18-452/18-750 Wireless Networks and Applications

Lecture 3: Physical Layer Capacity and Signal Propagation

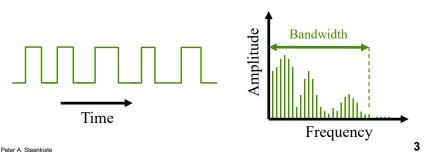
Peter Steenkiste Carnegie Mellon University

Spring 2024

http://www.cs.cmu.edu/~prs/wirelessS24/

Peter A. Steenkist

1

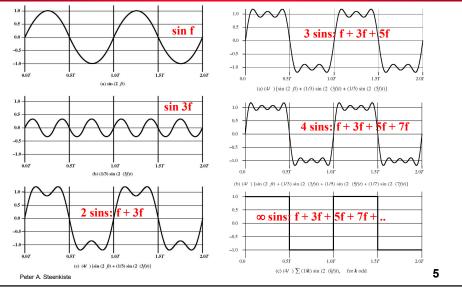

Outline

- Challenges in Wireless Networking
- RF introduction
- Modulation and multiplexing
- Channel capacity
- Antennas and signal propagation
- Modulation
- Diversity and coding
- OFDM and MIMO

Peter A. Steenkiste

From Previous Lecture: The Frequency Domain

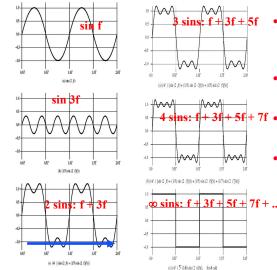
- A (periodic) signal can be viewed as a sum of sine waves of different strengths.
 - · Corresponds to energy at a certain frequency
- Every signal has an equivalent representation in the frequency domain.
 - · What frequencies are present and what is their strength (energy)
- Our focus here is on the <u>baseband</u> signal



3

Relationship between Data Rate and Spectral Bandwidth

- The larger the (spectral) bandwidth is, the higher the information-carrying capacity of the signal
- Intuition: if a signal can change faster, it can be modulated in a more detailed way and it can thus carry more more information
 - » E.g. more bits or higher fidelity music
- Extreme example: a signal that only changes once a second will not be able to carry a lot of bits or convey a very interesting movie
- · Can we make this more precise?

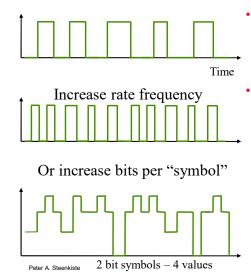

5

Some Intuition

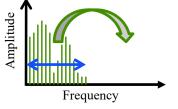
- A signal that is smooth in the time domain has narrow frequency range
 - » Sine wave → pulse at exactly one frequency
- Adding detail widens the frequency range
 - » Need to add additional frequencies to represent details
 - » Very sharp edges are especially bad (many frequencies)
- The opposite is also true
 - » A ulse (very sharp edge!) in time domain has a very wide spectrum
 - » Same is true for random noise ("noise floor")
- Implication: modulation has a big impact on how much (scarce) spectrum is used

Peter A. Steenkiste

What happens when I Double the Bandwidth?

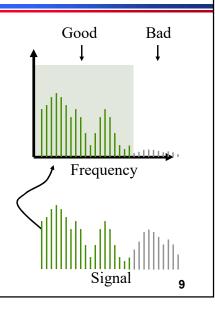

- Shown here by scaling by two along time axis
- What happens to spectrum use?
- We have to double frequencies: $f \rightarrow 2f$
- This means that we double the frequency range

7


7

Peter A. Steenkiste

Increasing the Bit Rate


- Increases the rate at which the signal changes.
 - » Proportionally increases all signals present, and thus the spectral bandwidth
- Increase the number of bits per change in the signal
 - » Adds detail to the signal, which also increases the spectral BW

Transmission Channel Considerations

- Example: grey frequencies get attenuated significantly
- For wired networks, channel limits are an inherent property of the wires
 - Different types of fiber and copper have different properties
 - Capacity also depends on the radio and modulation used
 - Improves over time, even for same wire
- For wireless networks, limits are often imposed by policy
 - Can only use certain part of the spectrum
 - · Radio uses filters to comply

Peter A. Steenkiste

9

So Why Don't we Always Send a Very High Bandwidth Signal?

