACM Transactions

on Computer Systems, 16(3):207-33, August 1998.

A. D. Alexandrov. User-level operating system extensions based on system call interpo-
sttion. PhD thesis, Department of Computer Science, University of California, Santa
Barbara, June 1999.

R. Balzer and N. Goldman. Mediating connectors. In Proceedings of the 19th IEEE
International Conference on Distributed Computing Systems Workshop, pages 73-77,
Austin, TX, May 1999.

A. Baratloo, P. E. Chung, Y. Huang, S. Rangarajan, and S. Yajnik. Filterfresh: Hot
replication of Java RMI server objects. In Proceedings of the Fourth USENIX Confer-
ence on Object-Oriented Technologies and Systems, pages 65—78, Santa Fe, NM, April
1998.

S. Bestaoui. One solution for the nondeterminism problem in the SCEPTRE 2 fault
tolerance technique. In Proceedings of the Euromicro 7th Workshop on Real-Time
Systems, pages 352-358, Odense, Denmark, June 1995.

K. P. Birman and R. van Rennesse. Reliable Distributed Computing Using the Isis
Toolkit. IEEE Computer Society Press, 1994.

T. C. Bressoud. TFT: A software system for application-transparent fault tolerance. In
Proceedings of the IEEE 28th International Conference on Fault-Tolerant Computing,
pages 128-137, Munich, Germany, June 1998.

Charles University and MLC Systeme GmbH. CORBA Comparison Project. Technical
report, http://nenya.ms.mff.cuni.cz, August 1999.

121

122 BIBLIOGRAPHY

[10] M. Cukier, J. Ren, C. Sabnis, W. H. Sanders, D. E. Bakken, M. E. Berman, D. A. Karr,
and R. Schantz. AQuA: An adaptive architecture that provides dependable distributed
objects. In Proceedings of the IEEE 17th Symposium on Reliable Distributed Systems,
pages 245-253, West Lafayette, IN, October 1998.

[11] T. Curry. Profiling and tracing dynamic library usage via interposition. In Proceedings

of the Summer 1994 USENIX Conference, pages 267-78, Boston, MA | June 1994.

[12] E. N. Elnozahy and W. Zwaenepoel. On the use and implementation of message logging.
In Proceedings of the 24th IEEE Fault-Tolerant Computing Symposium, pages 298-307,
Austin, TX, June 1994.

[13] Eternal Systems and Sun Microsystems. Fault tolerance for CORBA, initial joint sub-
mission. OMG Technical Committee Document orbos/98-04-08, October 1998.

[14] Expersoft Corporation. CORBAplus for C++ Documentation - v2.2.1, June 1998.

[15] J. C. Fabre and T. Perennou. A metaobject architecture for fault-tolerant distributed
systems: The FRIENDS approach. IEEE Transactions on Computers, 47(1):78-95,
1998.

[16] R. Faulkner and R. Gomes. The process file system and process model in UNIX System
V. In Proceedings of the Winter 1991 USENIX Conference, pages 243-52, Dallas, TX,
January 1991.

[17] P. Felber, R. Guerraoui, and A. Schiper. The implementation of a CORBA object
group service. Theory and Practice of Object Systems, 4(2):93-105, 1998.

[18] P. Felber, A. Schiper, and R. Guerraoui. Designing a CORBA group communication
service. In Proceedings of the IEEE 15th Symposium on Reliable Distributed Systems,
pages 150-159, Niagara on the Lake, Canada, October 1996.

[19] P. Felber. The CORBA Object Group Service: A Service Approach to Object Groups
i CORBA. PhD thesis, Swiss Federal Institute of Technology, Lausanne, Switzerland,
1998.

[20] M. Henning and S. Vinoski. Advanced CORBA Programming with C++. Addison
Wesley Longman, Inc., January 1999.

[21] H. Higaki and T. Soneoka. Fault-tolerant object by group-to-group communiations in
distributed systems. In Proceedings of the Second International Workshop on Respon-
swwe Computer Systems, pages 62-71, Saitama, Japan, October 1992.

[22] Inprise Corporation. VisiBroker for C++ Programmer’s Guide, 1998.
[23] Tona Technologies PLC. Orbiz Programmer’s Guide, October 1997.

[24] Tsis Distributed Systems Inc. and Tona Technologies Limited. Orbiz+Isis Programmer’s
Guide, 1995.

