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Abstract

To perform large-scale coordination in real-world environ-
ments requires that many individually complex technologies
come together to form integrated solutions. In this paper,
we present an application where several key technologies are
integrated into a unified system via a multiagent infrastruc-
ture. We show how the synergistic behavior among heteroge-
neous technologies results in a significant improvement over
the performance of the individual technologies acting alone.
Critical extensions were required to the language describing
required behavior to allow the pieces to work together. Initial
experimental results show system performance on a task of
coordinating a military convoy in an adversarial environment
was significantly improved when all technologies worked to-
gether. However, experiments with a human user in the loop
showed that significant advances must still be made before
such systems can be fielded in the real-world.

Introduction
Autonomous coordination has rapidly progressed over re-
cent years, with significant advances in both specific al-
gorithms(Modiet al. 2003; Jeffrey Cox & Bartold 2005)
and complete approaches to coordination being successfully
demonstrated(Goodrichet al. 2001; Schurret al. 2005a).
High bandwidth, widely available, low cost communca-
tion and improvements in algorithm scalability are allow-
ing significant advances in the number of agents able to
be efficiently coordinated(Ortiz, Vincent, & Morisset 2005;
Scerriet al. 2004). Moreover, advances in artificial intel-
ligence(Nair, Tambe, & Marsella 2003) and robotics mean
that the robots and agents being coordinated are significantly
more individually intelligent than in most previous multi-
agent systems. This progress is quickly putting important,
exciting applications of multiagent technology within reach.
However, because there have been relatively few demon-
strations of large scale, highly complex multi-agent sys-
tems, it is unclear whether existing automated coordination
techniques are sufficient for these very complex systems or
whether key challenges remain.

Many exciting multi-agent and multi-robot applications
have been demonstrated in recent years. The RoboCup
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Initiative has shown some of the most dramatic progress,
both within the soccer leagues(Stone, Balch, & Kraetszch-
mar 2001) and in the disaster response league(Kitanoet al.
1999). Recently, SRI’s Centibot project demonstrated effec-
tive behavior of a very large scale robot team(Ortiz, Vincent,
& Morisset 2005). However, often these robot systems coor-
dinate relatively homogeneous robots to execute reasonably
simple plans. Other systems, including RETSINA-OOA(Gi-
ampapa & Sycara 2002) and the Electric Elves(Chalupskyet
al. 2002), have demonstrated coordination of a more hetero-
geneous set of entities to achieve complex objectives. How-
ever, in many of these systems, much of the intelligence can
be attributed to the coordination, with the individual agents
being relatively simple, e.g., web services. Some military
simulation environments involve both very complex indi-
vidual technologies and large numbers of heterogeneous en-
tities, but do not typically make extensive use of state-of-
the-art automated coordination technology(Aircraft 1995).
Thus, despite the obvious potential for automated coordi-
nation of large numbers of intelligent heterogeneous enti-
ties, there is a lack of sufficiently high fidelity systems that
can expose key remaining challenges. Moreover, in most of
these systems effective user control was not required, yet
many real-world applications cannot be deployed without
such control.

To better understand the challenges of complex coordi-
nation of intelligent entities, we have developed a simula-
tion environment, called Sanjaya, where successful perfor-
mance requires effectively dealing with these type of chal-
lenges. Sanjaya is a large scale military simulation where
many realistic issues including uncertain sensing, diverse
terrain, an intelligent adversary, large numbers of units and
complex plans, are modeled. A sophisticated terrain analysis
agent provides the team with expected locations of opposing
forces and safe paths for travel. A sensor fusion process is
available to take sensor readings from multiple sources and
reduce uncertainty when distinguishing between opponent
and civilian vehicles. Importantly, a human commander has
high level control and makes decisions to strike identified
opponents. Each of the system components is able to use
input from the other components and provide input to those
components. Intuitively, synergies should occur in Sanjaya,
since the various agents should be able to mutually provide
each other with input to improve performance. Thus, evi-



dence of synergies would both show that the coordination
was effective and provide support to Xu’s result. Our results
showed that such synergies were observed. When all of the
technologies were brought to bear friendly asset survivabil-
ity exceeded cases where subsets of, or none of the available
technologies were used.

