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ABSTRACT
A key problem for multi-robot teams is to correctly perceive
features in their environment. When sensors of individual
robots provide incorrect information, the team should not
unnecessarily waste resources acting on the incorrect infor-
mation. In this paper we propose a novel approach to co-
operatively finding false sensor readings in domains such as
rescue response. Our approach uses three key ideas. First,
we use decision-theoretic reasoning to explicitly and contin-
uously balance the benefits and costs of acting, considering
the current estimate that a sensor reading was wrong. Sec-
ond, assumptions underlying joint actions are attached to
coordination messages, giving team mates an opportunity to
refute those assumptions, if required. This process consis-
tently reduces the communication overhead needed to detect
incorrect sensor readings. Finally, we allow robots to use
previously made sensor readings to provide arguments for or
against current assumptions allowing the team to leverage
the sensing it has already performed. Results in a simulation
environment show that the approach is efficient, lightweight
and reliable.

1. INTRODUCTION
Autonomous multi-robot systems have the potential to

dramatically improve the efficiency and safety with which
some tasks, e.g., disaster response, can be completed while
also reducing costs and risk[6, 10]. However, for some do-
mains, reliable sensing of key events in the environment is
still not possible. When a robot falsely detects something,
i.e., a false positive, and initiates coordinated action based
on that false reading, the team incurs an unnecessary cost.
On the other hand failing to detect something (false nega-
tives) can be more costly because the team fails to act. Even
when sensor readings themselves are reliable, automatically
extracting high level data from a particular set of sensor
readings can be a difficult task. An important example of
this problem is the detection of injured civilians in a disaster
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response scenario[5]. The presence of heat, dust, smoke and
noise can make robotic sensing of these civilians difficult.

Previous work on distributed Markov Decision Processes
(MDPs) and Partially Observable MDPs has been effective
at dealing with uncertain sensors in the context of coor-
dination[11]. However, their computational complexity is
extremely high, making them infeasible for all but small
teams. Other approaches to coordination of robots in dy-
namic domains have either ignored uncertainty or taken
“pre-processing” steps to remove uncertainty before coor-
dinating and then excluded uncertainty in coordination[13,
2, 14, 8, 1, 15, 3]. Some approaches centralize and com-
bine sensor readings assuming that the integrated result is
correct[2, 14]. Other approaches assume individual sensor
readings are correct until contradictory sensor readings are
made[8, 15, 3]. For our domains of interest these approaches
are unacceptably expensive or inefficient.

We propose a novel approach to this problem embody-
ing three key ideas. First, robots use decision theoretic to
continually balance the need to act against the possibility
action is based on incorrect sensor readings. As new infor-
mation is received, the robot updates its confidence in the
assumptions that led it to act. By explicitly modeling sen-
sor failure rates and having an explicit model of the costs
of acting incorrectly, the robot can perform a straightfor-
ward calculation about whether to continue to act. If later
information drops the confidence in the information below
some level, action will be halted. This approach address
the trade-off between the costs and risks of acting based on
uncertain sensors.

Second, when it sends messages to other team members
to coordinate action, the robot attaches the key beliefs that
led it to that course of action. If another robot has current
or previous sensor readings that refute or support those be-
liefs they are required to send back a message with the sen-
sor reading. The robot making the original reading can re-
asses its confidence in its beliefs and determine whether the
benefits of acting continue to exceed the risks. A Bayesian
Filter is used to combine sensor readings into a numerical
confidence value which is used by the decision-theoretic rea-
soning. Notice that there is minimal extra communication
required to implement this approach.

Finally, we allow temporally earlier sensor readings (from
other robots) to be used to improve confidence in current
readings. By explicitly modeling world dynamics (as well as
sensor failure rates) the conditional probability that a sen-
sor reading is incorrect can take into account how the world



was perceived earlier. For example, if many robots have tra-
versed a hall in a disaster response domain without sensing
any prone civilians, a single reading indicating the presence
of such a civilian should be treated with more scepticism
than if it was the only reading made. The use of these pre-
vious measurements can dramatically and cheaply decrease
the cost of false postive sensor readings.

