18-452/18-750 Wireless Networks and Applications Lecture 22: RFID and NFC

Peter Steenkiste
CS and ECE, Carnegie Mellon University

Spring Semester 2024 http://www.cs.cmu.edu/~prs/wirelessS24/

Peter A. Steenkiste, CML

1

1

Announcements

- Survey information
 - » Slots for teams will be 20 minutes plan for 15 min talks
 - » Remaining time is for Q&A, switching speakers
 - » One lecture will run long (5 teams instead of 4)
- The material presented as part of the surveys is part of the syllabus
 - » But any questions will be high level (based on slides)
- Both team members must present
 - » Break presentation in two parts
 - » I suggest you practice a few times
- I have posted grading forms for P2 projects and survey presentations on piazza

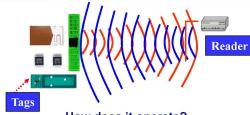
Peter A. Steenkiste. CMU

Outline

- RFIDs
 - » Concept and applications
 - » EPC and backend processing
 - » PHY and MAC
 - » Security
- Near Field Communication
- Battery-less devices

Peter A. Steenkiste, CMU

3


3

What is RFID?

- Radio Frequency IDentification (RFID) is a method of remotely storing and retrieving data using devices called RFID tags and RFID Readers
- An enabling technology with many applications
 - » Data can be stored and retrieved from the tag automatically with a Reader
 - » Tags can be read in bulk
 - » Tags can be read without line of sight restrictions
 - » Tags can be write once read many (WORM) or rewritable
 - » Tags can require Reader authentication before exchanging data
 - » Other sensors can be combined with RFID
- Technology has been around for a long time
- Also has critics, e.g. privacy concerns

Peter A. Steenkiste, CMU

How Does It Work?

How does it operate?

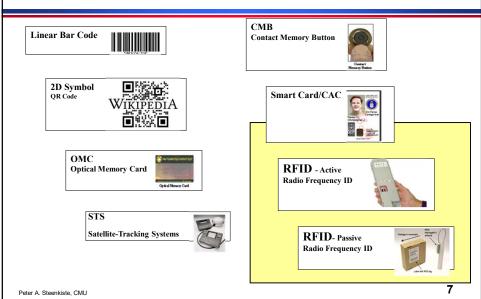
- RFID tags are <u>affixed to objects</u> and stored information may be written and rewritten to an embedded chip in the tag
- Tags can be <u>read remotely</u> when they receive a radio frequency signal from a reader and use the energy to respond
- Can operate over a range of distances
- Readers display tag information or send it over the network to back-end systems

Peter A. Steenkiste, CMU

What is RFID?

- A means of identifying <u>a</u> <u>unique object or person</u> using a radio frequency transmission
- Tags (or transponders) <u>store information</u>, that can be retrieved wirelessly in an automated fashion
- Readers (or interrogators), either stationary and handheld, can <u>read/write</u> information from/to the tags

5


5

Applications

- Operational Efficiencies
 - » Shipping and Receiving
 - » Warehouse management
 - » Distribution
 - » Asset management
- Total Supply Chain Visibility
 - » Inventory visibility in warehouses
 - » In-transit visibility, asset tracking
 - » Pallet, case level
 - » Item, instance level
- Peter A. Steenkiste, CMU

- · Shrinkage, counterfeit
 - » Reduce internal theft
 - » Reduce process errors
 - » Avoid defensive merchandizing
 - » Product verification
 - » Origin, transit verification
- Security, Regulations
 - » Total asset tracking
 - » Defense supplies
 - » Container tampering
 - » Animal Tracking

Automated Identification Technology Suite

7

RF ID Types

- Passive Tags: rely on an external energy source to transmit
 - » In the form of a reader that transmits energy
 - » Relative short range
 - » Very cheap used everywhere today!
- Active Tags: have a battery to transmit
 - » Has longer transmission range
 - » Can initiate transmissions and transmit more information
 - » A bit more like a sensor
- Battery Assisted Passive tags are a hybrid
 - » It has a battery to transmit
 - » But it needss to be woken up by an external source

Peter A. Steenkiste, CMU

A Bit of History

- Early technology was developed in the 40s
 - » Originally used as eaves dropping devices
 - » Used reflected power to transmit (transponder), e.g. the membrane of a microphone
- First RF IDs were developed in the 70s
 - » Transmission based on reflected energy using information in memory – readers can now distinguish devices
- Dramatic growth since then driven by industry
 - » Potential for significant gains in many areas
 - » Big organizations (DOD, Walmart) requiring the use of RFIDs from their vendors for easy inventory control
- Set of applications expanded rapidly