A variety of distinctly different approaches to coordina-
tion exist, developed to meet specific goals and have specific
properties. Due to the dynamic nature of the fundamental
task of moving and protecting convoys of ground vehicles,
we choose to applyteamworkbased coordination, since it
is designed to be flexible and robust, key requirements for
this domain(Cohen & Levesque 1991). The specific proxy-
based implementation of teamwork that we use executes
user designedteam oriented plansinstantiated at runtime
from templates(Pynadathet al. 1999). While team oriented
plans have been used extensively in the past, when attempt-
ing to apply them to this domain, we encountered two key
problems, both related to the production and use of infor-
mation during coordination. First, the plans did not have
sufficient semantic content to allow the proxy to determine
where information produced during plan execution should
be directed. For example, when the terrain analysis agent
generated a least resistance path, it could not determine what
to do with the path. Second, some tasks within a plan could
not be initiated until other tasks within the plan produced in-
formation to completely specify the task, but there was no
way of specifying this. For example, a task for protecting a
convoy could not be allocated until the path of the convoy
was determined. Extensions adding additional semantics,
but not changing the declarative nature of the TOP’s were
implemented.

While automated coordination and intelligent robot and
agent technology is rapidly advancing, human intelligence
is staying constant. Several previous investigations have
shown that human interaction with intelligent distributed
systems is extremely difficult, sometimes even leading to
poorer performance than the system on its own(Schurret
al. 2005b; Kortenkamp, Schreckenghost, & Martin 2002;
Goodrichet al. 2001). A key interface design issue is how
much of the underlying intelligence to make opaque to the
user and how much to make transparent. In Sanjaya, we
took the approach that when the details of the intelligence
reasoning were not critical to the human’s reasoning, they
were made completely opaque. We performed an initial set
of user tests with some users being in control of a system
with all the intelligent agents performing and another set of
users using a less intelligent system with the same interface.
Our results showed that users actually performed relatively
better with a less intelligent system, indicating that signifi-
cant advances need to be made before users can exert effec-
tive control over very complex multiagent systems.

Problem Description
Complex military operations are an instance of a general
coordination problem that occurs in a variety of domains,
including commerce, sports and homeland defense. Issues
inherent to the coordination problem are well understood
and include task and resource allocation, communicating in

key situations, planning and dealing with failure(Cohen &
Levesque 1991; Cockburn & Jennings 1996; Kinny 1993;
Lesseret al. 1999).

In real-world domains various analysis tools or niche as-
sets can potentially be brought to bear. For example, plan-
ning and execution of a real military operation will involve
expert input on everything from terrain, to adversary tactics,
to weather, to culture and may involve thousands of differ-
ent types of physical systems including many humans in a
broad range of roles. Information links in real-world sys-
tems such as these are by necessity in constant flux in an
attempt to adapt to the uncertainty of the world. Specif-
ically, it is impossible to know a-priori which part of the
system the results of a certain analysis or a piece of infor-
mation will be relevant to. Simply sharing all information
by broadcast is not appropriate because at times irrelevant
information will overwhelm a receiver by sheer volume or
obscure the information that is relevant. Intelligent actors
in real-world systems are deluged with noisy, uncertain in-
formation and must bring their expertise to bear to analyze
this information and draw useful conclusions that facilitate
system goals. This requires an actor to reason about what in-
formation is relevant to the analysis task, which colleagues
to seek supporting information from, who to share analysis
products with, and how to rectify conflicts when they oc-
cur. Each of these problems is challenging in isolation. The
difficulty that these problems pose in the coordination of a
large scale system is evident in failures during recent efforts
to coordinate relief efforts after natural disasters. In the case
of hurricane Katrina, which recently devastated the city of
New Orleans, vehicles were available to evacuate citizens
from the disaster area but officials were not aware of their
existence. There are many similar examples in the military
and disaster response domains of the confusion that can oc-
cur when attempting to coordinate at such a large scale and
its serious consequences.

