In medieval England, ale was an alcoholic drink made from grain, water, and fermented with yeast. The difference between medieval ale and beer was that beer also used hops as an ingredient. Virtually everyone drank ale. It provided significant nutrition as well as hydration (and inebriation). The aristocracy could afford to drink wine some of the time as well, and some times the poor could not even afford ale, but in general ale was the drink of choice in England throughout the medieval period.
This recipe is part of an attempt to recreate ales that are not only "period", i.e. pre-17th century, but is actually medieval. These ales are based on newly available evidence from the late 13th and early 14th centuries.
Not only was beer significantly different some three hundred years ago, in 1700, in comparison to today, ale was significantly different around 1300 than either ale or beer was in 1600. The primary reason for this difference in the product is a seemingly small difference in technique: for an ale, the wort, the liquid containing sugars and protein extracted from the grain, was not boiled prior to fermenting. For a beer, the wort had to be boiled with the hops. This seemingly small difference was in fact a change in technology that had long-reaching consequences for the preservation, as well as taste and nutritional value of the beer.
In her book Ale, Beer, and Brewsters in England, Judith Bennett gathered together a wealth of evidence on brewing in medieval England. This recipe is based on the records of Elizabeth de Burgh:
Dredge is a combination of oats and barley [Bennett, p. 17]. A quarter is a unit of dry measure of approximately 290 liters [Bennett, p. xv]; there are 8 bushels to the quarter, making a quarter approx. 36 1/4 liters. (A modern U.S. bushel is 35.24 liters, and a modern U.K. bushel is 36.37 liters [AmHer].) This is also a measure of dry volume, and I am more used to working with weights of grain. So I carefully measured out 7 U.S. pints of Hugh Baird brand Pale malt, and weighed out this quantity at 4 lbs 6 oz. This works out to 1.32 lbs. per liter of volume of grain.Our most direct evidence of domestic brewing comes from elite households. In 1333--34, the household of Elizabeth de Burgh, Lady of Clare, brewed about 8 quarters of barley and dredge each week, each quarter yielding about 60 gallons of ale. Brewing varied by the season of the year, with vast amounts produced in December (when more than 3,500 gallons were brewed) and quite restricted production in February (only 810 gallons). The members of the Clare household drank strong ale throughout the year, imbibing with particular gusto during the celebrations of Christmas and the New Year.
[Bennett, p. 18]
So the Clare household ale was made using between 2/3 and 3/4 malted barley, with the remainder being oats. Converting the dry measure to weight (based on the weight of modern, well-kilned malt), this works out to about 6 lbs of grain per gallon of ale produced. A modern homebrewer might consider this to be an absurdly large quantity, but rather than jumping to that conclusion, I decided to try it out, following the brewing methods in Digbie, Harrison, and Markham (all 16th through 17th C. sources).
Two ales, one strong and one ordinary, of 2 gallons each, can be made thus:
Pre-heat the oven to 225 degrees F. Measure out 1 1/3 lbs. of pale malt, and place it in an e.g. 9 x 13 inch baking pan. When the oven is hot, place the malt in the oven and bake for 60 mins. Remove and set out to cool.
Sanitize an insulated tun (I use a 10-gal. Gott mash-lauter tun, though this will fit in a 5-gal.), and two fermentation vessels (two 3-gal. food-grade plastic buckets with lids).
Boil water for first runnings (16 qts.). Crush the malt, mixing the amber (baked) malt with the pale malt. Then mix the oats with the crushed malt well.
If your tun has a false bottom or other similar device, pour in enough boiling water to cover it. If your tun doesn't have such a strainer, put in a large grain bag. Then pour in all of the grain. Finally, slowly ladle the remaining water over the grain, pouring from some height.
Cover the mash tun and let sit 30 mins. Open and stir well, then close and let sit another 3 1/2 to 4 hours. This is a hot mash, so it will need this long period of time to mash (convert the starches into sugars).