Peter A. Steenkiste, CMU

9

9

Standards

- Passive tags operate in the LF, HF, and UHF unlicensed spectrum
 - 30-300 KHz, 3-30 MHz, 300-3000 MHz
- Transmission consists of a bit stream plus CRC
 - CRC allows reader to verify the value it read
- Many standards exist, mostly incompatible
 - » Early standards mostly defined by the ISO
 - » Widely used standard: ISO/IEC14443
- In 2003 EPCGlobal was formed to promote RFID standards
 - » Defined a standard for the Electronic Product Code (EPC)
 - » Also defined standards for coding and modulation

Peter A. Steenkiste, CMU

Primary Application Types

Identification and Localization

- Readers monitoring entering and exiting a closed region
 - » Security (RFID in identification cards)
 - » Merchandise in stores
 - » NFC in phones (more on this later)
- Readers tracking an RFID-tagged object
 - » Business process monitoring (RFID tags on pallets)
- Tags marking a spatial location
 - » An NFC enabled mobile phone passes tags in the infrastructure whose location is known

11 Peter A. Steenkiste, CMU

11

Example: Smart Card

Public transport system in Singapore

- FeliCa Smart Card
- 2001 2009
- Faster boarding times
- Other uses
 - small payments retail
 - identification
- Replaced by contactless card (RFID)

Peter A. Steenkiste, CMU

How Smart are RFIDs?

- Basic tags simply reply with a fixed bit string – "read" the tag
 - » "I am Groot"
 - » Already useful!
- Gradual move to richer functionality
 - » Changing the state on the tag "write"
 - E.g., keep track of a balance
 - » Privacy and security: encryption, access control, ...
 - E.g., different parties and read and write the tag
 - » Add computing capabilities (more general than crypto)
- Next step is processors that operate entirely based on harvested ambient energy
 - » Vibrations, RF, solar, ...

Peter A. Steenkiste, CML

13

13

Example "Oyster" Card

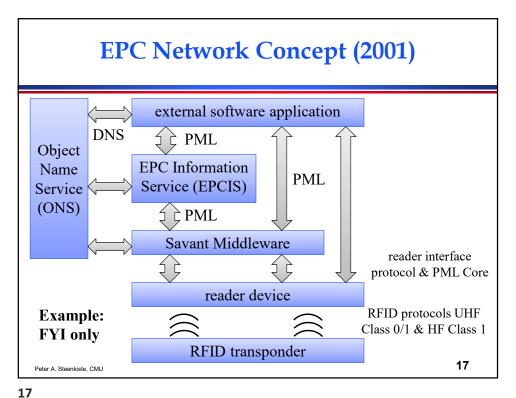
- Balance is maintained on the card
 - » Cryptographically secured
- The "reader" updates the balance as you enter/leave the metro station
 - » Enter: record when and where you boarded
 - » Leave: update balance on the card based on the trip
 - » These operations are entirely at the reader
- Readers record all trips and periodically send updates to a server about the balance of cards
 - » Auditing trail, lost cards, etc.
 - » Riders can check their balance online

Peter A. Steenkiste. CMU

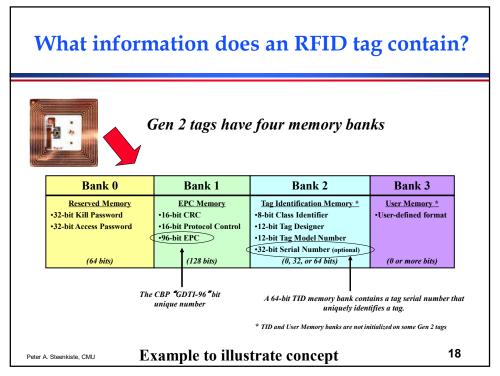
Outline

- RFIDs
 - » Concept and applications
 - » EPC and backend processing
 - » PHY and MAC
 - » Security
- Near Field Communication
- Battery-less devices

Peter A. Steenkiste, CMU


15

15


Electronic Product Code (EPC)

- "A Universal identifier for physical objects"
 - » Designed to be unique across all physical objects in the world, over all time, and across all categories of objects.
 - » Intended for use by business applications that need to track all diverse physical objects, whatever they may be.
 - » Trade item: urn:epc:id:sgtin:0614141.012345.6285210cc Syringe #62852
 - URN: Universal Resource Name (instance of a URI)
- Combined multiple components
 - » EPC data is stored on the RFID tag read using reader
 - » Locate EPC Information Services (EPCIS), using Web Services like SOAP and WSDL
- Not exciting but standardization is critical to wide-spread adoption