- Wires only transmit signals in certain frequency ranges
 - » Stronger attenuation and distortion outside of range
- Wireless radios are only allowed to use certain parts of the spectrum
 - » The radios are optimized for that frequency band
- Attenuation and distortion makes it hard for receiver to extract the information
 - » A major challenge in wireless

10

Peter A. Steenkiste

Propagation Degrades RF Signals

- Attenuation in free space: signal gets weaker as it travels over longer distances
 - » Radio signal spreads out free space loss
 - » Refraction and absorption in the atmosphere
- Obstacles can weaken signal through absorption or reflection.
 - » Reflection redirects part of the signal's energy
- Multi-path effects: multiple copies of the signal interfere with each other at the receiver
 - » Similar to an unplanned directional antenna
- Mobility: moving the radios or other objects changes how signal copies add up
 - » Node moves ½ wavelength -> big change in signal strength

Peter A Steenkiste

11

11

Channel Capacity

- Data rate rate at which data can be communicated (bps)
 - » Channel Capacity the maximum rate at which data can be transmitted over a channel under given conditions
- Bandwidth the bandwidth of the signal as constrained by the transmitter and the nature of the transmission medium (Hertz)
 - » Confusing term network people use the term bandwidth for data rate (in Mbps)
- Noise amount of noise in the spectrum band used by the communications channel
- Error rate rate at which errors occur
 - » Error = transmit 1 and receive 0; transmit 0 and receive 1

Peter A. Steenkiste

Decibels

- Decibels: ratio between signal powers decibels (db) = 10log₁₀(P₁ / P₂)
- Term is used in many contexts:
 - » The loss of a wireless channel, gain of an amplifier, ...
 - » Useful when doing a lot of multiplication/division
- Note that dB is a relative value.
- Absolute value requires a reference point.
 - » Decibel-milliwatt power relative to 1 milliwatt (dbm)
- Some example values (WiFi):
 - » Noise floor -90 dbm
 - » Received signal strength: -70 to -65 dbm
 - » Transmit power (2.4 GHz): 20 dbm

Peter A. Steenkiste

T CICI A. OLCCINI

13

Signal-to-Noise Ratio

- Ratio of the power in a signal to the power contained in the noise that is present at a particular point in the transmission
 - » Typically measured at a receiver
- Signal-to-noise ratio (SNR, or S/N)

$$(SNR)_{dB} = 10 \log_{10} \frac{\text{signal power}}{\text{noise power}}$$

- A high SNR means a high-quality signal
- Low SNR means that it may be hard to "extract" the signal from the noise
- SNR sets upper bound on achievable data rate

The Nyquist Limit

- A noiseless channel of bandwidth B can at most transmit a <u>binary</u> signal at a capacity 2B
 - » E.g. a 3000 Hz channel can transmit data at a rate of at most 6000 bits/second
 - » Assumes binary amplitude encoding
- More aggressive encoding can increase the actual channel bandwidth
 - » More bits per symbol
- For M levels: C = 2B log, M
 - » M discrete signal levels
- Factors such as noise can reduce the capacity

Peter A. Steenkiste

15

Shannon Capacity Formula

- Equation: $C = B \log_2(1 + SNR)$
- Represents error free capacity
 - » It is possible to design a suitable signal code that will achieve error free transmission (you design the code)
- This result is based on many assumptions
 - » Formula assumes white noise (thermal noise)
 - » Impulse noise is not accounted for
 - » Various types of distortion are also not accounted for
- We can also use Shannon's theorem to calculate the noise that can be tolerated to achieve a certain data rate over a channel

Shannon Discussion

- Bandwidth B and noise N are not independent
 - » N is the noise in the signal band, so it increases with the bandwidth
- Shannon does not provide the coding that will meet the limit, but the formula is still useful
- The performance gap between Shannon and a practical system can be accounted for by a gap parameter
 - » Gap depends on error rate, coding, modulation, etc.

$$C = B \log_2(1 + SNR/\Gamma)$$

» Over time, the gap has been shrinking due to technology improvements

Peter A. Steenkiste

17

Example of Nyquist and Shannon Formulations

 Spectrum of a channel between 3 MHz and 4 MHz; SNR_{dB} = 24 dB

$$B = 4 \text{ MHz} - 3 \text{ MHz} = 1 \text{ MHz}$$

 $SNR_{dB} = 24 \text{ dB} = 10 \log_{10} (SNR)$
 $SNR = 251$

Using Shannon's formula

$$C = 10^6 \times \log_2(1 + 251) \approx 10^6 \times 8 = 8$$
Mbps

Example of Nyquist and Shannon Formulations

How many signaling levels are required using Nyquist?

