
Page 1

Peter A. Steenkiste 1

18-452/18-750
Wireless Networks and Applications

Lecture 18: TCP and Applications on
Mobile Devices

Peter Steenkiste

Spring Semester 2024

http://www.cs.cmu.edu/~prs/wirelessF24/

Peter A. Steenkiste 2

Impact of Wireless on
Application Performance

• Bandwidth sharing in the Internet

• TCP
» Basics

» TCP congestion control

» Impact of RTT

» Impact of Packet Loss

» Establishing a TCP session

» Maintaining TCP sessions while mobile

» Multi-path TCP

1

2

Page 2

Peter A. Steenkiste 3

Network Performance
Properties

• Throughput: end-to-end bandwidth available
between two communicating applications

» Depends on the bandwidth of the links on the network
path

» How much of this bandwidth is available to the
application, i.e., how is bandwidth shared on links

» Properties of the transport protocols used by
applications using the links – how aggressive are they?

• Latency: time to send a packet end-to-end
» Depends on the propagation delay on all the links and the

queueing delay on the routers

» Packet loss adds delay – impacted by transport protocols

» Queueing delay which is impacted by transport protocols
- how aggressive are they?

Peter A. Steenkiste 4

Bandwidth Sharing:
Simple Scenario

• Dumbbell topology: N flows F1-FN share a
bottleneck link with link capacity of B

» All access links have a more than enough capacity

• What would be a fair bandwidth allocation?

T(Fi) = B/N

R R
… …

S2

S1

SN

R2

R1

RN

F1

FN

3

4

Page 3

Peter A. Steenkiste 5

How About a
More Interesting Network

• We have 5 flows that
» Use different paths in the network

» Use paths that have a different number of links

» Use links are shared with different numbers of flows

• Fair bandwidth allocation = equal bandwidth

• In this example, all flows get B/3

R1 R4

R3

R6

1

3

2
R2

R5

5

4

Is that reasonable?

Peter A. Steenkiste 6

Max-Min Fairness

1. Identify the link that is the most constrained
» Link R1-R3 supports 3 flows; flow 1, 2, and 3 get B/3

2. Subtract the assigned bandwidth from the link capacities
» R1-R3 has 0 left; R3-R5, R3-R4, R3-5 have 2B/3 left; other links: B

3. Repeat steps 1 and 3
» Link R3-R5 supports two flows: flow 5 gets 2B/3

4. Keep Repeating: Flow 4 also gets 2B/3

R1 R4

R3

R6

1

3

2
R2

R5

5

4

5

6

Page 4

Peter A. Steenkiste 7

Main TCP Functions

• Connection management
» Maintain state at endpoints to optimize protocol

» Introduces delay even if you only send 1 byte of data!

• Flow control: avoid that sender outruns the
receiver

» Uses sliding window protocol – can limit throughput!

• Error control: detect and recover from errors
» Lost, corrupted, and out of order packets

• Congestion control: limits transmit rate to
avoid that senders flood the network

» Lack of congestion control leads to inefficiency and
possibly network collapse

» Very hard problem – was not part of original TCP spec!

Peter A. Steenkiste 8

Flow and Error Control

• Receivers may have limited space to store
incoming packets

» Sliding window protocol avoids packet drops at receiver

• Receiver informs sender of how much buffer
space it has available, limiting the transmit
rate of the sender

» Throughput is limited to: window size/RTT

» Not a real concern on today’s servers and end-points

• Lost packets must be retransmitted
» Retransmission is based on a time out, so delay can be

significant

» May also delay packets that follow lost packets

7

8

Page 5

Peter A. Steenkiste 9

Goals TCP Congestion Control

• The goal of TCP congestion control is to limit the
transmit rates of senders so traffic can be handled
efficiently by the network

» Similar to traffic control on the road – avoid gridlock

• Ideally traffic will get a fair bandwidth allocation
» Fair = equal bandwidth under the same conditions

R1 R4

R3

R6

1

35

4

2
R2

R5

Peter A. Steenkiste 10

TCP Congestion Control 101

• The bottleneck limits the throughput of senders A and B to
receiver C

» It is congested: there is more traffic than bandwidth

10 Mbps

100 Mbps

1 Mbps

Bottleneck Link

A

B
C

• What should the router do?

