
Parameter Estimation for a Simple Hierarchical
Generative Model for XML Retrieval

Paul Ogilvie and Jamie Callan

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

pto@lti.cs.cmu.edu, callan@lti.cs.cmu.edu

Abstract. This paper explores the possibility of using a modified Ex-
pectation-Maximization algorithm to estimate parameters for a simple
hierarchical generative model for XML retrieval. The generative model
for an XML element is estimated by linearly interpolating statistical lan-
guage models estimated from the text of the element, the parent element,
the document element, and its children elements. We heuristically mod-
ify EM to allow the incorporation of negative examples, then attempt
to maximize the likelihood of the relevant components while minimizing
the likelihood of non-relevant components found in training data. The
technique for incorporation of negative examples provide an effective al-
gorithm to estimate the parameters in the linear combination mentioned.
Some experiments are presented on the CO.Thorough task that support
these claims.

1 Introduction

In previous work [1][2][3], we proposed using hierarchical language models for
ranking XML document components for retrieval. However, we left the problem
of estimating parameters as future work. In this work, we present a parameter
estimation method for a simplified version of the hierarchical language models.

In this work we construct a language model for each element in the document.
We linearly interpolate the parent’s unsmoothed language model, each child’s
unsmoothed language model, the document’s unsmoothed language model, and
the collection language model. This simplification allows us to formulate the
parameter estimation problem simply so that we can apply the Generalized
Expectation Maximization algorithm [4].

However, we observed that this approach places the most weight on the doc-
ument language model, which results in very poor retrieval performance. We
heuristically modify the likelihood we wish to maximize by including negative
examples. These negative examples are non-relevant elements that come from
documents that contain relevant elements. While our inclusion of negative ex-
amples ad-hoc, we have found it to work well in practice.

The next section describes the model in detail, and Section 3 presents the
Generalized Expectation Maximization (GEM) algorithm for the model. Sec-

tion 4 presents our adaptation of the GEM algorithm to include negative ex-
amples. We present experimental methodology and describe our system in Sec-
tion 5. Section 6 contains our experiments with using the GEM algorithm on
CO.Thorough task, and conclusions and discussion is contained in Section 7.

2 Model

We rank elements by estimating the probability that the language model esti-
mated for the element generated the query. We use simple unigram language
models, which are multinomial probability distributions over words in the vo-
cabulary. That is, a language model µ specifies P (w |µ). Document elements
are then ordered by P (Q |µe) =

∏|Q|
i=1 P (qi |µe) where µe is the language model

estimated for a particular element e.
In order to estimate the language model µe, we note that we would like to

incorporate evidence from the document, its parent, and its children. With that
in mind, we estimate µe as a linear combination of several language models1 :

P (w |µe) = λP P
(
w

∣∣θP (e)

)
+λDP

(
w

∣∣θd(e)

)
+λCP (w |θC)
+λO

|s(e)|
|s(e)|+

∑
j′∈c(i)

αt(j′)|j
′|
P

(
w

∣∣λs(e)

)
+λO

∑
j∈c(e)

αt(j′)|j|

|s(e)|+
∑

j′∈c(i)
αt(j′)|j

′|
P (w |λj)

(3)

where θx refers to a language model estimated for x, P (x) refers to the parent
of x, d (x) refers to the document containing x, s (x) refers to the element x

1 Unfortunately, due to a bug in our system we did not rank elements by P (Q |µe).
In our official submissions, we ranked by

P
(
Q

∣∣θ′P (e)

)λP × P
(
Q

∣∣θ′d(e)

)λD

×P
(
Q

∣∣θ′s(e))λO
|s(i)|

|s(i)|+
∑

j′∈c(i)
α

t(j′)|j
′|

×
∏

j∈c(e)
P

(
Q

∣∣θ′j)λO

∑
j∈c(e)

α
t(j′)|j|

|s(e)|+
∑

j′∈c(i)
α

t(j′)|j
′|

(1)

where

P
(
w

∣∣θ′x)
= (1− λC)P (w |θx) + λCP (w |θC) (2)

This model does allow relative weighting of the different structural elements of mes-
sages in the thread. However, it does not have the intended effect of combining
evidence at the word level; it only combines query level evidence. This model corre-
sponds to the linear weighted combination of log probabilities, which we investigated
in [5]. We will refer to ranking by P (Q |θe) as the mixture method and Equation 1
as the post query combination approach.

