
ParallelGiza < ISLwiki < cmu-mt-wiki http://www.is.cs.cmu.edu/twiki/bin/view/ISLwiki/ParallelGiza?ski...

1 of 5 04/22/2008 04:55 PM

PGiza Manual
The Parallel Giza Trainer is nearly done, and the manual is here: (For example setting, you can look at

/people/qing0/exp1. And the bin and script dir are set up on /people/qing0/bin and /people/qing0/script.

Download and Install

The PGiza package consists of two parts, and packed into one single package. The first part is binary, which you

should compile, and the second part is scripts, which enable you set up training directory and control the whole

training process.

To install the trainer, first download the package (avaiable soon), decompress it use tar, then run

./configure --prefix=SOMEWHERE

make

make install

The binary will be put into SOMEWHERE/bin, where we shall refer to as $BIN_DIR.

To install the script, copy the script files in script directory of the source tarball to somewhere, call

$SCRIPT_DIR, and you are done.

Description of files

There are a bunch of separated utilities that makes PGIZA work, the following paragraphs will present

description of these utilities. Generally they can be separated into two categories:

* Alignment tools, in charge of aligning corpora based on previously trained model, record things that need to be

updated, and output them for normalization tools. Each stage of training has one particular aligner. There are

three of them:

Model One Aligner : model1_align

HMM Aligner : hmm_align

Viterbi Aligner (for Model 3,4 and 5, currently only support model 3,4) : model345align

* Normalization tools. They will take the updates that alignment tools output as input, and do normalization on

certain kind of table. They are specially for each kind of table, but some normalizer can also normalize several

different types of table using different parameters. There are four of them, being able to normalize three kind of

tables.

TTable Normalizer : renomalizeModel1

ATable Normalizer : renomalizeAModel

HMM Jump Combiner : combine_hmm

NTable, DTable, p0 Normalizer : renomalizeNDP

All the alignment tools takes only one parameter, which is the path to the configure file. In most case, you do

not need to take care of generating the whole configure file, however, you should provide all the parameters you

want EXCEPT INPUT AND OUTPUT PATH OF CORPORA/MODEL, the detailed information will be given

later.

The normalizer takes more parameters, the first of all is the path to configure file, while the other parameters

are all updates that will be used to update the model.

When running training the process is like this:

ParallelGiza < ISLwiki < cmu-mt-wiki http://www.is.cs.cmu.edu/twiki/bin/view/ISLwiki/ParallelGiza?ski...

2 of 5 04/22/2008 04:55 PM

The master starts aligner on every child with models from last step, if applicable. Then the master starts

watching any change in the watch directory ($WATCH_DIR).

1.

The children do alignment, and put update into a collecting directory ($COLL_DIR). When it finishes, it

will touch a file in the watching directory ($WATCH_DIR).

2.

If all the children have finished the alignment, the master start the renomalization process, update models

and goto step one if more steps needed to be taken.

3.

In the script directory, there are several stuff that in charge of these tasks. * defines.inc is a sample

environment configuration file, which you can use as a template for your training environment, and we will give

description on it latter. * setup_dir.sh generate a directory where training can be performed. To run it, you

must specify a environment configuration file, and the name of the directory you want to create. Type:

${SCRIPT_DIR}/setup_dir.sh defines.inc train_dir

And it will generate the directory with the following structure:

align coll data defines.inc log output snt_vcb split templ tmp watch work

Then it will tell you what to do next before start training:

OK, the directory is set! Now you need to do the

following tasks before training:

1. Put your training data into data director, let's say your file has the full path

 /people/qing0/train_dir/data/SOURCE.RAW and

 /people/qing0/train_dir/data/TARGET.RAW

2. Find and edit a template for giza training, you should remove all

 the option relevant to input/output filenames, such as 'o' 's' 't' etc.

 Assume you put the file in /people/qing0/train_dir/TEMPLATE.gizaconf

3. Edit a machine configuration file, the file is simply a list of hostnames you

 want to run the training, each line contain one hostname, say, you added 10

 lines in the file /people/qing0/train_dir/MC

After that, you can run :

train_ega.sh SOURCE.RAW TARGET.RAW TEMPLATE.gizaconf MC

and wait for its finishing

Follow the instruction, create a gizaconfigure file, the raw training data and the Multi Machine Configuration File,

before going to next step, below is a sample MC file:

hostname1

hostname2

hostname.domain

123.45.33.95

...

Remember that the corpora file should be put in data directory.

* train_ega.sh the main training script. It takes 4 parameters:

train_ega.sh SOURCE.RAW TARGET.RAW TEMPLATE.gizaconf MC

The first two are source and target corpora, and the third is the template giza configure file. Last file is the

machine configure file.

ParallelGiza < ISLwiki < cmu-mt-wiki http://www.is.cs.cmu.edu/twiki/bin/view/ISLwiki/ParallelGiza?ski...

3 of 5 04/22/2008 04:55 PM

Other scripts are called by the main training script, but it may be good to know the detail of each script, so that

if something goes wrong, you may be able to start the process without running them again. (TO-DO: Complete

me)

Run Training

There are several steps to run trainning, and the following part is a tutorial of a sample training.