Peter A. Steenkiste, CMU

1,

Passive RFID Tags

Power supply

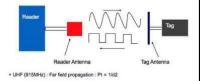
- » passive: no on-board power source, transmission power from signal of the interrogating reader
- » semi-passive: batteries power the circuitry during interrogation, once woken up by external signal
- » active: batteries power transmissions (can initiate communication, ranges of 100m and more, 20\$ or more)

Frequencies

- » low frequency (LF): 124kHz 135 kHz, read range ~50cm
- » high frequency (HF): 13.56 MHz, read range ~1m
- » ultra high-frequency (UHF): 860 MHz 960 MHz (some also in 2.45GHz), range > 10m
- » Note that channel width differs

Peter A. Steenkiste, CMU 19

19


Frequency Bands Passive RFID Tags

Electromagnetic Spectrum Radio Spectrum 30kHz 300kHz 3000kHz 30MHz 300MHz 3000MHz 300GHz 3000GHz VLF LF HF SHF ₩av The "RFID" Frequencies 2,45 and 5,8 GHz 125-134 kHz 20 Peter A. Steenkiste, CMU

Transmission methods

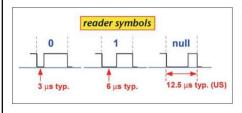
- LF and HF: inductive coupling
 - » Coil in the reader antenna and a coil in the tag antenna form an electromagnetic field
 - » Tag changes the electric load on the antenna.
- UHF: propagation coupling: backscatter
 - » Tag gathers energy received from the reader transmission
 - » Microchip uses the energy to change the load on the antenna and reflect back an altered signal
 - » Different modulations used by reader and tag

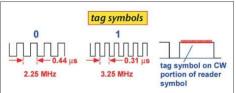
Reader
Reader
Antenna
Magnetic field
d = taa - reader distance

Peter A. Steenkiste, CMU

 $\label{lem:from:http://www.highfrequencyelectronics.com/Archives/Aug05/HFE0805_RFIDTutorial.pdf $$https://rfid4u.com/rfid-basics-resources/inductive-and-backscatter-coupling/$

22


22


What does an RFID tag look like inside a card?

PHY Layer

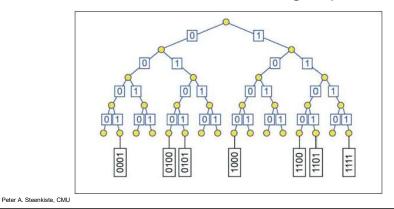
- Depends on the frequency band used
- Different modulations used by reader and tag
 - » Different constraints, e.g. power and complexity
 - » E.g. cannot used amplitude modulation for HF tag (why?)
- Example of EPC Global symbols for UHF

25

Peter A. Steenkiste, CMU

 $From: http://www.highfrequencyelectronics.com/Archives/Aug05/HFE0805_RFIDTutorial.pdf$

24


MAC Layer

- Typically assumed that only one reader is present, i.e. no need for MAC on the reader
 - » Multiple readers: can use different frequency bands
- MAC for tags is a challenge: very high concentrations of tags are present in many contexts
 - » And tags are dumb, i.e. cannot have sophisticated protocols (carrier sense, RTS/CTS, ..)
 - » Must also deal with multiple readers operating in the same environment
- Two types of schemes used (standard):
 - » Binary tree resolution: reader explores a tree of tag values
 - » Aloha: tags transmit with a random backoff

Peter A. Steenkiste. CMU

Binary Tree Resolution

- Send requests to tags with ids that start with a certain string
- Narrow down search until one tag responds

26

26

Sketch of the Algorithm

- · Do a breadth first search of all the nodes in the tree
- At each step:
 - » If multiple tags respond, continue the breadth first search
 - » If no tags respond: skip the subtree
 - It does not contain any tags
 - » If one tag responds: you have found a tag! Ignore subtree
 - It contains only one tag, which you have already found
- **Example:**
 - » Query root node -> multiple responses
 - » Query node 0 -> multiple response
 - » Query node 00 -> one response (tag 0001)
 - » Query node 01 -> multiple responses