Sanjaya
Sanjaya is a constructive simulation supporting simulation
of ground, air and unmanned aerial vehicles. The scenario
being tested consists of five convoys of ground vehicles each
supported by a group of unmanned aerial vehicles (UAVs),
traveling across a 50km by 50km map defended by 20 op-
posing tanks. This is a challenging scenario for a number of
reasons.

The UAVs have a limited sensing range, and there are not
enough of them in the scenario to patrol the entire map. Ob-
viously intelligent coordination is necessary to use the UAVs
efficiently. When an opponent has been found the UAVs
may be used to attack the oppoent, but in doing so the UAV
destroys itself. As we have a limited number of UAVs in the
scenario, each UAV used to attack further reduces our ability
to sense, and to destroy any further opponents found.

Sanjaya simulates an uncertain sensing environment.
Sensor readings return a list of possible classifications of
sensed objects, with a probability associated with each clas-
sification. In the scenario being simulated, sixty trucks, rep-
resenting civilian noncombatants, are placed on the map and
may be confused with enemy forces. UAVs, are a limited



resource and must be conserved to attack those entities that
we are reasonably certain are actual opposing forces. This
means that we must have a reasonably high confidence clas-
sification of a sensed entity as a military, non civilian entity
before we issue a command to attack it.

Unlike other currently available simulation environments,
Sanjaya simulates the kind of uncertainty and confusion that
can occur in large scale coordination in real-world environ-
ments. We find this type of simulator necessary to study
the challenges that large scale real-world coordination poses.
Furthermore, this type of simulator is necessary to determine
potential synergies that can occur while coordinating com-
plex entities and technologies.

Figure 1: The system architecture. The Machinetta proxies
provide the general purpose coordination infrastructure that
connects the assets in the environment, the Commander and
the terrain analysis agent.

Proxy based Integration
Coordination via teamwork has been shown to be applicable
to a variety of interesting domains. Because of the reusabil-
ity of teamwork, software modules encapsulating the key
algorithms have been developed for reuse across domains.
The proxiesas they are commonly known, have become a
standard mechanism for building heterogeneous teams(Jen-
nings 1995; Tambeet al. 1999; Pynadath & Tambe 2002;
Scerri et al. 2003). Each team member works closely
with a single proxy that coordinates with the other proxies
to implement the teamwork. Specifically, proxies manage
team plans, which includes task allocation and reallocation,
and coordinate information sharing. In addition, when the
team-member the proxy represents is a human, proxies are
equipped to reason about when to act autonomously, and
when to defer to the team-member. The overall architec-
ture is shown in Figure 1. The proxy communicates via a
high level, domain specific protocol with the robot, agent or
person it is representing in the team. This interface can vary
in complexity from a simple communication layer when the
RAP is a UAV to a complex Graphical User Interface that
intelligently filters incoming information and interpretsthe
user’s intent when the RAP is a human Commander. Most
of the proxy code is domain independent and can be readily
used in a variety of domains requiring distributed control.

Team Oriented Plans

Team Oriented Plans (TOPs) are the abstraction that de-
fine required team behavior for proxies(Pynadath & Tambe
2002). The TOPs provide the mapping from team level goals
to individual roles that are performed by individual team
members. Roles are lowest level of abstraction in a team
plan and are goals, activities or responsibilities that will
most often be performed by a single team member. The TOP
may describe various constraints between roles, including
temporal constraints or AND constraints, which mean the
plan should not proceed unless all roles are currently filled.
Importantly, while TOPs describe the breakdown of team
activities into individual roles, they do not describe whatco-
ordination is required to execute the plan. A TOP does not
describe which team member will perform which role or ex-
actly how the role should be performed. Role allocation is
handled by the proxies. At any one time, the team may be
simultaneously executing many team plans with allocation
and reallocation of team members to tasks within the plans
determined autonomously by the proxies.