Our results in a simulation environment show that this
approach is efficient, lightweight and reliable. The approach
finds many false positive measurements when the density of
the robots is reasonably high and the dynamics of the world
is reasonably low. Although sometimes action is stopped
errornously because team mates have incorrect readings,
an overwhelming percentage of the stopped actions were
founded on incorrect sensor readings.

2. PROBLEM
We assume a set of robots R = {r1, · · · , rs}, that can nav-

igate and acquire information from an environment, and a
set of objects O = {o1, · · · , ol} that can be detected by the
robots. An object is a general representation of an inter-
esting feature (or event) for the robots; an object can be a
human being, a device; another robot or even a fire. The
environment is represented using a regular N ×M grid, E.
In each cell, ei,j , one of the objects O may be present. We
assume that environment is dynamic, therefore objects may
change position, appear and disappear from the world.

A random variable Oe,t = {O ∪ ε} represents whether an
object is present in the cell e of the environment at time
step t; the ε value represents no object is present. The event
Ok,e,t is defined as an object appearing (k ∈ [1, l]) or not
(k = ε) in cell e at time t and has probability Pr(Oe,t =
Ok). A second random variable Zi

e,t{O ∪ ε} represents the
observation of robot i at time step t for cell e; similarly we
define the event Zi

k,e,t = Pr(Ze,t = Ok).
Robots have a model of how the environment evolves and

a model of observations. In particular robots know the tran-
sition probabilities of the environment: Pr(Ok,e,t|Ok,e,t−1)
and the probabilities of obtaining an observation from the
environment: Pr(Zi

k,e,t|Ok,e,t).
The feature level extraction process can result in two types

of error: false negatives and false positives. When an ob-
ject is perceived in a given position and it is not present we
have a false positive, while when an object is not detected
we have a false negative. The probabilities of both these
types of errors can be expressed as: Pr(Zi

k,e,t|¬Ok, e, t) and

Pr(¬Zi
k,e,t|Ok, e, t), respectively. We assume independence

between the failure rates of different robots. This assump-
tion is well suited for team of heterogeneous robots which
have different sensors, but is more reasonable for false pos-
itive readings than for false negative ones. We do not cur-
rently explicitly model movement of objects in the environ-
ment, i.e., an object is no more likely to be near where it
was previously than in any other location.

The costs and benefits of acting are modeled using de-
cision theory. The team pays a cost, CWIP , when a plan
is incorrectly instantiated (WPI) and gets a reward RCPI

when a plan is correctly initiated (CPI). Each robot, when it
detects (correctly or not) a feature that requires action can
choose from three possible coordination actions: initiate a
relevant plan (IP), ask team mates whether they can provide
useful information (ATM ) or instantiate an active percep-
tion plan (IAP). The IP action will entail messages being

exchanged with team mates to coordinate the execution of
the plan and an initial commitment of resources. The ATM
action entails a communication and processing cost for the
team and may not be successful, if other team mates do not
have related information. The IAP action is a high cost ac-
tion that initiates a joint effort to establish the validity of
the sensor reading. While the cost is high, we assume that
IAP has high gain in terms of information acquisition. The
costs for these actions are written CIP , CATM and CIAP ,
respectively.

The information gain is represented by conditioning the
probability of success of the action on the expected vol-
ume of readings resulting from the action. For example,
for IP the expected number of readings is proportional to
the number of robots coming to know about the plan and
the ratio of robots that have related information. We repre-
sent this value as ZIP and thus after performing the coor-
dination action IP the probability of CPI will be given by
P (CPI|ZIP ).

2.1 Example
A motivating example is a set of heterogeneous robots,

R = {r1, . . . , rn} tasked to search a building engulfed by
fire. O are trapped civilians and the environment is an of-
fice building. Due to smoke and heat, sensing is difficult,
thus Pr(Zi

O,e,t|OO, e, t) < 1.0 and Pr(Zi
ε,e,t|Oε, e, t) < 1.0.

When a civilian is detected a plan is initiated to either lead
the person to a safe area of the building or to direct human
fire fighters to the victim. If either civilians are not correctly
sensed or fire fighters are unnecessarily sent into the build-
ing (WPI) there is a high cost. If |R| is large then the ATM
action may be useful since other robots may have passed
the same location and used different sensor suites to draw
a different conclusion. Finally, because of the time-critical
nature of the rescue task and the advantage to spreading
out robots for search, the IAP action has high cost.