• It drops packets – what else can
it do?

» Informally: when the queue is
full, it overflows

• What should senders do?

• Slow down when there is
congestion

» Congestion event = packet
loss

9

10

Page 6

Peter A. Steenkiste 11

Loss

• The Internet design and TCP specifically assume that
packet loss is a sign of congestion

» It is defined as a “congestion event” and TCP will reduce its
transmit rate

• This is appropriate in wired networks since practically
all losses are the result of queue overflow

• However, wireless channels are more challenging
which can result in higher packet loss rates

» This was a big problem in the early days of WiFi

• Solution: wireless network aggressively avoids packet
loss on the wireless ink

» To higher level protocols, the wireless link looks like a wired
one!

» WiFi and cellular use hybrid ARQ: forward error correction and
retransmissions if needed to recover from errors

Peter A. Steenkiste 12

What Transmit Rate Should a
new TCP Session Use?

• Analogy: suppose you want to
know how long it takes to drive
to a new destination?

» It depends on traffic!

• TCP discovers the available
bandwidth by increasing transmit
rate exponentially!

» Double the transmit rate every RTT

» Goal: identify good transmit rate quickly

• This is called “Slow Start”

• Slow Start ends when the sender
observes a congestion event

» Typically packet loss

TCP
Rate

Time

11

12

Page 7

Peter A. Steenkiste 13

What Rate Should TCP Use
after Slow Start?

• What goals and constraints should be considered?
» The sender wants to go as fast as possible!

» Senders must slows down in response to congestion

• Continuously probe for more bandwidth
» Increase the transmit rate slowly: typically by one MTU per RTT

– MTU = Maximum Transfer Units (max packet size)

– RTT = Round Trip Time

• Reduce rate when there is a congestion event
» Cut the transmit rate in half

TCP Rate

Time

Peter A. Steenkiste 14

Relevance to Wireless Networks?

• The RTT of a TCP connection has a
significant impact on throughput

• During Slow Start
» All flows start with the same initial window, e.g., 10 MTU

» But the rate increase depends on the RTT: a factor of 2
increases per RTT

» With a low RTT, rate increases significantly faster!

• During Congestion Avoidance mode
» The window size is increased by 1 MTU per RTT

» Increase is faster when RTT is lower

» Rate decrease is the same for all flows: cut in half

13

14

Page 8

Peter A. Steenkiste 15

Transmit
Rate

SS Flow 1

SS Flow 2

1 2 3 75 86 94 10

CA

Time

Example

• Flow 1 (blue) has an RTT that is half that of Flow 2 (red)

• SS: Flow 1’s rate increases four times as fast as Flow 2
» It initial transmit rate is twice as high and it increases twice as fast

» Flow spends less time in SS, when rate is lower

• Congestion avoidance: rate increases twice as fast

Peter A. Steenkiste 16

Implications for
Congestion Avoidance

• In Congestion Avoidance mode, the transmit rate is inverse
proportional to the roundtrip time

• Again, flows with high RTT are at a disadvantage!
» Informal reason: low-RTT flows increase their rate faster, i.e.,

more aggressively

• Moving servers closer to clients has many advantages:
» Transmit rates increase much faster during Slow Start

» Higher throughputs during Congestion Avoidance

» Shorter network paths may reduce significant network bottleneck

• Builds a strong case for edge computing

Rate =
𝑴𝑺𝑺

𝑹𝑻𝑻
×

𝑪

𝑷

MSS Maximum Segment Size
RTT = round trip time
C = constant depends on context
P = packet loss rate

The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm,
Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, ACM Sigcomm, 1997

15

16

Page 9

Peter A. Steenkiste 17

Limitations

• The version of TCP congestion control
describes so far is just the basics

• Today, many congetion control algorithms
are used with different properties

» All use slow start at the beginning of a session

» Many sometimes interpret RTT increases at congestion
events

– Increased RTT means that queues are filling up,
which may be a sign of congestion

– The goal is to avoid timeouts

» They increase/decrease rates differently

» Etc.

Peter A. Steenkiste 18

Wireless Challenges for TCP

• Variability in available bandwidth, e.g., due to
changes in channel CSI, handover, …

» Should be handled by congestion avoidance (later)

• Increases in latency due to MAC protocol and
higher packet loss rate

» They have a surprisingly big impact on TCP!