Information Requirements and TOPs When we at-
tempted to design TOPs to coordinate the individually very
complex entities, two short-comings were revealed. First,
there are insufficient semantics encapsulated in a TOP for a
proxy to determine what information should be communi-
cated to which other team mate. Particularly in the case of
team members that might perform analysis for any member
of the team, information must be added to the TOP to tell the
analyst agent’s proxy whom to send its analysis to. Second,
some roles cannot be initiated or allocated until other team
members have produced information as a part of their roles.
For example, UAVs cannot be allocated to protect vulnera-
ble locations on a convoy’s path before a safe path has been
computed and the vulnerable locations identified, but deter-
mining the safe path and identifying vulnerable locations is
also part of the plan. Two separate extensions were made
to the TOP specification language, with care taken to adhere
to the basic principle that a TOP should provide a declara-
tive specification of what should be done and the proxies be
given the maximum latitude possible to execute it.

The first extension added to the TOP specifica-
tion language was an optional parameter on each role
called aDirected Information Requirement(DIR). The pur-
pose of this addition was to give the proxies guid-
ance in how to share specific types of information.
These requirements each have the formSend(X) →
[SpecificProxy|ProxyPerformingRole], where X is
either a generic type of information or a specific piece of
information. If a specific proxy is given on the right hand
side of the requirement, information will be sent to that par-
ticular proxy. This form is used, for example, to require
that while performing a particular role the agent keep the
commander informed of certain events. On the other hand,
if the ProxyPerformingRole version is used, the proxy
will route the information to the agent/proxy performing the
specified role. This form of Directed Information Require-
ment is used, for example, to inform an agent performing a
role that its team mate will require a particular type of infor-



mation. The Directed Information Requirements are a pow-
erful tool for specifying how information should be shared
and were extensively used (see below.)

The second extension made to the TOP specification lan-
guage for use on this application was to add an additional
type of constraint on role execution.Data Constraintsspec-
ify that a role should not be instantiated until a certain piece
of data becomes available. These Data Constraints work like
any other constraint on role execution and, thus, fit easily
into the TOP framework. It is important to distinguish Data
Constraints from simpler message passing or other fixed
protocols. At the time the TOP is designed the agent pro-
ducing the data for the Data Constraint and the agent that
will be constrained are not known, these will be allocated
at runtime. In fact, even when the data producing agent is
producing the information, the eventual destination of that
information will not be known because the role will not have
been instantiated and thus, not allocated.

Figure 2: Team Oriented Plans for escorting convoys. The
plan on the right is the Strike Plan which directs a UAV to
prosecute a target. The plan on the left is theConvoy Plan
which directs and protects a convoy of ground vehicles along
a path of least resistance to its destination.

Figure 2 shows the two TOPs currently used in the sys-
tem. In the diagram proxies are represented as rectangles
with rounded edges, plan operators with rectangles and roles
as circles. Dashed arrows represent generalDIRs, thin solid
arrows represent specificDIRs, and thick solid arrows rep-
resentData Constraints. The plan on the right is the Strike
Plan which directs a UAV to prosecute a target. This plan
has only a single role, the Strike role. The plan on the left is
theConvoy Plan. TheConvoy Plancoordinates a group of
vehicles to drive between the extreme East and West ends of
the map, an expert Terrain Analysis agent to identify safe
routes for the convoys and potential ambush spots along
these routes, and a group of UAVs to scout the potential am-

bush spots. This plan has 12 roles. The first two, thefind
EAsrole and thefind Pathrole require finding potential am-
bush points and safe travel paths respectively. The next five
roles arePatrol roles that can be filled by any UAV. The last
five roles areDrive roles that are filled by Hummer convoys.

There is a specificDirected Information Requirementbe-
tween theDrive andPatrol roles and the Commander proxy.
The purpose of this DIR is to ensure that the friendly asset
proxies relay any potential Tank sightings to the Commander
proxy. This allows the fusion to be performed. The general
DIR between thefind EAsrole and thePatrol role is neces-
sary to allow the TAA to refine the UAVs search area before
the UAVs begin to search. The general DIR between thefind
Path role and theDrive roles give the TAA the opportunity
to calculate safe travel routes for the Hummer convoys.