3. ALGORITHM
The key to this approach is to use input from team mates

to improve a model of the world, while continuing to act
on initial sensor readings. When a robot initiates a plan,
messages are sent to its teammates to coordinate execution.
Our approach requires that the assumptions leading to the
plan initiation are appended to these coordination messages.
When a team member receives a coordination message, it
checks whether it has recent sensor readings to refute or
support the rationale for the plan. If it does, it sends a mes-
sage containing the information for or against the assump-
tions back to the initiator of the plan. The plan initiating
robot uses this information to update its confidence in its be-
liefs and reconsider whether to continue to act. Notice that
this method for cooperatively detecting false positive sensor
readings makes minimal assumptions about the underlying
coordination algorithm.

Algorithm ObsManagement shows pseudo code for a robot.
Line 1 initialize the world state WS and the set of instan-
tiated plan set InstP lan. The WS is a representation each
agent maintains of E. Each cell of WS contains a tuple rep-
resenting the state of the cell and the last time the cell has
been updated, while InstP lan represents all the coordina-
tion plans instantiated by the agent. Whenever the robot
receives a message msg it checks whether msg is a valid ob-
servation (Line 4). An observation is valid if it is inside a



specified time window, T , which is computed by determin-
ing whether the probability that the world changed since
the time the observation was made has been received, is less
than a specified threshold V OT (Valid Observation Thresh-
old). If the observation is valid the robot updates its world
state using a Bayesian filter which also factors in the evolv-
ing world state. Next the robot determines, using a decision
theoretic approach, whether to instantiate a plan related to
the new observation (line 12), EU(a) returns the expected
utility of performing coordination action a. The expected
utility of a coordination action is based on robots knowledge
about the environment, and thus it can change as robots ac-
quire new information. If the robots decide to instantiate
a plan, it checks whether the plan has been already started
and if not it starts the plan (line 14). Using the same rea-
soning, continuing execution of an initiated plan maybe de-
termined to be a wrong decision (line 17); in this case the
plan is stopped. Alternatively, the decision can be to ask
team mates for more information about a particular part of
the environment (line 19) or whether to initiate a IAP (line
21).

ObsManagement()
(1) WS ←< ε, 0 >, InstP lan← ∅
(2) while true
(3) msg ← getMsg()
(4) if msg is ValidObs
(5) UpdateWS(msg.obs)
(6) else
(7) /*Msg is coordination Msg*/
(8) if Relevant(WS, Msg)
(9) send(obs,msg.sender)
(10) evolveWS()
(11) foreach e ∈WS
(12) if EU(IP (e)) > EU(¬IP (e))
(13) if Plan(e) 6∈ InstP lans
(14) InstantiatePlan(msg)
(15) else
(16) if Plan(e) ∈ InstP lans
(17) StopPlan(msg)
(18) else if EU(ATM(e)) > EU(¬ATM(e))
(19) DoPlan(ATM(e))
(20) else if EU(IAP (e)) > EU(¬IAP (e))
(21) if Plan(IAP (e)) 6∈ InstP lans
(22) InstantiatePlan(IAP(e))
(23) else if Plan(IAP (e)) ∈ InstP lans
(24) StopPlan(IAP(e))

Bayesian update of agents knowledge
The belief update of each agent is done using a Bayes

filter. Specifically, a filter is instantiated for each cell of E,
as indicated in equation 1.

Bel′(Oe,t) =
∑

Oe,t−1

Pr(Oet |Oe,t−1)Bel(Oe,t−1) (1)

Bel(Oe,t) = η
∏

i

Pr(Zi
e,t′ |Oe,t)Bel′(Oe,t) (2)