• Loss of network connectivity, e.g., due to
mobility

» TCP session breaks if the disconnection is long enough

» TCP state is lost, so new connection will have to be
established when reconnected

» For application: not clear how much data was
successfully transmitted

17

18

Page 10

Peter A. Steenkiste 19

Impact of Wireless on TCP
Congestion Control

• Variability in available bandwidth, e.g., due to
changes in channel CSI, handover, …

» TCP congestion control needs to adapt more often

• Increases in latency due to MAC protocol
» WiFi: uplink and downlink transmissions use a shared

channel with contention-based access

– Delays depend on how busy the channel is

– Exponential backoff can add significant delays

– Much less of a problem in switched ethernet

» Cellular: uses shared channels for uplink and downlink
transmissions with schedules access

– Latencies have historically been high: 10s of msec

– Core network adds additional latency

Peter A. Steenkiste 20

Cost of Establishing a
TCP Session

• TCP uses a three-way handshake
to establish a TCP session

» Syn: provides parameters to needed
for communication

» Syn/Ack: confirms Syn and
establishes reverse path

» Ack confirms that the session has
established

• TLS 1.2 adds another RTT
» Can be avoided based on earlier TCP

session

• Adds significant latency to short
data transfers

» In addition to the small congestion
window during Slow Start

Syn

Syn/Ack

ACK

Two-way
communication

19

20

Page 11

Peter A. Steenkiste 21

Mobility Breaks
TCP Connections

• Hosts use a 4 tuple to identify a TCP
connection

» <Src Addr, Src port, Dst addr, Dst port>

• Changing either IP address of an endpoint
breaks the TCP connection

» Host cannot determine which TCP session an incoming
packet belongs to

» Will send packet to the wrong destination IP address

• The problem impacts both nomadic and
mobile users

• TCP was not designed to handle this!

Peter A. Steenkiste 22

How to Make TCP
Work with Mobility

• You need to use a different way of associating
incoming packets with TCP sessions

• General idea: add a level of indirection
• When the session is established, associate an

“identifier” with the connection, e.g., session ID
» The session ID is included in packets – used to look up TCP

state at the destination
» When a host moves to a new network and gets a new IP

address, the TCP state is updated on both endpoints
» .. but the session ID remains the same
» This must be requires security

• Generally not supported for TCP, but
» Google’s QUIC transport protocol does support mobility

21

22

Page 12

Peter A. Steenkiste 23

Multiple-Path TCP
MPTCP

• Multi-path TCP allows a client to send packets to a
destination over multiple paths

• The most common use case is when one or both
end-points have more than one network interface

» The different network interfaces have different IP address

» They can represent a different source/destination endpoint

A B

C D

Peter A. Steenkiste 24

How Does MPTCP Work?

• The application uses one socket for
the connection

» It uses traditional primitive for
sending/receiving data

» There are extra commands for
control

• The MPTCP connection combines
regular TCP connections

Socket

Application

Multipath TCP

TCP1 TCP2 TCP3 TCPn
…

• Error, flow, and congestion control is handled by the
individual TCP connections

• A multipath layer implements the multi-path abstraction

» Implements adding and dropping paths

» Distributes traffic load over the single path session

23

24

Page 13

Peter A. Steenkiste 25

Using MPTCP

• MPTCP has several interesting use cases
» Networks that are unreliable and or unstable (e.g., bandwidth

fluctuations)

» Recovering from network failres

• Increasing overall throughput was not an explicit
target

» A lot of research on making MPTCP behave fairly with respect
to TCP

» Interesting research but not entirely clear whether this is a
high priority for users

• MPTCP can help with maintaining connectivity
for mobile users

» Mobile phones today support both WiFi and cellular

» Users uses cellular, but sign

Peter A. Steenkiste 26

MPTCP and Mobility

• MPTCP can help with maintain connectivity
for mobile users

» Mobile phones today support both WiFi and cellular!