Algorithms
In this section, we briefly describe the main components
that work together to make the integrated system. Figure
1 shows the overall system architecture. The Machinetta
proxies provide the general purpose coordination infrastruc-
ture that connects the assets in the environment, the com-
mander and the terrain analysis agent. Control agents con-
nected to the assets encapsulate their local intelligence and
communicate via a high level interface to their own proxy.
The terrain analysis agent is a separate agent with its own
proxy that provides information about likely engagement ar-
eas and safest paths when a convoy of Humvees needs to
move. The Commander interface is connected to its own
proxy and only gets information when the proxies of the as-
sets or terrain analysis agent explicitly provide it. Sincethe
Commander receives updates from all the proxies, the infor-
mation fusion process takes place there and its results are
immediately made available to the Commander (as well as
the team). In the following, we briefly describe the key fea-
tures of each of the components, focussing on the aspects
that were adapted for the overall intergration.

Terrain Analysis Agent
Human intelligence analysts combine heterogeneous
sources of information throughout the course of a military
operation to interpret and predict adversarial actions. One of
the most important of these fusion products is information
about the terrain encompassed by the area of operations.
Consequently, we have developed a terrain analysis agent
(TAA) to act as a member of the team and provide a tactical
analysis of the map to the rest of the team. The TAA
models the terrain using a network of electrical resistors
and uses current flow through the network to infer tactical
characteristics of the terrain. The TAA takes two categories
of input. The first input category includes low-level terrain
information such as soiltype, vegetation, and elevation.
The second category includes sensor reports providing
information about the placement of enemy obstacles and
weapon systems. In the current system configuration only
the first category of input is used.

Two key outputs from terrain analysis are likely ambush
areas calledEngagement Areasand low resistance paths.



This information facilitates the execution of many of the
other team-member’s tasks. The TAA’s output allows UAVs
to refine their search areas and convoys to find safe travel
routes. Perhaps most importantly, the TAA’s assesment of
Engagement Areas is fused with target identifications from
Patrolling UAVs to increase confidence in these assesments
before they are presented to the Commander. This reduces
the burden on the Commander while critical target prosecu-
tion decisions are made.

The TAA is a full member of the team and has its own
proxy which coordinates with the proxies of the other team-
members when managing theConvoy Plan. The TAA is ca-
pable of thefind Pathand find EAs role in this plan and
can produce a list of potential ambush points and safe travel
routes for the convoys in under a minute. In user experi-
ments a similar analysis by a human took 45 minutes.

Information Fusion

A distributed system acting in a complex environment must
formulate actions based on large amounts of uncertain data
arriving asynchronosly from multiple sources. In domains
such as the military where high certainty is a prerequisite
for action, it is necessary to fuse data to increase confidence
levels beyond that which results from individual agent asses-
ments. Data fusion techniques seek to fuse them together to
provide increased confidences for each target. Sensor data
fusion could happen from raw data level, e.g., images, to
the decision level. In this paper we consider decision level
fusion, where the sensor output for each target is a list of
candidate target types (e.g., M1 tank, T80 Tank, etc.) with
different confidence levels. Figure 3 describes two lists of
candidate target types with different confidence levels from
two SAR sensors for aT 80 tank on the ground. The figure
also gives the fused confidence levels for each candidate tar-
get type based on Dempster-Shafer theory. For more detail
see (Yuet al. 2005).