BIBLIOGRAPHY 123

[25] C.Jacquemot, F. Herrmann, P. S. Jensen, and P. Gautron. COOL: The Chorus CORBA
compliant framework. In Proceedings of the IEEE Proceedings of COMPCON 9/, pages
132-141, San Franciso, CA, February 1994.

[26] B. Janssen, M. Spreitzer, D. Larner, and C. Jacobi. ILU 2.0alphalj Reference Manual.
Xerox Corporation, January 1999.

[27] K. P. Kihlstrom. Survivable Distributed Systems: Design and Implementation. PhD
thesis, Department of Electrical and Computer Engineering, University of California,
Santa Barbara, August 1999.

[28] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. The SecureRing protocols
for securing group communication. In Proceedings of the IEEE 31st Annual Hawau
International Conference on System Sciences, volume 3, pages 317-326, January 1998.

[29] S. Kleiman, D. Shah, and B. Smaalders. Programming with Threads. Prentice Hall,
Mountain View, 1996.

[30] F. Kuhns, C. O’Ryan, D. C. Schmidt, O. Othman, and J. Parsons. The design and
performance of a pluggable protocols framework for Object Request Broker middleware.
In Proceedings of the IFIP Sizth International Workshop on Protocols For High-Speed
Networks, Salem, MA| August 1999.

[31] J. B. Lacy, D. P. Mitchell, and W. M. Schell. CryptoLib: Cryptography in software.
In Proceedings of the 4th USENIX Security Workshop, pages 1-17, October 1993.

[32] S. Lai-Lo and D. Riddoch. omniORB2 Version 2.7.1 User’s Guide. AT & T Labora-
tories, Cambridge, U. K., February 1999.

[33] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Com-

munications of the ACM, 21(7):558-565, July 1978.

[34] J. R. Levine. Linkers and Loaders. Morgan Kaufmann Publishers; San Francisco, CA,
2000.

[35] C. A. Lingley-Papadopoulos. The Totem process group membership and interface.
Master’s thesis, University of California, Santa Barbara, August 1994.

[36] S. Maffeis. Adding group communication and fault tolerance to CORBA. In Proceed-
wngs of the 1995 USENIX Conference on Object-Oriented Technologies, pages 135146,
Monterey, CA, 1995.

[37] S. Maffeis and D. C. Schmidt. Constructing reliable distributed systems with CORBA.
IEEE Communications Magazine, 35(2):56-60, February 1997.

[38] P. M. Melliar-Smith and L. E. Moser. Simplifying the development of fault-tolerant dis-
tributed applications. In Proceedings of the Workshop on Parallel/Distributed Plaiforms
wn Industrial Products, 7th IEEE Symposium on Parallel and Distributed Processing,
1995.

124

BIBLIOGRAPHY

[39]

[41]

[42]

[43]

[46]

[49]

G. Morgan, S. Shrivastava, P. Ezhilchelvan, and M. Little. Design and implementation
of a CORBA fault-tolerant object group service. In Proceedings of the Second IFIP WG
6.1 International Working Conference on Distributed Applications and Interoperable
Systems, Helsinki, Finland, June 1999.

L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Lingley-
Papadopoulos. Totem: A fault-tolerant multicast group communication system. Com-

munications of the ACM, 39(4):54-63, April 1996.

L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal. Extended virtual
synchrony. In Proceedings of the 14th IEEE International Conference on Distributed
Computing Systems, pages 5665, Poznan, Poland, June 1994.

L. E. Moser, P. M. Melliar-Smith, and P. Narasimhan. Consistent object replication in
the Eternal system. Theory and Practice of Object Systems, 4(2):81-92, 1998.

A. Mostefaoui and M. Raynal. Efficient message logging for uncoordinated checkpoint-
ing protocols. In Proceedings of the 2nd Furopean Dependable Computing Conference,
pages 353-364, Taormina, Italy, October 1996.

P. Narasimhan, K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. Providing
support for survivable CORBA applications with the Immune system. In Proceedings
of the 19th IEEE International Conference on Distributed Computing Systems, pages
507-516, Austin, TX, May 1999.

P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Exploiting the Internet Inter-
ORB Protocol interface to provide CORBA with fault tolerance. In Proceedings of the
Third USENIX Conference on Object-Oriented Technologies and Systems, pages 81-90,
Portland, OR, June 1997.

P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. The interception approach to
reliable distributed CORBA objects. In Panel on Reliable Distributed Objects, Proceed-
wngs of the Third USENIX Conference on Object-Oriented Technologies and Systems,
pages 245-248, Portland, OR, June 1997.