Rather than discuss our official submissions in Section 6, we will present experi-
ments using the corrected P (Q |θe).

(self), c (x) returns a list containing the children of x, t (x) refers to the element
type of the element x (such as bdy or sec), and C refers to the entire collection.
We choose to set the λ parameters in the interpolation to be constant across
all elements in the collection to reduce the number of parameters we must es-
timate. The α parameters allow us to provide additional weight to the children
of elements, where the weight is dependent on the type of the child element.
Note that we also multiply alpha by the length of the element, which results in
an assumption that the extra value of a child element is dependent on both the
type and length of the child.

In this work, we will take θx to be the Maximum Likelihood Estimate from
the text contained in x, which is given by:

P (w |θx) =
count of w in text of x

length in words of text of x
(4)

Note that this is different than our previous work. In our previous work, we
excluded the text of the child’s elements when performing hierarchical smooth-
ing. In this model we include that text. This allows a more clear and consistent
parameter estimation scheme. The αt parameters represent the additional value
of a word in elements of type t. Additionally, we do not recursively smooth the
elements. This is a limiting factor in current work that simplifies the parameter
estimation process.

We also apply a linear length prior [6] to our rankings. That is, we multiply
P (Q |θe) by length (e) to obtain the retrieval status values used in our rankings.

3 Parameter Estimation Using EM

This section describes how we estimate parameters for ranking results by P (Q |θe).
Suppose there are M language models in the collection, which we will denote

θ1, θ2, . . . , θM .

Suppose that we are given some queries and rankable elements that are relevant
to these queries. We will treat words in these queries as observations of sampled
terms drawn from the relevant elements:

x = (x1, x2, . . . , xN) ,

where we denote the relevant elements as

µ1, µ2, . . . , µN .

Note that there may be repeated query terms and elements in these lists; this is
not an issue in the estimation process.

Let us now assume that the µ elements are linear interpolations of the ele-
ments, giving:

P (x |µi) =
M∑

j=1

λijP (x |θj) . (5)

This results in a model where we do not know the Λ = (λ11, . . . , λNM) parame-
ters.

We would like to maximize the probability of P (x |µ). In order to reduce the
number of parameters we must estimate in this model, we will assume that each
µi is estimated from using a small number of elements we will call the family
of i. In relation to the model presented before, the family of i will be child
elements, the collection element, its parent element, its document element and
the element itself:

family (i) =
(
θ1, θdocument(i), θparent(i), θself(i)

)
∪k∈children(i) (θk)

or using the first letter as an abbreviation for the document, parent, self and
children functions:

family (i) =
(
θ1, θd(i), θp(i), θs(i)

)
∪k∈c(i) (θk) . (6)

where θ1 is the special collection model used for smoothing. As a reminder, θ1

is estimated using the maximum likelihood estimate using the entire text of the
document collection. Given the family of element i, we can rewrite Equation 5
as

P (x |µi) =
∑

j∈f(i)

λijP (x |θj) , (7)

greatly reducing the number of parameters we must estimate. Note that we also
place the constraints

λij ≥ 0,
∑

j∈f(i)

λij = 1 (8)

upon the Λ parameters.