• Example: user uses WiFi while mobile
» Gets new IP address in new network and may be

disconnected while switching

» Solution:

– before losing connectivity with WiFi 1, add a second
TCP path over cellular

– Cellular path supports TCP session after loss of
connectivity to WiFi 1

– Find new WiFi network, WiFi 2, and connect

– Add a second path over WiFi 2 to MPTCP connection

25

26

Page 14

Peter A. Steenkiste 27

Outline

• Wireless and the Internet

• Mobility: Mobile IP

• TCP and wireless

• Applications and wireless

Peter A. Steenkiste 28

How Does Wireless Impact
Applications

• The layered Internet protocol stack largely
isolates applications from layer 1&2 details

• Except for:

1. Disconnected operation: it is impossible to
hide that fact that the device is no longer
connected to the network
» This is a big deal – not just a detail!

2. Variability in available bandwidth - TCP
» Due to changing channel conditions, handover, ..

3. Higher end-to-end latency (RTT) - TCP
» Due to the extra delay introduced by MAC mechanisms

27

28

Page 15

Peter A. Steenkiste 29

Applications Care About
Response Time

• “Flow Completion Time”: time
to deliver a data object

» Sometimes called an Application
Data Unit (ADU)

» The unit of data relevant to users
» Image, data set, …

• The FCT can have a
significant impact on the
latency of distributed
applications

» Example: Remote Procedure Call

• FCT depends on network
bandwidth and latency

» And other factors

Vehicle Edge cloud

Compute

Request

Response

Response
Time

Request
FCT

Response
FCT

Peter A. Steenkiste 30

Flow Completion Time

FCT = SA / T

• Where:
» SA is the size of the ADU

» T is the throughput of the end-to-end TCP connection

• The throughput T of the network connection
depends on many factors

» Available bandwidth and the end-to-end latency

» For short data transfers

– Most or all of the data set is sent in Slow Start mode

– Establishing the TCP session also adds delay

» See previous lecture for details

29

30

Page 16

Peter A. Steenkiste 31

Optimizing Content Delivery

• Content delivery is an important application
of the Internet

» Video playback, web browsing, …

» Used widely on both mobile and stationary devices

• Retrieval of the content is driven by the client
» Follows an RCP model so network bandwidth and latency

have a bit impact

– Good news: ADUs are typically large

• Examples:
» Video streaming: ADU is a video segment

– Key metric: bit rate

» Web browsing: pages consist of many web objects, many
of which can be sent over a single TCP connection

– Key metric: Page Load Time (PLT)

Peter A. Steenkiste 32

How Can We Reduce FCT?

• For large transfers, network latency and
bandwidth are a big impact

• Solution: Content Delivery Networks

• Replicate the content closer to users
» Users can retrieve content from a nearby CDN instead of

a remote centralized data center

• How do users “find” the closest replica that
has the content?

» DNS redirect: when using the domain name (x.com) to
retrieve an IP address, the DNS server use the client’s
location to select the best CDN

• This is a general solution
» Not specific to mobile users

31

32

Page 17

Peter A. Steenkiste 33

Adapting Web Content to the
Device

• Mobile devices have smaller screens than
computers, laptops, big screen TVs, …

• It makes sense to simplify the content
» Smaller images, lower video resolution, …

» Simplify the web pages: fewer embedded objects, …

» Saves both bandwidth and device processing time

• Many organizations use different web servers
for mobile devices

» The HTTP protocol provides information that can be used
by the provider to select the right web server and to adapt
the content

» Some of the optimization is also done on the client

• Alternative use proxies that customize content
» Reduces the load on the mobile devices

Peter A. Steenkiste 34

Optimizing Video Delivery

• Key performance metrics: maximize bit rates
while avoiding video stalls

• Video streaming adapts to the available
network bandwidth

• Key idea: estimate available bandwidth based
on delivery time of previous segments

» Segment i has an FCT of Ti and size Si

» The available bandwidth is Si / Ti

» All video segments are stored with multiple bit rates

» Assuming a fixed playback time, we can choose the
highest bit rate segment that can be delivered in time

• This is a general solution

33

34

Page 18

Peter A. Steenkiste 35

Impact on Mobile Users

• Wireless devices can be used anywhere and
are often used while the user is mobile

• Users expect near-ubiquitous coverage: no
matter where the user is, the cellular network
should be available

» This requires extensive testing: “Can you hear me now?”*

» WiFi users do not have the same expectation

• Some environments are challenging
» High speed trains moving at 300 km/h +

» It actually works! With some minor kickups

* Old Verizon commercial
+ https://doi.org/10.1145/3230543.3230556

Peter A. Steenkiste 36

Intermittent Connectivity

• When a device is disconnected, applications
can no longer access the Internet

» When laptops were first introduced, applications would
sometimes just crash, but …