P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Replica consistency of CORBA
objects in partitionable distributed systems. Distributed Systems Engineering, 4(3):139-
150, 1997.

P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Enforcing determinism for
the consistent replication of multithreaded CORBA applications. In Proceedings of
the IEEE 18th Symposium on Reliable Distributed Systems, pages 263-273, Lausanne,
Switzerland, October 1999.

P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Replication and recovery mech-
anisms for strong replica consistency in reliable distributed systems. In Proceedings of
the 5th ISSAT International Conference on Reliability and Quality in Design, pages
26-31, Las Vegas, NV, August 1999.

BIBLIOGRAPHY 125

[50] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Using interceptors to enhance
CORBA. IEEE Computer, pages 62-68, July 1999.

[61] Object Management Group. The Common Object Services specification. OMG Tech-
nical Committee Document formal/98-07-05, July 1998.

[62] Object Management Group. Fault tolerant CORBA using entity redundancy: Request
for proposals. OMG Technical Committee Document orbos/98-04-01, April 1998.

[63] Object Management Group. Portable interceptors: Request for proposals. OMG Tech-
nical Committee Document orbos/98-09-11, September 1998.

[64] Object Management Group. The Common Object Request Broker: Architecture and
specification, 2.3 edition. OMG Technical Committee Document formal/98-12-01, June
1999.

[65] Object-Oriented Concepts, Inc. ORBacus for C++ and Java, 1998.

[66] G. Parrington, S. Shrivastava, S. Wheater, and M. Little. The design and implemen-
tation of Arjuna. USENIX Computing Systems Journal, 8(3):255-308, Summer 1995.

[67] D. Powell. Delta-4: A Generic Architecture for Dependable Distribuled Computing.
Springer-Verlag, 1991.

[58] R. L. Rivest. The MD4 message digest algorithm. In Advances in Cryptology - Pro-
ceedings of CRYPTO ’90, pages 303-11, Santa Barbara, CA, August 1990.

[59] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the Association for Computing Ma-
chinery, 21(2):120-126, February 1978.

[60] B. S. Sabnis. Proteus: A software infrastructure providing dependability for CORBA
applications. Master’s thesis, University of Illinois at Urbana-Champaign, 1998.

[61] D. C. Schmidt. Evaluating architectures for multithreaded Object Request Brokers.
Commaunications of the ACM, 41(10):54-60, October 1998.

[62] D. C. Schmidt, D. L. Levine, and S. Mungee. The design of the TAO real-time Object
Request Broker. Computer Communications, 21(4):294-324, April 1998.

[63] J. Schonwalder, S. Garg, Y. Huang, A. P. A. van Moorsel, and S. Yajnik. A management
interface for distributed fault tolerance CORBA services. In Proceedings of the IEEE

Third International Workshop on Systems Management, pages 98-107, Newport, RI,
April 1998.

[64] J. H. Slye and E. N. Elnozahy. Supporting nondeterministic execution in fault-tolerant
systems. In Proceedings of the IEEE 26th International Symposium on Fault-Tolerant
Computing, pages 2560-259, Sendai, Japan, June 1996.

[65] W. R. Stevens. UNIX Network Programming. Prentice Hall Software Series, 1990.

126 BIBLIOGRAPHY

[66] Sun Microsystems Inc. SunOS 5.z Linker and Libraries Guide, November 1995. In
Solaris Software Developer Kit.

[67] Sun Microsystems Inc. and International Business Machines Corporation. RMI-IIOP
Programmer’s Guide, FCS release edition, 1999.

[68] R.van Renesse, K. P. Birman, M. Hayden, A. Vaysburd, and D. Karr. Building adaptive
systems using Ensemble. Software - Practice and Erperience, 28(9):963-79, July 1998.

[69] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A flexible group communication

system. Communications of the ACM, 39(4):76-83, April 1996.

[70] A. Vaysburd and K. Birman. The Maestro approach to building reliable interoperable
distributed applications with multiple execution styles. Theory and Practice of Object
Systems, 4(2):73-80, 1998.

[71] Y. M. Wang, Y. Huang, K. P. Vo, P. Y. Chung, and C. M. R. Kintala. Checkpointing
and its applications. In Proceedings of the 25th IEEE International Symposium on
Fault-Tolerant Computing, pages 22-31, Pasadena, CA, June 1995.

[72] Y. M. Wang and W. J. Lee. COMERA: COM extensible remoting architecture. In
Proceedings of the Fourth USENIX Conference on Object-Oriented Technologies and
Systems, pages 79-88, Santa Fe, NM, April 1998.