Peter A. Steenkiste, CMU

General Security Concerns

- RFID tags raise a number of security concerns:
 - » Privacy risks, e.g., eavesdropping
 - » Cloning and forging of tags
- Specific disadvantages due to tag limitations
 - » Some encryption algorithms may be too complex to be implemented on tags
- But there are also some advantages:
 - » Tags are slow to respond limits the rate of readout operations
 - » Short transmission range means that an adversary has to be physically close
 - Short transmission range is your friend (rare)

28

28

29

Privacy for Business Networks

- Major concern for industry:
 - » Supply chain visibility
 - » Supply chains and business networks are business assets
- Example provenance checking: competitors may be able to get a lot of information
 - » Depending on how detailed the information associated is:
 - Where an object and its parts where manufactured
 - When it was manufactured
 - By which sub-contractors
 - » Who are the suppliers of a company
 - » Which companies are the customers of a company

Peter A. Steenkiste. CMU

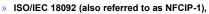
Reading Ranges

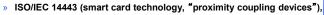
- Controlling reading range can limit privacy risk
- Nominal read range (RFID standards and product specifications):
 - » 10cm for contactless smartcards (ISO 14443)
- Rogue scanners can extend range
 - » More sensitive readers, antenna arrays, ...
 - » Rogue scanners do not have to follow industry practice
- Tag-to-reader eavesdropping range: need to power the tag limits range for passive RFIDs
 - » Eavesdropping on communication while another reader is powering the smartcard: > 50cm
- Reader-to-tag eavesdropping: readers transmit at much higher power

Peter A. Steenkiste, CMU 30

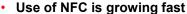
30

Outline


- RFIDs
 - » Concept and applications
 - » EPC and backend processing
 - » PHY and MAC
 - » Security
- Near Field Communication
- Battery-less devices


31

Peter A. Steenkiste, CMU


Near Field Communication (NFC)

- One device combines the functionality of an RFID reader and a tag
 - » Bit rates ranging from 106 Kbs to 424 Kbs
 - » This allows two-way communication
- Integral part of mobile devices (e.g. mobile phones)
 - » E.g., reading tickets from events from you phone
- Operates at 13.56 MHz (High frequency band) and is compatible to international standards:

- » Driven by NFC Forum (founded by Nokia, Philips, and Sony in 2004)
- » http://www.nfcworld.com/nfc-phones-list/#available

Peter A. Steenkiste, CMU

32

NFC Devices

Modes of operation

 Smart Card emulation (ISO 14443): Example: contactless payment applications Sony FeliCa, Asia MIFARE, Europe Google Wallet

32

- (c)
- » Phone can act as a contactless credit card
- » Information can be generated rather than pre-stored
- Reader mode
 - » Allows NFC devices to access data from an object with an embedded RFID tag
 - » Enables the user to initiate data services, i.e., retrieval of rich content, advertisements, ..
- Peer-to-peer (ISO 18092)
 - » Allows two way communication between NFC devices
 - » NFC can act as smart tag, i.e., generates information

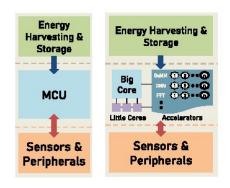
Peter A. Steenkiste, CMU

Active and Passive Communication Modes

- Passive communication: one device acts as a reader and the other as a tag
 - » Reader generates a field while the other responds
 - » The second device can be a tag or another NFC device
- Active communication: both devices alternatively act as readers
 - » Allows fairly general two way communication
 - » Both devices must have a battery
- Since NFC devices can read and write, they must check for collisions
 - » Compare received signal with transmitted signal

Peter A. Steenkiste, CMU

34

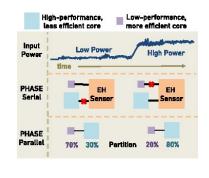

Outline

- RFIDs
 - » Concept and applications
 - » EPC and backend processing
 - » PHY and MAC
 - » Security
- Near Field Communication
- Battery-less devices

Peter A. Steenkiste, CMU

35

What is Next: Battery-less Devices


- Devices rely entirely on energy harvesting
 - » Solar, RF, ...
- Battery can store limited amount of power
 - » Can be used when harvesting is slow or not possible
- Different architectures are being explored
- Goal is to have fairly general architectures

From: A Power-Aware Heterogeneous Architecture Scaling Model for Energy-Harvesting Computers, Desai, Lucia, IEEE Computer Architecture Letters, https://iceexplore.ieee.org/document/9078058

36

36

Example Design

- Adapt level of activity to the available power
- For example, use simple but efficient cores when power levels are low
- Power hungry operations may have to wait
 - » E.g., send data

37

Peter A. Steenkiste, CMU