• Applications that rely on long-lived
connection are problematic by design

• Alternative: REST APIs may help in handling
short disconnections for some applications

35

36

Page 19

Peter A. Steenkiste 37

REST(full) APIs

• Application programming interface for client
server interactions that is:

» Clean separation of client and server using well defined data
formats and interfaces

» Statelessness: each client request is independent, allowing
the server to complete processing

» REST APIs are viewed a good software engineering practice
since they simplify building systems from components

• Simple example is web interface: HTTP
» HTTP is stateless and supports a well defined set of

requests clients can to servers

» Not just for page retrieval! Much more general

• In our (limited) context: avoids the user of long
lived sessions, failed requests can be retried

* REST: representational state transfer

Peter A. Steenkiste 38

Disconnected Operation

• When a device is disconnected, applications
can no longer access the Internet

» When laptops were first introduced, applications would
sometimes just crash, but …

• Users who are disconnected want to continue
to use their device

» Update calendar, read/write e-mail, edit files, ...

» This is true both on laptop and mobile phones

– But some applications are specific to laptops

• Here are some examples:
» Modifying and using files in a shared file systems

» Applications that use structured data

» Proactive services

37

38

Page 20

Peter A. Steenkiste 39

Shared File Systems
Example: Coda

• The Coda file system supports disconnected operation

• Coda is based on the AFS shared file system and
allows disconnected users to work offline

• How does Coda work?
» Before disconnecting, users must replicates (cache) files

of interest on their local device

– The files are available as “normal” files, e.g., they
have their usual file name

» While disconnected, users can read and modify the local
file copies

» Multiple users can have offline copies of the same file

• Since there are multiple copies, we need a replication
strategy

» I.e., how do we maintain consistency

Peter A. Steenkiste 40

Replication Strategies

• Coda uses an “optimistic” strategy
» All users with a copy of the file can modify their local

copy

» This creates a consistency problem

• With a “conservative” strategy, only one copy
of the file can be modified while other copies
are read-only

» This strategy is not practical, e.g., users need to know a
priori what files they may need to modify and they need
to know who gets the “file lock”

• The optimistic strategy raises a consistency
issue

39

40

Page 21

Peter A. Steenkiste 41

Coda Consistency

• When a user reconnects to the shared file
system, Coda writes modified files back to the
shared file system

• If only one of the copies has been modified, it
keeps the most recent version

» This is consistent with the Unix file system semantics

• If both copies of the file have been modified
the user is notified and needs to manually
merge the changes

» Coda did provide some tools for common cases

• Does this model sound familiar?

Peter A. Steenkiste 42

Other Examples

• Andrew File System (AFS)
» Developed at CMU, starting point for Coda!

» Client acquires a lock when it caches a file – ~prevents
simultaneous changes to files

» Clients can retrieve and change locked files, but they are
made aware of the conflict – also responsible for merge

• Web based file sharing: box, google docs, …
» Models are all over the map

» Some provide fine grain consistency (e.g., google docs)

» Other provide simply create multiple copies of the file, i.e.,
the service they provide is transferring files between users

• Older file systems such as NFS ignored the
problem

» Were designed for wired networks

41

42

Page 22

Peter A. Steenkiste 43

Applications Using
Structured Data

• Many distributed applications and services use
structured data, not unstructured files

» Examples: To Do lists, agenda, e-mail, …

• The shared data can be viewed as “objects”
» Typed data structures with a specific format are only read

and writing by a limited number of functions

• Example: e-mail is based on e-mail servers
» E-mail is created, sent, received, and used by e-mail clients

» Once it has been created, an e-mail is immutable

• As a result, e-mails can be read, composed,
and deleted offline

» The e-mail client keeps a log of the e-mail activity and
replays it once it is connected to the server

» Multiple users can even share an account

Peter A. Steenkiste 44

Other Applications

• Similar solutions can be used for other
applications, e.g., calendars and to-do lists

» Tasks are appointments and tasks

• Unfortunately, data types are typically not
immutable

» E.g., reschedule an appointment or delay a task

• The solution is to record changes and replay
them once a devices reconnects to the server

» If there are no conflicting changes, merging is easy

• If multiple users make conflicting changes,
they require manual resolution

» E.g., one user moves an appointment while another user
canceled it

43

44

Page 23

Peter A. Steenkiste 45

Proactive Services

• Some servers are proactive: they initiate operations,
instead of just responding to client requests

• Examples
» Pushing new e-mails, new tasks, .. proactively to clients

• Challenge: mobile clients may have different IP
addresses as they move around

» How does the server “find” them?