However, there are still many cases where we must estimate λ parameters
for texts and we have no training data, as the x vector is very small in com-
parison to the total number of rankable texts in the corpus. We must make
further assumptions to reduce the parameter space. Given our understanding
of the XML retrieval domain, we will assume constant parameters across all
models for the combination with the collection, document and parent elements.
For the children elements, we will assume that the weight placed should be a
simple function of the t = type of the child element and its length. Under these

assumptions:

λij =



λC if j = 1,

λD if j = d (i) ,

λP if j = p (i) ,

λO
|j|

|s(i)|+
∑

j′c(i)
αt(j′)|j

′|
if j = s (i) ,

λO
e

βt(j) |j|
|s(i)|+

∑
j′c(i)

αt(j′)|j
′|

if j ∈ c (i) ,

0 otherwise.

(9)

where the type function returns a value in (1, 2, . . . , T). This now greatly re-
duces the number of parameters we must estimate to T + 4. In addition to the
constraints in Equation 8, we place this additional constraint:

λC + λD + λP + λO = 1 (10)

Given Equation 9, we can rewrite Equation 7 using the parameters we must
estimate:

P (x |µi) = λCP (x |θ1) + λDP
(
x

∣∣θd(i)

)
+ λP P

(
x

∣∣θp(i)

)

+λO


|i|

|i|+
∑

j∈c(i)
αt(j)|j|

P
(
x

∣∣θs(i)

)
+

∑
j∈c(i)

αt(j)|j|
|i|+

∑
j∈c(i)

αt(j)|j|
P (x |θj)

 (11)

We would like to maximize the likelihood of the observed data, which is

L (Λ |X) = P (x |µ) =
N∏

i=1

P (xi |µi) =
N∏

i=1

M∑
j=1

λijP (xi |θj) (12)

Unfortunately, the summation within the product makes it difficult to differen-
tiate, so we must use an alternative approach to maximizing the likelihood. We
choose to use the Expectation-Maximization method to optimizing the likeli-
hood. Given our formulation of the problem, we can derive the following update

rules for our Λ and αk parameter estimates:

λ
[t]
C = 1

N

∑N
i=1 P

(
y = 1

∣∣xi, Λ
[t−1]

)
λ

[t]
D = 1

N

∑N
i=1 P

(
y = d (i)

∣∣xi, Λ
[t−1]

)
λ

[t]
P = 1

N

∑N
i=1 P

(
y = p (i)

∣∣xi, Λ
[t−1]

)
λ

[t]
O = 1

N

∑N
i=1

∑
j∈(s(i))∪c(i) P

(
y = j

∣∣xi, Λ
[t−1]

)
α

[t]
k = log

(
α

[t−1]
k

)
−

∂

∂ log(αk)
Q(Λ,Λg)

αk=α
[t−1]
k

∂2

∂ log(α2
k)

Q(Λ,Λg)
αk=α

[t−1]
k

(13)

where

∂
∂αk

Q (Λ, Λg)αk=αg
k

= αg
k

∑
i:j∈c(i),t(j)=k

−aikfik+
bikhik

α
g
k

bik+αg
k
aik

∂2

∂α2
k

Q (Λ, Λg)αk=αg
k

= αg
k


∂

∂αk
Q (Λ, Λg)αk=αg

k
+

αg
k

∑
i:j∈c(i),t(j)=k

a2
ikfik−

b2
ik

hik

α
g2
k

(bik+αg
k
aik)2



aik =
∑

j′∈c(i),t(j′)=k |j′|

bik = |s (i)|+
∑

j′∈c(i),t(j′) 6=k log
(
αt(j′)

)
|j′|

fik = P (y = s (i) |xi, Λ
g) +

∑
j∈c(i),t(j) 6=k P (y = j |xi, Λ

g)

hik =
∑

j∈c(i),t(j)=k P (y = j |xi, Λ
g)

P (y = j |xi, Λ
g) =

λg
ij

P (xi|θj)∑
j′∈family(i)

λg

ij′
P(xi|θj′)

(14)
Equations 13-14 give us update rules that we can use to find locally optimal
parameters on some training data. As the derivation of these equations makes
heavy use of calculus, it is provided in the Appendix for completeness. The
following section generalizes this technique heuristically to allow consideration
of non-relevant examples in training.