Terrain Context for Sensor Fusion

Sensor fusion tasks attempt to raise the confidence levels
in low level fusion assessments by combining results from
multiple sensors. Terrain analysis products can be a power-
ful context for such a task. If a tactical analysis of terrainis
done properly then the identification of a tactically signifi-
cant area should lend credence to a sensor identification of
an enemy unit in the vicinity. In the same way one might
want to decrease the confidence in the identification of an
enemy unit in a region not deemed tactically significant. Our
model is designed so that the degree of current flow through
a grid cell indicates tactical significance. If we normalize
current flow across the grid to lie in the range (0,1) then cur-
rent flow can be used directly as a multiplier for confidence
levels in a sensor fusion system to indicate evidence due to
terrain. Formally, letV = {v1, v2, . . . , vn} be the set of
possible vehicle types andc(vi) be the confidence level of
vi, wherevi, 1 ≤ i ≤ n, is the possible type of vehicles a
SAR sensor can recognize. If a targetu is detected in a grid
cell with the degree of current flow s, we can adjust the con-
fidence level for each vehicle type as follows if the vehicle

type with maximal confidence levelvi is a tank, e.g., T80
and M1 tanks.

∀vi ∈ V, c(vi) = c(vi) ∗ (s + 0.5)

Moreover, we need to normalize the confidence levels for
targetu to

∑
vi∈V

c(vi) + c(clutter) = 1.

Commander Interface
In some of the most advanced “autonomous” systems for
space and the military, large teams of humans are required
to oversee the “autonomous” activity. Thus, it is reasonable
to expect that effective commander control in Sanjaya would
be a very difficult problem.

The human commander is a member of the team repre-
sented by a proxy. The proxy handles the coordination for
the teamwork but a domain specific interface is required
between the commander and his proxy to ensure that the
proxy represents the commanders intentions effectively dur-
ing coordination of team activities. This interface comes in
the form of a graphical user interface with facilities for the
commander to instantiate team plans and to receive filtered
information from other team-members. It is important to
note that like any other team-member the commander pro-
vides information but does not dictate who should receive
it. The proxies determine the flow of information between
team-members.

The following is a description of some of the facilities
provided to the commander by the interface and how they
convey the commander’s intent to the system.

At the start of the scenario, the commander issues orders
to move across the map. In response to this the Machinetta
coordination code generates a Team Oriented Plan and co-
ordinates choosing which team members fill which roles in
the plan. This coordination occurs without the comman-
der’s participation, being executed by his proxy and the other
proxies representing members of the team.

The commander can select enemy units displayed on the
map and examine their classifications, and confidence lev-
els. These potential targets and their confidences are a result
of the fusion of multiple UAV sightings with terrain analy-
sis information. An interactive confidence level filter allows
the commander to dynamically inform the team of the level
of certainty of identifications the commander wishes before
being alerted of a potential target. Based on these classi-
fications the commander can then place ’strike’ icons over
enemy units, causing a team oriented plan to be created to
attack that target, the proxies then coordinate plan execution.

Experiments
The scenario we tested on has the Blue Force with 25 ground
vehicles, and 25 UAVs opposed by 20 tanks. The scenario
also includes 60 civilian trucks, that are not on either side.
All units are placed on the same 50 kilometer by 50 kilo-
meter map. The scenario calls for five convoys, of 5 ground
vehicles each, travel from starting positions on one side of
the map to destinations on the other side. Each convoy is
supported by a group of either 5 UAVs. 20 Opposing Force
tanks are placed on the map to defend the area. The 60 civil-
ian trucks are placed on the map to provide confusion and
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Figure 3: A low resolution sensorSAR1 (a) and a high resolution sensorSAR2 (b) return a list of candidate target types with
different confidence levels for a ground targetT 80 tank. The right table shows the fused confidence levels for each candidate
target type.

make the task of locating Opposing Force units more diffi-
cult.

Twenty sets of dispositions for all 20 Opposing Force
tanks each, were generated and saved to a file. Each of these
sets of dispositions were then reused for all of the simulation
runs. Tanks were placed so they were more likely to be in
locations predicted by the terrain analysis. This was not in-
tended to make the terrain analysis perform well, instead the
terrain analysis was simply saying where the best locations
to be were. For each separate run of the simulation, each
of the 60 civilian trucks are randomly placed. Trucks then
move about randomly within a 5 kilometer by 5 kilometer
box centered on their starting position.