Since readings obtained from team mates Zi
e,t′ maybe

older than present time t′ < t, they cannot be directly in-
tegrated using the filter equation because it may refer to
a time step in the past and therefore should have influ-
enced state probabilities up to the present time. We ad-
dress this problem maintaining an history of observations
ZH = {Zi

e,t} acquired by agents along with corresponding
cell state OH = {Oe,t} and reinitializing the filter when an

old reading is obtained. When a reading referring to a past
time t′ is obtained we reinitialize the filter with a state Oe, t̄
where t̄ = Max{t | Oe,t ∈ OH ∧ t̄ < t′} and incorporate
all observation present in ZH from t̄ to the present time.
However, maintaining the history of observations and states
probabilities for all the process has a cost in term of memory
that grows with time. To limit such cost we define a valid
time window for observations T that goes from the current
time tc back to tc − T time units. The time window’s size
can be defined according to the evolution model of the envi-
ronment. In particular, assuming objects are all of one type,
then state of cell can be only present P or not present NP .
Assuming Pr(Oe,t = P |Oe,t−1 = NP ) = Pr(Oe,t = NP |Oe,t−1 =
P ) = C then we can write the state evolution as: Pr(Oe,t =
P ) = C + (1− 2C)Pr(Oe,t−1 = P ).
Let Xt = Pr(Oe,t = P ) then we have:

X0 = Pr(Oe,0 = P )

X1 = C + (1− 2C)X0

...

Xn = C + (1− 2C)Xn−1

Let 1− 2C = a We can re-write this as

Xn = (1− a)/2

n−1∑
i=0

ai + anX0

We can now find the n for which Pr(Oe,t = P |Oe,0 = P ) ≥
V OT as

Pr(Oe,t = P |Oe,0 = P ) = (1− a)/2

n−1∑
i=0

ai + an ≥ V OT

The series
∑n−1

i=0 ai is a geometric series with |a| ∈ [0, 1]
therefore from series theory we can write

V OT ≤ (1− an)/2 + an = (1 + an)/2

Thus,

n ≤ loga(2V OT − 1) ⇒ n = b(loga(2V OT − 1))c (3)

Notice that the same calculation can be done considering
Xt = Pr(Oe,t = NP ), therefore the computed n represent
the time window for which an information (e.g. presence or
absence of an object) can be considered relevant given our
assumptions on the world model.

4. EXPERIMENTS AND RESULTS
To evaluate our approach we implemented the proposed

method in a simulator that captures key features of the en-
vironment while being sufficiently abstract to test a wide
range of parameters and configurations efficiently. The sim-
ulated environment is composed of a grid world where ob-
jects appear and disappear spontaneously. The simulated
robots have limited knowledge of the overall team state and
can communicate with only a subset of the overall team.
When a robot perceives an object it instantiates a coordi-
nated plan for that feature. A task assignment algorithm[12]
is initiated to allocate tasks in that plan. The algorithm uses
tokens, representing each task, that get propagated through
the team until a robot accepts that task. To each task as-
signment token an argument for the plan instantiation is



Figure 1: Varying TTL and number of Tokens

Figure 2: Comparison among fixed observation time
window (T) and computed T according to theory,
varying world dynamics

attached, stating why the plan has been started (e.g. object
found in cell i). We model both the number of tokens sent
(equal to the number of tasks in the joint action) and the the
number of steps the token takes through the team (TTL).

To evaluate the performance of the distributed sensing
procedure we measure the percentage of stopped plans out of
the total amount of plans incorrectly instantiated (percent-
age found) and the percentage of correctly stopped plans out
of all the plans that have been stopped (percentage good).
The first metric measures how well the approach works at
finding the incorrectly started plans and the second mea-
sures how well the approach works at stopping only those
plans that should be stopped. In both cases, higher is better
and 100% is perfect. Notice, that in these experiments the
robot always initiates a plan when it detects an object, hence
there is no measure of how many plans were not started de-
spite a “false positive”.

In each experiment there were 100 simulated robots, each
with the same perception model. Specifically, the probabil-
ity of a correct positive reading was 0.5+(0.4∗exp−0.3×dist)
and for a correct negative reading 0.5 + (0.4 ∗ exp−0.2×dist),

Figure 3: Comparison among Share All and our ap-
proach, varying world dynamics

where dist is the robot’s distance from the object. Even
up close robots will made false positive readings 10% of the
time. The world changed at the rate WCR = 0.005. These
models are accurately known by each of the robots. Each
graph reports values averaged over 10 runs.