• Whenever a client reconnects to the network, it
contacts the server

» Server can then give them updates and (possibly) start
pushing updates proactively, or client polls regularly

• The problem is actually more complicated
» Network Address Translation boxes (NATs) often require

that the client polls (FYI only) – clients needs to poll
server periodically

Peter A. Steenkiste 46

Resource Constrained
Mobile Device

• Mobile phones and wearable devices are
resource constrained

» Limited power and compute cycles

» Many reasons: cost, weight, size, …

• For compute-intensive applications,
computational offloading is an attractive
alternative

» Use the huge, elastic resource pool provide by the cloud

» Clouds cycles are also cheap and offer statistical
multiplexing

• Challenges:
» Partitioning the application, shared state

» Load on the network, network latency, cost, …

45

46

Page 24

Peter A. Steenkiste 47

Edge Computing

• Offloading computing to remote clouds can
result in high FCTs

» Bandwidth of WAN connections can be low

» High end-to-end latency hurts TCP performance

• Solution: edge computing
» Build smaller clouds (cloudlets) near population centers

» They can support low latency applications efficiently

» Edge computing is also used for virtualized cellular RANs

• Example: computational offloading for
autonomous driving to edge clouds

» Silly view: a Raspberry Pi at each basestation

» Use nearby edge clouds (e.g., a few tens of miles)

Peter A. Steenkiste 48

Outline

• Wireless and the Internet

• Mobility: Mobile IP

• TCP and wireless

• Applications and wireless

• Disruption tolerant networks

47

48

Page 25

Peter A. Steenkiste 49

Challenged Networks

• Violate one or more of Internet’s assumptions
» End-points may rarely/never be online at the same time
» Very long delay path, frequent disconnections, …
» Have naming semantics for their particular application

domain
» Not be well served by the current end-to-end TCP/IP

• Examples
» Terrestrial mobile networks

» Some ad-hoc networks

» Sensor/actuator networks

• Goals for “disruption tolerant” networks
» Achieve interoperability between very diverse types

networks

» Sometimes also called disruption tolerant

Peter A. Steenkiste 50

Background

FA

FA

FA

MH

MH

M
o

ve
m

e
n

t

Sensor field

Sink

Mobile network

Ad hoc network

Sensor network

49

50

Page 26

Peter A. Steenkiste 51

High-level Architecture

• Characteristics:
» Operate as an overlay above the existing transport layers

» Based on an abstraction of message switching
– Bundle

– Bundle forwarder (DTN gateway)

– Store-and-forward gateway function between different networks

• Constituent of DTN architecture
» Region: internally homogenous, i.e. same network stack,

addressing, …

» DTN gateway: Interconnection point between region boundaries

» Name Tuple: {Region name, Entity name}

source destinationDTN gateway DTN gateway

Peter A. Steenkiste 52

Example DTN

Region D

Region C - Intranet

Region A - Internet

Region B – Sensor network

data

data

data

data

UserHost
{A, UserHost}

{A, R1}

{B, R2}

{B, R3}

{D, R4}

{A, R2}

{C, R3}

{C, R4}

DTN gateway

51

52

Page 27

Peter A. Steenkiste 53

Finding Mobile Hosts:
Two Simple Solutions

• Routing: mobile nodes keep “home” IP address
and advertise route to mobile address as /32 in
BGP

» Leverages LPM semantics - should work!!
» Bad idea: scalability

• DNS: mobile nodes get “local” IP address and
update name-address binding in DNS

» DNS allows clients to update their address on the DNS
servers of the address

• This should work but it is a terrible idea
» It results in a lot of write traffic to DNS

– Increases the load on the DNS servers
– Raises security concerns

» DNS relies heavily on caching of name-address pair
– Frequent updates reduce efficiency of caching

Peter A. Steenkiste 54

Old Slides

53

54