The Commander Interface was provided with a simple
’auto strike’ feature that creates an attack plan (only UAVs
are capable of filling attack roles) when an Opposing Force
tank was identified with a confidence of 0.6 or higher. When
the intelligent information fusion is not being used, the
Commander Interface instead simply used the most recent
sensor reading. When terrain analysis was not used to pro-
vide paths for the convoy and patrol locations for UAVS,
a straight line from start to destination was used as the path
and the UAVs were tasked to randomly patrol the entire map.

Figure 4 shows the number of surviving ground vehicles
for configurations which did not use the Terrain Analysis
agent for planning safe travel routes and identifying poten-
tial ambush points. These configurations were fully auto-
mated and did not use a human commander. The Y axis
gives the number of surviving ground vehicles. The bars on
the X axis represent different system configuration groups.
The first bar represents the average number of survivors for
trials where no sensor fusion features are used to increase
confidence of sensor readings. The second bar shows the av-
erage number of survivors for trials where output from the
Terrain Analysis agent was used to adjust confidence levels
during sensor fusion. The third bar shows the survivor av-
erage for trials where Dempster-Shafer theory was used to
perform sensor fusion on multiple sensor readings. And the
fourth bar shows the survivor average where both Dempster-
Shafer and Terrain Analysis output were used to adjust con-
fidence levels during sensor fusion.

Figure 5 shows the number of surviving ground vehicles
for configurations which did use the Terrain Analysis agent
for planning safe travel routes and identifying potential am-

Figure 4: Surviving ground vehicles for trials without Ter-
rain Analysis for safe travel routes and identifying ambush
points.

bush points. These configurations were fully automated and
did not use a human commander. The Y axis gives the num-
ber of surviving ground vehicles. The bars on the X axis rep-
resent different system configuration groups. The first bar
represents the average number of survivors for trials where
no sensor fusion features are used to increase confidence of
sensor readings. The second bar shows the average number
of survivors for trials where output from the Terrain Analy-
sis agent was used to adjust confidence levels during sen-
sor fusion. The third bar shows the survivor average for
trials where Dempster-Shafer theory was used to perform
sensor fusion on multiple sensor readings. And the fourth
bar shows the survivor average where both Dempster-Shafer
and Terrain Analysis output were used to adjust confidence
levels during sensor fusion.

Figure 6 shows the number of surviving ground vehicles
for human commanders, for configurations which used the
Terrain Analysis agent as well as those that didn’t. The Y
axis gives the number of surviving ground vehicles. The two
bars represent the two sets of live trials which were run. In
the first live trial group, none of the features of sensor fusion
or terrain analysis were available to the commanders. In the
second group, all of the sensor fusion and terrain analysis
features were made available.

Figure 7 shows the number of messages exchanged be-
tween Proxies for configurations which did not use the Ter-
rain Analysis agent for planning safe travel routes and iden-
tifying potential ambush points. The Y axis gives the av-



Figure 5: Surviving ground vehicles for trials with Ter-
rain Analysis for safe travel routes and identifying ambush
points.

Figure 6: Surviving ground vehicles for human commander
trials

erage number of messages exchanged. The bars on the X
axis represent different system configuration groups. The
first bar shows the average number of Proxy messages ex-
changed for trials where no sensor fusion features are used
to increase confidence of sensor readings. The second bar
shows the average number of Proxy messages exchanged for
trials where output from the Terrain Analysis agent was used
to adjust confidence levels during sensor fusion. The third
bar shows the average number of Proxy messages for tri-
als where Dempster-Shafer theory was used to perform sen-
sor fusion on multiple sensor readings. And the fourth bar
shows the average number of Proxy messages exchanged
where both Dempster-Shafer and Terrain Analysis output
were used to adjust confidence levels during sensor fusion.

Figure 7: Messages exchanged between Proxies for trials
without Terrain Analysis for safe travel routes and identify-
ing ambush points.

