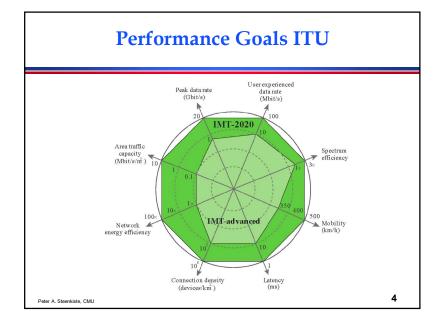
18-452/18-750
Wireless Networks and Applications
Lecture 19: 5G

Peter Steenkiste

Spring Semester 2020 http://www.cs.cmu.edu/~prs/wirelessS20/

Peter A. Steenkiste. CMU

1


Overview 5G

- Goals and Motivation
- Architecture
- Managing heterogeneity
- Virtualization and cloud technology
- Cloud-RAN
- 5G campus networks

Peter A. Steenkiste. CMU

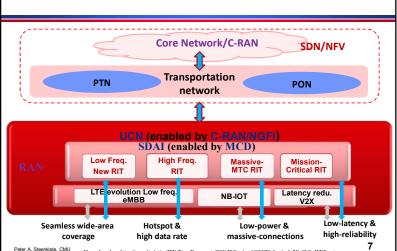
2

5G Vision ITU International Mobile Telecommunications Enhanced Mobile Broadband Capacity Enhancement Faster 4G 3D Video – 4K screens Smart city cameras Mission critical broadband Growing application domains Ultra-high reliability & Low Latency Massive Connectivity (Source: ETRI graphic, from ITU-R IMT 2020 requirements) https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf 3 Peter A. Steenkiste, CMU

5G technology More of the same?

- Goal is 10+ fold increase in bandwidth over 4G
 - » Combination of more spectrum and more aggressive use of 4G technologies
- Very aggressive use of MIMO
 - » Tens to hundred antennas
 - » Very fine grain beamforming and MU-MIMO
- More spectrum: use of millimeter bands
 - » Challenging but a lot of spectrum available
 - » Bands between 26 and 60 GHz
 - » Beamforming needed for extended range
- Also new lower frequency bands
 - » Low-band and mid-band 5G: 600 MHz to 6 GHz

Peter A. Steenkiste, CMU


5

Is That Enough?

- Scaling up existing solutions attacks bandwidth challenges, but what about ...
- Dealing with heterogeneity
 - » Widely different traffic loads
 - » Use of very different parts of the spectrum
- Dealing with increased complexity
 - » Multiple traffic classes, signaling protocols
 - » Diverse types of PHY processing
- Managing multiple deployment models and controlling costs
 - » Mobile users vs IoT vs Iow latency/high bandwidth
 - » Private cellular 5G campus networks

Peter A. Steenkiste, CMU 6

5G Key Technologies

Acronyms

- · RIT: Radio Interface Technology
- UNC: User-centric network
 - » Optimize user performance, e.g., interference mitigation
- NGFI:Next-Generation Fronthaul Interfaces
 - » Interface for exchanging signal information between baseband and remote radio units
 - » Used in C-RAN to minimize impact of interference, ...
- MCD: Multi-level Centralized and Distribute protocol stack:
 - » Coordinates decision making across the system (cell, UE)
- SDAI: Software-Defined Air Interface
 - » Interface to manage PHY and link level: frame structure, waveform, multiple access, duplex mode, antenna config, ..
- PTN: Packet Transport Network
- PON: Passive Optical Network

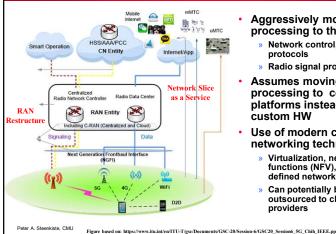
Peter A. Steenkiste, CMU

8

Technology Discussion

- The basestations have support for diverse front ends
 - » Responsible for generating/transmitting baseband signal
 - » Needed to deal with diversity of frequency bands, traffic
- All other processing is done in a "cloud RAN"
 - » Responsible for both the sent/received data stream and for RAN control
- Standard protocols to coordinate between basestations and C-RAM:
 - » MCD stack for control of PHY and cellular protocol functions using SDIA interface
 - » UNC for RF signal data transfer based on NGFI interface

Peter A. Steenkiste. CML


11

Why C-RAN? **Standard Čloud Arguments**

- Cheap compute resources
 - » Economy of scale of operating large data centers
- Elastic resource pool
 - » Size of the resource pool can adapt to the traffic load
 - » Multiplexing of resources with other users/applications
- Flexible allocation of resources across applications
 - » Relative load of different traffic classes, frequency bands
- Ability to outsourcing cloud management
 - » Can be delegated to specialized cloud providers
 - » Reduces infrastructure investment
- Virtualization offers isolation of services