4 Incorporating Negative Examples

While the above presentation of EM to learn parameters attempts to maximize
the likelihood of training examples, doing so using only relevant elements re-
sults in very poor parameter estimation. This is a direct result of the fact that
optimizing the likelihood of relevant elements may also increase the likelihood
of elements that are not relevant. In our own experiments, using only relevant
elements during training will result in most of the weight being placed in λD.
We feel this may be a side effect of the bias-variance problem in estimation.
The document language model has more bias than the language models esti-
mated from the elements, but the variance is lower as the sample sizes are larger
for documents than for elements. When combining the language models during
smoothing, the document language models tend to have a higher likelihood of
generating the query terms due to this lower variance.

In order to combat these effects, we also include negative examples in our
training data. However, we do not wish to optimize the likelihood of the negative
examples. We would prefer to maximize the likelihood that the language models
estimated for the non-relevant elements do not generate the query terms. To
model this one might include for each non-relevant element and query term an
example where we use (1− P (x |θj)) in place of P (x |θj). Note that this is not
quite the same as what we one might wish to optimize, as:

1− P (Q |µi) 6=
|Q|∏
l=1

(1− P (ql |µi)) (15)

However, this is a useful and effective approximation that requires only the
above substitution for negative examples. A complication in learning using the
inclusion of negative examples given above is that P (x |µi) tends to be very
small in relation to 1 − P (x |µi). That means that when maximizing the log
likelihood, a small improvement of a positive example may outweigh a large
degradation in performance in a negative example.

To accommodate for that effect, we weight the negative probabilities by rais-
ing them to a large power. For a negative example, we replace

P (x |θj) (16)

with
(1− P (x |θj))νδ (17)

where ν is a user chosen parameter that specifies how much emphasis the negative
examples have relative to the positive examples and δ is chosen so that the
average probability of a term given the relevant examples is equal to the average
probability of a term given the non-relevant examples when ν = 1:

δ =
log

(
1

|positive|
∑

positive P (xi |µi)
)

log
(

1
|negative|

∑
negative P (xi |µi)

) (18)

This approach for the incorporation of non-relevant elements is ad-hoc but ef-
fective, as we will see in the next section.

5 Experimental Methodology

We use a locally modified version of the Indri search engine of the Lemur
toolkit [7] that supports the hierarchical shrinkage. The hierarchical shrinkage
support will be made available in a December release. Release of the parameter
estimation code is scheduled for a later release as the estimation methods are
still in flux. We indexed the INEX collection using the InQuery stopword list
and the Krovetz stemmer. To process queries we removed all quotes from the
query (thus ignoring phrasal constraints) and all terms with a minus in front.

We will focus on the CO.Thorough task and present results using the strict
and generalized quantizations for nxCG[10], nxCG[25], nxCG[50], and MAP of
ep/gr to facilitate comparison to the official results presented at INEX.

6 Experiments

In this section we present experiments on the CO.Thorough task. We will disre-
gard our official submissions as they were run with the desired model and they
were not run on the entire corpus. We had some problems with using the sys-
tem that prevented us from indexing the entire corpus which have since been
resolved.

We trained our parameters using the INEX 1.8 corpus and CO topics 162-201.
Using the INEX 2004 relevance assessments, we took one non-relevant document
element as a negative example for each relevant element as a positive example.
Elements were considered relevant if and only if they were highly exhaustive and
highly specific. The non-relevant examples were taken from the same documents
as the relevant examples. Ten iterations were used for the EM algorithm. αk

values were updated only for cases where there were at least ten examples for
type k in the update rule.

Table 1 shows the a sample of the parameters the EM algorithm learned on
the training topics. As ν increases, the weight on the collection language model
(λC) decreases while the weight in the parent (λP) slightly increases and λO,
the weight on the element and its children, noticeably increases.

With regards to the α parameters, the element type length-proportional
weights on children, a few parameters start with relatively low values and in-
crease rapidly as ν increases. Table 1 shows a few examples of this behavior.
However, most parameters that are learned are very close to zero across all val-
ues of ν. Note that we only trained these parameters for element types where
at least ten highly-specific highly-exhaustive components had a child element of
that type.