Figure 8 shows the number of messages exchanged be-

tween Proxies for configurations which did use the Terrain
Analysis agent for planning safe travel routes and identify-
ing potential ambush points. The Y axis gives the average
number of messages exchanged. The bars on the X axis rep-
resent different system configuration groups. The first bar
shows the average number of Proxy messages exchanged
for trials where no sensor fusion features are used to in-
crease confidence of sensor readings. The second bar shows
the average number of Proxy messages exchanged for tri-
als where output from the Terrain Analysis agent was used
to adjust confidence levels during sensor fusion. The third
bar shows the average number of Proxy messages for tri-
als where Dempster-Shafer theory was used to perform sen-
sor fusion on multiple sensor readings. And the fourth bar
shows the average number of Proxy messages exchanged
where both Dempster-Shafer and Terrain Analysis output
were used to adjust confidence levels during sensor fusion.

Figure 8: Messages exchanged between Proxies for trials
with Terrain Analysis for safe travel routes and identifying
ambush points.

Figure 9 shows the number of messages exchanged be-
tween Proxies for human commanders, for configurations
which used the Terrain Analysis agent as well as those that
didn’t. The Y axis gives the average number of messages
exchanged. The two bars represent the two sets of live tri-
als which were run. In the first live trial group, none of the
features of sensor fusion or terrain analysis were available
to the commanders. In the second group, all of the sensor
fusion and terrain analysis features were made available.

Figure 9: Messages exchanged between Proxies for human
commander trials

Analysis For the survival of ground vehicles metric there
is an obvious pattern reflected in both sets of bar graphs rep-
resenting trials without a human commander. Trials that



used only Dempster-Shafer for sensor fusion clearly per-
formed best in both cases. Configurations where no sen-
sor fusion was used came in a close second in the trials that
did not use the Terrain Analysis agent for paths and ambush
points. However, in those trials that did use the Terrain Anal-
ysis agent for paths and ambush points, the configuration
with no sensor fusion performed much poorer. Trials using
both Dempster-Shafer and Terrain Analysis output to adjust
confidence levels performed almost as well as those using
only the Terrain Analysis output, but both were worse than
using no sensor fusion at all. Notice, that when all technolo-
gies were used a high number of ground vehicles survived,
although relatively few UAVs were required to hit targets.
This indicates that the technologies were effectively brought
together.

Related Work

Multiagent coordination is an extensively studied area of
multiagent systems. However, some of them, including dis-
tributed constraint-based algorithms(Mailler & Lesser 2004;
Modi et al. 2003), combinatorial auctions(Hunsberger &
Grosz 2000) do not scale well to very large teams. Re-
cent work on scalable coordination illustrates that expo-
nential search spaces, excessive communication demands,
localized views, and incomplete information pose major
problems for large scale systems. Initial work on token-
based approaches promises a way to address these chal-
lenges(Paul Scerri & Mailler 2004). Large scale coordi-
nation in the GPGP/TAEMS framework was demonstrated
using a token-based algorithm(Wagner, Guralnik, & Phelps
2003). Ortiz et al. study distributed task management in
robotic systems(Ortiz, Vincent, & Morisset 2005). However,
most of the existing approaches study team coordination as
a separate problem and do not consider the uncertainty of
sensor data and environments and their effects on task allo-
cation.

Conclusions

In this paper we presented a teamwork based approach to
intergrated complex technologies into a flexible, cohesive
intergrated system. Results in a complex military simula-
tion environment illustrated that the infrastructure was able
to produce synergies between the individual technologies.
However, individual technologies did not always improve
overall performance. Importantly for the future deployment
of complex multiagent systems, initial user testing showed
that users were not able to take full advantage of available
technology and often made system performance worse.

This work has exposed more problems to solve than it has
solved. Clearly, there are key issues in giving a human effec-
tive control, but a range of other issues must be addressed as
well. Specifically, we believe a key issue is to develop more
sophisticated TOP languages to allow specification of the
types of complex behavior we require of the systems. More
practical issues, such as development environments and de-
buggers will also be critical for future progress.
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