$$C = 2B \log_2 M$$

$$8 \times 10^6 = 2 \times (10^6) \times \log_2 M$$

$$4 = \log_2 M$$

$$M = 16$$

 Look out for: dB versus linear values and log₂ versus log₁₀

Peter A. Steenkiste 19

19

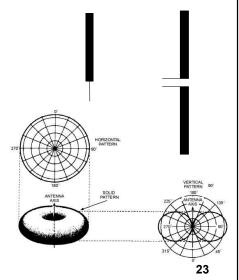
Outline

- · Challenges in Wireless Networking
- RF introduction
- Modulation and multiplexing
- Channel capacity
- Antennas and signal propagation
 - » How do antennas work
 - » Propagation properties of RF signals
 - » Modeling the channel
- Modulation
- Diversity and coding
- OFDM and MIMO

What is an Antenna?

- Conductor that carries an electrical signal and radiates an RF signal.
 - » The RF signal "is a copy of" the electrical signal in the conductor
- Also the inverse process: RF signals are "captured" by the antenna and create an electrical signal in the conductor.
 - » This signal can be interpreted (i.e. decoded)
- Efficiency of the antenna when transmitting or receiving depends on its size and orientation
 - » Transmitting: How much energy does it radiate?
 - » Receiving: How much of the energy radiated by the transmitter does it capture?

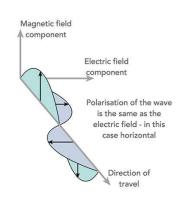
Peter A. Steenkiste 21


21

Types of Antennas

- Abstract view: antenna is a point source that radiates with the same power level in all directions – omni-directional or isotropic.
 - » In practice, the shape of the conductor creates a specific radiation pattern
 - » Note that isotropic antennas are not very efficient!!
 - Unless you have a very large number of receivers
- A common shape is a straight conductor.
 - » Creates a "disk" pattern, e.g. dipole
- Shaped antennas can be used to direct the energy in a certain direction.
 - » Well-known case: a parabolic antenna

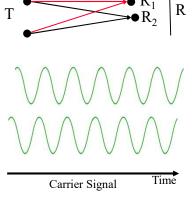
Antenna Types: Dipoles


- General rule: length of the antenna should be ~half a wavelength
 - » Length depends on the carrier frequency!
 - » Wavelength at 900MHz: ~1 foot
- Simplest antenna: half wave, quarter wave or dipole antenna
 - » Very simple and very common
 - » Quarter wavelength is replicated using a reflective surface
 - » Donut shape radiation

Peter A. Steenkiste

23

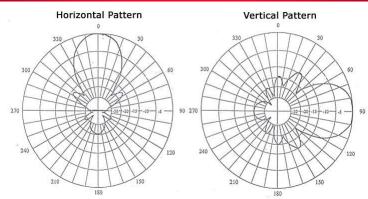
What about Antenna Orientation? Polarization?


- A "wireless" signal consists of an electric and magnetic field
 - » "electro magnetic" signal
- They can both be viewed as sine waves traveling in orthogonal planes
- The orientation of the electric field is called "polarization" of the signal
- The polarization of the signal is determined by the sending antenna
- In order for reception to be effective, the signal and receiving antenna must have the same polarization
 - » But reflections, ... can change polarization

Peter A. Steenkiste

Figure from: https://www.digikey.com/en/blog/antenna-polarization-what-it-is-and-why-it-matters

Preview: Multi-element Antennas


- Multi-element antennas have multiple, independently controlled conductors.
 - » Signal is the sum of the individual signals transmitted (or received) by each element
- Can electronically direct the RF signal by sending different versions of the signal to each element.
 - » For example, change the phase in a two-element array.
- There are many variants of multielement antennas
 - » Number of elements, relative position of the elements, control over the signals, ...