There seems to be some undesirable variation in the parameters, as we can
see with the α value for the p type. This may be a side effect of the algorithm

being trained on relatively few examples for some types, but this should not
be the case for the p tag. However, as it only really matters what the value is
relative to the other tags at the same level, perhaps this variance is not an issue.

Table 1. Some parameters learned from training data. As ν increases, λC decreases
and λO increases. Some α parameters seem fairly stable, such as that of the footnote
type. Others increase greatly with larger ν while some seem somewhat erratic (e.g. p).

λ α
ν (C)ol (D)oc (P)ar O-self st p sub footnote ss1

1.0 0.475 0.222 0.035 0.268 0.38 0.23 0.00 0.28 0.50
2.0 0.385 0.212 0.037 0.365 1.07 0.00 0.22 2.49 0.37
3.0 0.342 0.210 0.040 0.408 22.75 9.77 7.77 2.22 1.75
4.0 0.321 0.210 0.041 0.428 189.28 0.00 9.42 1.83 6.01
5.0 0.309 0.213 0.043 0.435 48623.30 0.61 146.46 1.65 13289.10

Table 2 shows the effects of using the learned parameters for the CO task
on the training topics 162-201. Note that we use the new INEX-2.2 corpus, so
these results are not directly comparable to previous results on these topics. As
there are many documents that in the INEX-2.2 corpus that were not available
for assessment for the topics, one should regard the evaluation numbers as a
suboptimal estimate of performance. Nevertheless, we are mostly interested in
the relative performance of the parameters learned for different values of ν, and
the values in Table 2 should be adequate for that purpose.

In Table 2 we see that setting ν = 1 yields the most consistently good results
for both quantizations. There also seems to be some variation in the columns that
does not follow a nice curve. This is an undesirable property which could be a
result of variance in the learning algorithm, a sign of instability in the evaluation
metrics, or a symptom of too few topics to get a reliable point estimate given
the topic variance of the system.

Table 3 shows the performance of the learned parameters on this year’s
CO.Thorough task. Performance for the generalized quantization peaks at ν = 2
and around ν = 4 for the strict quantization. This is quite a bit different from
our observations on the training data. We would like to investigate this behavior
in more detail. This could simply be the result of a training topic set that is
too small or not representative enough. An alternative cause for difference is the
change in the assessment methodology this year, which could result in assessors
behaving giving different scores.

If we had submitted the system optimized to the training data (ν = 1), then
our results would have been in the top 10 official submissions for the strict quan-
tization nxCG@50 metric and the generalized quantization MAP ep/gr metric.
Supposing we had worked out our kinks in training (whether they be a result
of the algorithm or the assessments) and we had selected the runs with ν = 2, 4
for evaluation, then we would have had a run performing in the top 10 official

Table 2. Results of varying the negative weight ν on the CO task using training topics
162-201. Values in bold font indicate the largest value for a measure.

Strict Generalized
nxCG MAP nxCG MAP

ν 10 25 50 ep/gr 10 25 50 ep/gr

1.0 0.0704 0.0880 0.1307 0.0034 0.2946 0.2950 0.2944 0.0852
1.5 0.0593 0.0906 0.1266 0.0032 0.2938 0.2803 0.2710 0.0753
2.0 0.0593 0.0766 0.1237 0.0032 0.2899 0.2878 0.2816 0.0791
2.5 0.0704 0.0832 0.1226 0.0032 0.2922 0.2760 0.2637 0.0716
3.0 0.0704 0.0876 0.1210 0.0031 0.2911 0.2671 0.2536 0.0667
3.5 0.0704 0.0837 0.1218 0.0031 0.2920 0.2649 0.2490 0.0640
4.0 0.0593 0.0820 0.1197 0.0028 0.2903 0.2695 0.2447 0.0612
4.5 0.0741 0.0835 0.1219 0.0026 0.2857 0.2554 0.2383 0.0561
5.0 0.0630 0.0732 0.1087 0.0025 0.2791 0.2464 0.2256 0.0520

Table 3. Results of varying the negative weight ν on the CO.Thorough task using test
topics 202-241. Values in bold font indicate the largest value for a measure.