Figure 1 shows the percentage of incorrectly started plans
that are stopped and the percentage that are correctly stopped
as the number of tokens (i.e., tasks) and their TTL (i.e., how
many team members each token visited) is varied. When
varying the number of tokens, TTL is 10, when varying
TTL number of tokens is 5. The approach is able to de-
tect at least 75% of the incorrectly initiated plans and is
about 85% reliable at stopping plans correctly. Moreover,
notice that only a small number of tokens and relatively
small TTL are required to get good performance.

Figure 2 shows the results as the rate of change in the
world is varied. The Figure shows the ability to find incor-
rect plan deteriorates as the world changes more quickly be-
cause old measurements provided by the team are less useful.
However, since the filter explicitly takes into account these
dynamics, there is a less pronounced fall off in the accuracy
with which plans are stopped. Moreover, in the Figure we
compare results obtained considering all observations robots
receive with results obtained considering only observations
referring to a valid time window. The valid time window is
computed for each world change rate according to the the-
ory presented above (see section 3). Results show that the
performance of the approach using the valid time window
computation, closely match the performance of the method
using all available observations. However, using a valid ob-
servation time window, allows us to save a consistent amount
of memory and computation time, because we have to store
only a limited observation and cell state history.

To determine whether appending assumptions to coordi-
nation messages was reasonable, we compare to a benchmark
strategy, called Share All where each robot shares all its sen-
sor readings with all other robots at each step. Clearly, this
is infeasible for large teams, but it provides an upper bound
on the performance that can be achieved. Figure 3 shows
that Share All does perform better and the difference in-
creases as the world becomes more dynamic. However, for
environments that are not too dynamic, our much less com-
munication intensive approach performs almost as well using



Figure 4: Comparison among Share All and our ap-
proach, varying world size

two orders of magnitude less messages.
As the size of the environment increases, the density of

robots decreases hence providing less opportunity for sup-
porting or refuting information to be provided. Figure 4
shows performance as the size of the environment is varied
while keeping the number of robots and the sensor range
constant. As expected, performance falls away as the robot
density becomes lower.

Finally, Figure 5 shows the performance as the sensor
model is varied. The x-axis shows the probability of cor-
rect sensing when very close to the object. Unsurprisingly,
the better the sensors the easier it was to correctly overcome
a single false measurement.

Figure 5: Varying sensor model

5. RELATED WORK
Several approaches have been used to address the prob-

lem of coordination for robotic agents embedded in dynamic
environments [2, 14, 7, 4, 8, 1, 15, 9]. Some of them are ex-
plicitly focused on the problem of distributed, cooperative

sensing[2, 14] and are clearly related to this work. In par-
ticular in [2] a Bayesian framework is used to address the
problem of multi object tracking by a team of robots in the
RoboCup soccer scenario. The authors provide both a multi
object tracking algorithm based on Kalman Filter, and a
single-object tracking method performed using a combina-
tion of Kalman filter and Markov localization for outliers de-
tection. Also in [14] a Kalman filter is involved to estimate
the state of a moving object, in the same domain. Both such
approaches however, require a central unit to process data
coming from the robotic agents. With respect to these kind
of approaches our method performs the distributed sensing
procedure in a fully decentralized fashion, requiring a very
low communication overhead.

Many other approaches do not directly address the prob-
lem of noisy sensing at the coordination level, e.g., [4, 8, 1,
15, 3, 9]. Low-level routines are sometimes required to filter
out incorrect sensor readings and at the coordination level
data are considered to be reliable. In [1, 15] all tasks present
in the system are reallocated at a fixed time step, so that
transient false readings of team members negatively influ-
ence the performance of the system only for a limited time.
However such approaches require a very high communica-
tion overhead which becomes prohibitive for large teams.

6. CONCLUSIONS
In this paper we propose a novel approach to deal with

distributed noisy and unreliable perception in dynamic en-
vironments. Our approach uses a Bayesian framework to
integrate readings from different robots, and is explicitly de-
signed to operate in large scale teams. The approach enables
robots to integrate previously made sensor readings to help
refute incorrect sensing. Moreover, robots refine their world
knowledge while executing their actions; using a decision
theoretic approach robots evaluate whether the action they
are performing are worth being accomplished continuously
monitoring the world state. This work is a first important
step to explicitly consider uncertainty at the coordination
level in a tractable way, however more work is needed. Im-
portantly, some of the independence assumptions made in
this work will need to be relaxed for more realistic domain.
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