Peter A. Steenkiste. CML

Cloud RAN (C-RAN)

- Aggressively move processing to the cloud
- Network control, signaling
- » Radio signal processing
- Assumes moving all processing to commodity platforms instead of
- Use of modern cloud. networking technologies
 - » Virtualization, network functions (NFV), software defined networking
 - » Can potentially be outsourced to cloud

10

C-RAN Challenges

- Transfer of signal data between basestations and C-RAN requires a lot of bandwidth
 - » Supported by the NGFI interface
- Processing of the signal data is latency sensitive
 - » Latency bounds are much tighter than for typically workloads
 - » Need to be able to adapt to channel conditions
 - » May need additional support in the cloud infrastructure
- RAN control needs to be driven by information obtained from signal data
 - » Adjust transmit powers, antennas, ...


12 Peter A. Steenkiste, CMU

Page 3

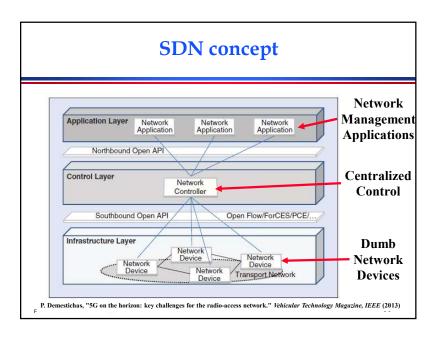
Frequency Reuse

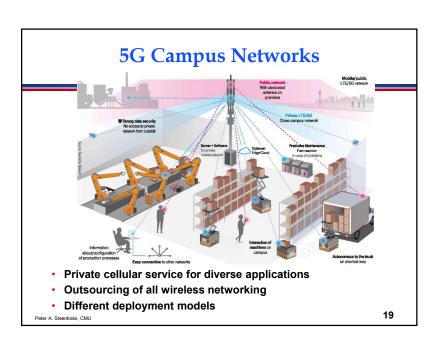
- Frequency reuse across cells has become increasingly aggressive:
 - » Initially, macro cells with relatively static distribution of frequencies across cells
 - » Next, introduction of micro, pico, etc. cells that are selectively deployed and can reuse frequencies more aggressively
 - » Finally, more aggressive reuse using coordinated interference mitigation across cells
- Drive for frequency reuse is economics
- Goal: no cell designs, where frequencies are dynamically assigned and used "everywhere"
 - » Very carefully limit interference during reuse

Peter A. Steenkiste, CMU

mmWave Offers Significant More Capacity

- There is a lot of spectrum available!
 - » See next slide for the fine print
- Need to use beam forming to achieve reasonable range
 - » Possibly using large number of antennas (10s .. 100)
 - » Technology similar to that discussed for 802.11ad
 - » Challenges include establishing sessions, mobility, ...
- Best solution likely involves coordination between with "cm-wave" technologies
 - » ~GHz technologies are used for coverage
 - » mmWave is used for high capacity when needed

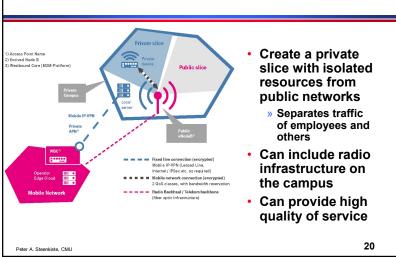

Peter A. Steenkiste, CMU 14


Use New Network Technologies in Core Network

- Software Defined Networking (SDN)
 - » Centralized control of the network
 - » Provides more fine grain control over resources, e.g., bandwidth management, ...
- Network Function Virtualization (NFV)
 - » Cellular operators run a lot of "middleboxes" that provide value added services to users
 - » Traditionally supported using custom hardware but increasingly supported by "Virtual Network Functions" running on commodity servers
 - » Enabler for moving computing to clud
- Network slicing using virtualization
 - » Flexible way of sharing a single infrastructure between several network operators and their clients

Peter A. Steenkiste, CMU

16



SDN Overview

- The control plane and data forwarding plane are separated
- A centralized controller maintains a complete view of the network resources
- Network applications manage resources, control network functions
 - » Obtain network view through northbound int.
- Uses southbound int. to collect network state and send instructions to devices
 - » Protocol is called Openflow

Peter A. Steenkiste, CMU 18

Private Campus Connectivity

Public Company VPN Public Collular network Can be used by both employees and others on campus Uses on site radio infrastructure Provides superior performance

Peter A. Steenkiste, CMU

21