Strict Generalized
nxCG MAP nxCG MAP

ν 10 25 50 ep/gr 10 25 50 ep/gr

1.0 0.0200 0.0639 0.1051 0.0021 0.2225 0.2298 0.2286 0.0854
1.5 0.0440 0.0623 0.0911 0.0022 0.2207 0.2218 0.2197 0.0801
2.0 0.0440 0.0639 0.1006 0.0022 0.2464 0.2421 0.2340 0.0882
2.5 0.0440 0.0655 0.1127 0.0026 0.2200 0.2215 0.2224 0.0813
3.0 0.0440 0.0712 0.1184 0.0027 0.2164 0.2221 0.2167 0.0771
3.5 0.0400 0.0744 0.1192 0.0022 0.2131 0.2189 0.2149 0.0717
4.0 0.0691 0.0747 0.1225 0.0028 0.2445 0.2248 0.2172 0.0751
4.5 0.0651 0.0715 0.1131 0.0029 0.2301 0.2144 0.2126 0.0701
5.0 0.0651 0.0731 0.1116 0.0029 0.2326 0.2183 0.2089 0.0682

submissions for the strict quantization nxCG@10,50 and MAP ep/gr metrics
and for the generalized quantization nxCG@25,50 and MAP ep/gr metrics.

7 Conclusions

We have derived a Generalized Expectation Maximization algorithm to learn the
parameters of a simple hierarchical language modeling system for the ranking
and retrieval of XML elements. We showed a way to effectively incorporate non-
relevant elements during training.

We investigated the interaction of the relative weight on the negative training
examples ν and retrieval effectiveness on the CO.Thorough task. Experimental
evidence suggests that the optimal ν parameter may depend on the quantization
function used in evaluation. However, we have not done a full investigation of the
choice of positive and negative examples during training. In training, we relied
only on elements that were highly exhaustive and highly specific. This assump-
tion is essentially the assumption of the strict quantization function. We have
not done experiments where we use elements deemed relevant by the generalized
quantization function. While we leave this to future work, we recognize this may
change the optimal choice of ν for optimizing performance for measures using
the generalized quantization function.

Our incorporation of negative examples is ad-hoc. As future work, we plan
to simulate replication of negative examples rather than directly modifying the
probabilities of the language models we are combining. This is a minor change to
the algorithm and will not change the maximum likelihood derivation presented
in Section 3, but it will be more technically sound than the current incorporation
of negative evidence presented in Section 4. We would also like to consider the
possibility of performing the negative evidence at the query level, rather than
negating probabilities at the level of query terms.

For these experiments, we worked with a simplified hierarchical model. Our
previous work [1][2][3] presented a hierarchical model where elements were smooth-
ed recursively up and down the element containment tree for a document. This
work was a much simplified version where the smoothing was not recursive,
but addressed the question of parameter estimation. We would like to adapt the
training algorithm to model recursive smoothing and learn parameters with that
optimize the likelihood under that condition.

Up to this point we have discussed only flat text queries. We would like
to adapt this approach to work with structured queries to learn approaches
to weight elements of the query. For example, we may learn that satisfaction
of a phrasal constraint should receive higher weight than a constraint on the
document structure.

8 Acknowledgments

This research was sponsored by National Science Foundation (NSF) grant no.
CCR-0122581. The views and conclusions contained in this document are those

of the author and should not be interpreted as representing the official policies,
either expressed or implicit, of the NSF or the US government.