25

25

Directional Antenna Properties

- dBi: antenna gain in dB relative to an isotropic antenna with the same transmit power
 - » Example: an 8 dBi Yagi antenna has a gain of a factor of 6.3 (8 db = 10 log 6.3)

Peter A. Steenkiste

27

Summary

- The maximum capacity of a channel depends on the SINR
 - » How close you get to this maximum depends on the sophistication of the radios
 - » Distortion of the signal also plays a role next lecture
- Antennas are responsible for transmitting and receiving the EM signals
 - » The "ideal" isotropic antenna is a point source that radiates energy in a sphere
 - » Practical antennas are directional in nature, as a result of the antenna shape or the use of multi-element antennas
 - » The antenna gain is expressed in dBi

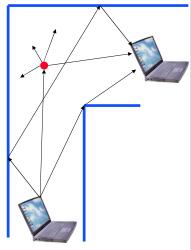
28

Outline

- Challenges in Wireless Networking
- RF introduction
- Modulation and multiplexing
- Channel capacity
- Antennas and signal propagation
 - » How do antennas work
 - » Propagation properties of RF signals
 - » Modeling the channel
- Modulation
- Diversity and coding
- OFDM

eter A. Steenkiste

29

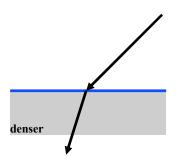

29

Propagation Modes

- Line-of-sight (LOS) propagation.
 - » Most common form of propagation
 - » Happens above ~ 30 MHz
 - » Subject to many forms of degradation (next set of slides)
- Obstacles can redirect the signal and create multiple copies that all reach the receiver
 - » Creates multi-path effects
- Refraction changes direction of the signal due to changes in density
 - » E.g., changes in air temperature, humidity, ...
 - » If the change in density is gradual, the signal bends!

Impact of Obstacles

- Besides line of sight, signal can reach receiver in three "indirect" ways.
- Reflection: signal is reflected from a large object.
 - » Large: relative to the wavelength
- Scattering: signal is scattered by an object that is small
- Diffraction: signal is scattered by the edge of a large object – "bends".

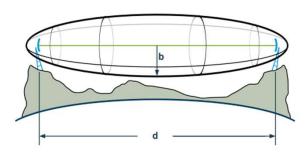


31

31

Refraction

- Speed of EM signals depends on the density of the material
 - » Vacuum: 3 x 108 m/sec
 - » Denser: slower
- Density is captured by refractive index
- Explains "bending" of signals in some environments
 - E.g. sky wave propagation: Signal "bounces" off the ionosphere back to earth – can go very long distances
 - » But also local, small scale differences in the air density, temperature, etc.



32

Peter A. Steenkiste

Fresnel Zones

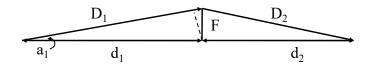
- Sequence of ellipsoids centered around the LOS path between a transmitter and receiver
- The zones identify areas in which obstacles will have different impact on the signal propagation
 - » Capture the constructive and destructive interference due to multipath caused by obstacles

Peter A. Steenkiste

33

33

Fresnel Zones


- Zones create different phase differences between paths
 - » First zone: 0-90
 - » Second zone: 90-270
 - » Third zone: 270-450
 - » Etc.
- Odd zones create constructive interference, even zones destructive
- Also want clear path in most of the first Fresnel zone, e.g. 60%
- The radius F_n of the nth Fresnel zone depends on the distances d₁ and d₂ to the transmitter and receiver and the wavelength

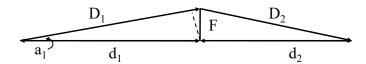
Ground Buildings Etc.

34

Sketch of Calculation: Difference in Path Length

FYI only

- Goal is to calculate F
- Difference in path length (a₁ is small)
 - » $D_1 d_1 \approx F * sin a_1$
- But for small a₁ we also have
 - $sin a_1 = tan a_1 = F / d_1$
- So $D_1 d_1 = F^2 / d_1$


Peter A. Steenkiste

35

Sketch of Calculation Fresnel Radios

FYI only

35

• Given $D_1 - d_1 = F^2 / d_1$

So, the difference in path length is:

•
$$(D_1 + D_2) - (d_1 + d_1) = \lambda * n$$

• Or
$$(D_1 - d_1) + (D_2 - d_2) = F^2 / d_1 + F^2 / d_2$$

• or
$$F_n = \sqrt{\frac{n\lambda d_1 d_2}{d_1 + d_2}}$$

Peter A. Steenkiste