Put the water for the second running on to boil. Set up the first fermentation vessel under the drain valve or tube of the insulated tun, and slowly run the liquor from the first mash into the first vessel. Close and set aside to cool.
After the first liquor has been drained out, and when the water for the second running has reached a boil, pour it into the damp grain. Allow to sit for 30 mins, then set up the second fermentation vessel and run this liquor into it. Close the second fermenter, and allow both to cool overnight.
In the morning, sanitize a smaller pan or ladle, a Pyrex measuring cup, and a spoon. Also boil about a cup of water and cool it, covered. Rehydrate the packets of yeast into 3/4 cup of the boiled water. Pour this yeast mixture into the two fermenters, 2/3 into the strong main batch, 1/3 into the second runnings. Use the sanitized ladle to aerate each of the batches (by picking up liquor and pouring it back in turbulently).
Close the fermenters (filling the water locks, if any) and allow to ferment for about three more days.
Sample some of the ale while fresh and young (and still fermenting), and then later after the fermentation has finished. When fresh (young), the first runnings should be around 3 to 5 percent alcohol; stale (completely fermented) it should be between 10 and 12 percent. The second runnings will be somewhat weaker than this, but still considerably stronger than modern beer when fully fermented.
This recipe was based on the proportions used in an aristocratic household. Since this ale would be consumed by members of the household, rather than being sold at a profit, there was likely less concern for the materials cost of the ale, with proportionally more concern for quality. As in other things, the aristocracy had more, and thus could afford to emphasize quality to a greater extent.
This technique is not very efficient. In modern brewing, using a thermometer to carefully control the mash and carefully sparging (rinsing out) the grain, I usually expect to get at least 25 points (thousandths) of specific gravity for every pound of grain per gallon of liquid. (So if I made 5 gallons of beer with 10 lbs of malt, I would expect to get a starting specific gravity of over 1.050: 1.000 for the water, plus 0.025 * 10 lbs / 5 gallons.)
For the first runnings of this recipe, I have gotten an efficiency of between 11 and 15 points per (lbs/gal). The second runnings gave an additional 6 to 7 points per (lbs/gal). This improves the total up to 17 to 22 -- still much worse than the 25+ I can get with modern techniques. The first Batch 3 worked out to about the same, and batch 4 worked out to 2 gallons at 1.090, or 15 points per (lbs/gal).
To the modern brewer, the quantities of grain described in these sources seem extraordinarily large. However, the process is so inefficient that large quantities of grain are required to produce ale of adequate strength using these older techniques. The upshot of this is two-fold. First, if one is trying to recreate an all-grain beer or ale, one should plan on using a lot of grain. Second, if one is attempting to adapt an (Elizabethan) English beer recipe to the use of modern malt extract, one should keep firmly in mind the low efficiency of the boiling water infusion mash technique. So whereas a modern extract brewer would use 2/3 of the malt extract (by weight) as in a modern all-grain recipe, they should use approximately 3/8 as much extract as grain in the original recipe. (They should also keep in mind that virtually all period recipes measure the grain by dry volume rather than by weight, and convert appropriately.)
I hasten to caution that an extract-based recreation of a late-period English beer won't be as accurate as an all-grain recreation using appropriately period mashing techniques. The mash used is much thicker and hotter than used in commercial brewing (and thus malt extract production). As a result, the beer will have a much different character: the period all-grain beer will be sweeter and have much more "body" due to the high temperature of the mash. Still, the recreation of such a beer won't be bad, merely not as good as it could be.
On the other hand, I do not think that one can properly recreate a medieval ale using modern malt extract. Unlike the mash process used in this recipe, the extract will have been boiled as part of the manufacturing process. This boiling will cook out many proteins that are suspended in the wort, and as a result greatly change the character of the ale. So while an extract-based ale will be ale in the sense that it contains no hops, it wouldn't be particularly medieval in character.
Last modified Dec. 31, 1998
Copyright (C) 1998 by Paul W. Placeway.
The author gives permission for this to be reproduced for personal use
in any form, so long as the complete text, from title through this
notice, is included. For other uses, please contact the author.