References

1. Ogilvie, P., Callan, J.: Language models and structured document retrieval. In:
Proceedings of the First Workshop of the INitiative for the Evaluation of XML
Retrieval (INEX). (2003)

2. Ogilvie, P., Callan, J.P.: Using language models for flat text queries in xml retrieval.
In: Proc. of the Second Annual Workshop of the Initiative for the Evaluation of XML
retrieval (INEX), Dagstuhl, Germany (2003)

3. Ogilvie, P., Callan, J.: Hierarchical language models for xml component retrieval.
In: Advances in XML Information Retrieval: Third International Workshop of the
Initiative for the Evaluation of XML Retrieval, INEX 2004, Springer-Verlag (2005)
224–237

4. Neal, R., Hinton, G.E.: A view of the em algorithm that justifies incremental, sparse,
and other variants. (1998)

5. Ogilvie, P., Callan, J.P.: Combining document representations for known-item
search. In: Proc. of the 26th annual int. ACM SIGIR conf. on Research and devel-
opment in informaion retrieval (SIGIR-03), New York, ACM Press (2003) 143–150

6. Kamps, J., de Rijke, M., Sigurbjörnsson, B.: Length normalization in xml retrieval.
In: Proceedings of the Twenty-Seventh Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval. (2004) 80–87

7. http://lemurproject.org/: (The lemur toolkit for language modeling and information
retrieval)

Appendix: EM Derivation

Suppose we were given additional information Y = (y1, . . . , yN) which specify
that the θyi distribution generated the xi query term. Given knowledge of y, the
likelihood becomes

L (Λ |X ,Y) =
N∏

i=1

λiyi
P (xi |θyi

) (19)

and the log-likelihood of the data is then

logL (Λ |X ,Y) =
N∑

i=1

log (λiyiP (xi |θyi)) (20)

The problem is now that we do not know the values of Y. However, we may
treat it as a random vector and apply Expectation-Maximization.

Suppose we have a guess at the Λ parameters we shall call Λg. Using Λg we
can compute P

(
xi

∣∣µg
j

)
. Applying Bayes rule, we calculate

P (yi |xi, Λ
g) =

λg
iyi

P (xi |θyi)
P (xi |Λg)

=
λg

iyi
P (xi |θyi)∑M

j=1 λg
ijP (xi |θj)

=
λg

iyi
P (xi |θyi)∑

j∈family(i) λg
ijP (xi |θj)

(21)

and

P (y |X , Λg) =
N∏

i=1

P (yi |xi, Λ
g) (22)

where y = (y1, y2, . . . , yN) is an independently drawn value of the random vector.
We may now estimate the expectation of Λ given Λg:

Q (Λ, Λg) =
∑

y∈Υ log (L (Λ |X ,y))P (y |X , Λg)

=
∑M

l=1

∑N
i=1 log (λilP (xi |θl))P (l |xi, Λ

g)
(23)

At this point we observe that to maximize this equation, we take the partial
derivative of Q (Λ, Λg) with respect to each of the Λ parameters.

When we maximize λC , we also introduce the Lagrange multiplier φ with the
constraint that λC + λD + λP + λO = 1 and solve the following equation:

∂
∂λC

[∑M
l=1

∑N
i=1 log (λilP (xi |θl))P (l |xi, Λ

g) + φ (λC + λD + λP + λO − 1)
]

= 0

∂
∂λC

∑N
i=1 log (λC) P (y = 1 |xi, Λ

g) + φλC

+some constants with respect to λC

 = 0

1
λC

∑N
i=1 P (y = 1 |xi, Λ

g) + φ = 0
(24)

The inclusion of the Lagrangian multiplier is a common calculus technique which
allows us to enforce the constraint that the lambda parameters sum to one.
Similarly, to maximize λD, λP , and λO, we use

1
λD

∑N
i=1 P (y = d (i) |xi, Λ

g) + φ = 0

1
λP

∑N
i=1 P (y = p (i) |xi, Λ

g) + φ = 0

1
λO

∑N
i=1

∑
j∈(s(i))∪c(i) P (y = j |xi, Λ

g) + φ = 0

(25)

By summing these equations we get φ = −N . We can then obtain the following
update rules:

λ
[t]
C = 1

N

∑N
i=1 P

(
y = 1

∣∣xi, Λ
[t−1]

)
λ

[t]
D = 1

N

∑N
i=1 P

(
y = d (i)

∣∣xi, Λ
[t−1]

)
λ

[t]
P = 1

N

∑N
i=1 P

(
y = p (i)

∣∣xi, Λ
[t−1]

)
λ

[t]
O = 1

N

∑N
i=1

∑
j∈(s(i))∪c(i) P

(
y = j

∣∣xi, Λ
[t−1]

)
(26)

Let us continue to the αk parameters. In order to enforce the desired constraint
that each αk be positive, we substitute αk with exp (βk) = eβk (we use e as a
shorthand for the exponential function). We will also define a few formulas to
simplify our derivations:

aik =
∑

j′∈c(i),t(j′)=k |j′|

bik = |s (i)|+
∑

j′∈c(i),t(j′) 6=k βt(j′) |j′|

fik = P (y = s (i) |xi, Λ
g) +

∑
j∈c(i),t(j) 6=k P (y = j |xi, Λ

g)

hik =
∑

j∈c(i),t(j)=k P (y = j |xi, Λ
g)

(27)

To find our update rule for βk, we take the partial derivative of the likelihood
with respect to βk and solve for βk.

∂
∂βk



∑
i:j∈c(i),t(j)=k



log
(

|s(i)|
bik+eβk aik

)
P (y = s (i) |xi, Λ

g)

+
∑

j∈c(i),t(j)=k log
(

eβk |j|
bik+eβk aik

)
P (y = j |xi, Λ

g)

+
∑

j∈c(i),t(j) 6=k log
(

e
βt(j) |j|

bik+eβk aik

)
P (y = j |xi, Λ

g)


+some constants with respect to βk


= 0

(28)
We first take the chain rule, resulting in the multiplier βk, then take the partial
derivative of the summation with respect to βk

eβk
∑

i:j∈c(i),t(j)=k


−aik

bik+βkaik
P (y = s (i) |xi, Λ

g)

+
∑

j∈c(i),t(j)=k
bik

eβk(bik+eβk aik)P (y = j |xi, Λ
g)

+
∑

j∈c(i),t(j) 6=k
−aik

bik+eβk aik
P (y = j |xi, Λ

g)

 = 0

(29)

βk

∑
i:j∈c(i),t(j)=k

−aikfik + bikhik

eβk

bik + eβkaik
= 0 (30)

Since we cannot solve directly solve this equation for βk, we will use a linear
approximation around the point βg

k (Newton-Raphson method):

∂

∂βk
Q (Λ, Λg) ≈ ∂

∂βk
Q (Λ, Λg)βk=βg

k
+ (βk − βg

k)
∂2

∂β2
k

Q (Λ, Λg)βk=βg
k

(31)

Since we set ∂
∂βk

Q (Λ, Λg) = 0,

βk ≈ βg
k −

∂
∂βk

Q (Λ, Λg)βk=βg
k

∂2

∂β2
k

Q (Λ, Λg)βk=βg
k

(32)

where
∂

∂βk
Q (Λ, Λg)βk=βg

k
= eβg

k

∑
i:j∈c(i),t(j)=k

−aikfik + bikhik

e
β

g
k

bik + eβg
k aik

(33)

and

∂2

∂β2
k

Q (Λ, Λg)βk=βg
k

= eβg
k


∂

∂βk
Q (Λ, Λg)βk=βg

k
+

eβg
k

∑
i:j∈c(i),t(j)=k

a2
ikfik−

b2
ik

hik

e
β

g 2
k(

bik+e
β

g
k aik

)2

 (34)

Thus, we will have the following update rule for our βk parameter estimates:

β
[t]
k = β

[t−1]
k −

∂
∂βk

Q (Λ, Λg)
βk=β

[t−1]
k

∂2

∂β2
k

Q (Λ, Λg)
βk=β

[t−1]
k

(35)