Setup SSH Authorization

The script is now using SSH to fire new process in remote childs, and by default SSH will need you to input

password every time. So if you do not want to stay in front of the screen and type the password a thousand

times, you should set up SSH Authorization. To do that, you will need to do the following work on every machine

you want to run child process on:

ssh-keygen -d

Press enter until it finishes. It will generate two files in a newly create directory ~/.ssh_

id_dsa

id_dsa.pub

Fetch all the id_dsa.pub files, and paste their content into a single file named _~/.ssh/authorized_keys2 on the

master machine. chmod it to 600. (A best way is to collect all the id_dsa.pub file into one file, including the

master machine and distribute it to all the machines, so every machine will not ask for password when executing

ssh command.

If home directory is set to AFS, then it will be simple, just generate id_dsa.put and rename it to

authorized_keys2, then you can access all the machines using that directory as home.

Be sure to ssh each machine before start training, if you are asked for password, it is possible that the training

will not work.

Share the file system

The trainer can only run on children should have access to the training directory Using the same path. So it

will be better to put the whole training directory on NFS or AFS.

Edit environment configuration
The file defines.inc in $SCRIPT_DIR provide a sample environment definition to run giza. There are several most

important definitions: * Paths to binary/script files

SCRIPT_DIR=/people/qing0/script # the script directory

BIN_DIR=/people/qing0/bin # the binary directory

Note that the package does not include mkcls, and you may copy it from origin GIZA to the $BIN_DIR. Without

it the system can also run, but the result may not be right.

* Training rounds

MODEL_ONE_ROUND=5 #How many times of model one iteration

MODEL_HMM_ROUND=5 #How many times of HMM iteration

MODEL_345_ROUND=011233 #How many times of viterbi iteration

The first two is easy to understand, and the last one is a little complex. We use number 0,1,2,3 to indicate the

ParallelGiza < ISLwiki < cmu-mt-wiki http://www.is.cs.cmu.edu/twiki/bin/view/ISLwiki/ParallelGiza?ski...

4 of 5 04/22/2008 04:55 PM

steps we want to take. 0 means transformation from HMM to model 3, 1 means model 3 iteration, 2 means

transform from model 3 to model 4, and 3 means model 4 iteration. So it should be started with 0, and have

several 1_s before _2, if you want model 4 training.

Setup training directory

Use the script setup_dir.sh to generate a new training directory, provide it will a template define.inc.

${SCRIPT_DIR}/setup_dir.sh defines.inc train_dir

Put training data into data directory
Put the training file, for example RAW and RAW into the train_dir/data subdirectory

Edit GIZA configure file
Take one of the GIZA file, modify it as you like, and remove all the input/ouput fields like "o,s,t" etc. You may

put it into the training directory for future analysis.

Edit MC configure file
Decide how many machines you want to perform training, and put the hostname or IP address into an MC

configure file. Each line of the file should contain one hostname or IP. If you want one machine to run more

than one process, simply put more than one line of the same hostname.

It is recommend that you choose the fastest machine as the master, and it can also (and should be) be put into

the MC file, because normalization is time-consuming and not parallelizable, it will run on the master. More over,

when master is waiting for children to finish, it is actually idle. So using it as a child too should be a good idea.

Start training!

Now, we can start the training! Type the following script:

train_ega.sh SOURCE.RAW TARGET.RAW TEMPLATE.gizaconf MC

If nothing bad happen, the training will finish with the following output:

Well, everything is done

Then you can check the output as you defined in the defines.inc.

Where to find the results?

Actually, almost all the result can be specified in defines.inc. There are a bunch of settings, below is an

example:

Ouput of each model

OUTPUT_MODEL_ONE=${OUTPUT_DIR}/t1.final

HMM output

OUTPUT_T_HMM=${OUTPUT_DIR}/thmm.final

OUTPUT_A_HMM=${OUTPUT_DIR}/ahmm.final

OUTPUT_H_HMM=${OUTPUT_DIR}/hhmm.final

Model 3/4/5 output

OUTPUT_T_FINAL=${OUTPUT_DIR}/t4.final

ParallelGiza < ISLwiki < cmu-mt-wiki http://www.is.cs.cmu.edu/twiki/bin/view/ISLwiki/ParallelGiza?ski...

5 of 5 04/22/2008 04:55 PM

OUTPUT_A_FINAL=${OUTPUT_DIR}/a4.final

OUTPUT_D_FINAL=${OUTPUT_DIR}/d4.final

OUTPUT_N_FINAL=${OUTPUT_DIR}/n4.final

OUTPUT_PZ_FINAL=${OUTPUT_DIR}/p0.final

OUTPUT_H_FINAL=${OUTPUT_DIR}/h4.final

OUTPUT_ALIGN=${OUTPUT_DIR}/align.final

Here, OUTPUT_MODEL_ONE is the output of TTable after finishing training of model one, and OUTPUT_T_HMM

, OUTPUT_A_HMM , OUTPUT_H_HMM are TTable, ATable and HMM Jump table after the HMM alignment. The

third one is not used in decoder, but it is essential for the training of next stage.

Finally, a bunch of _FINAL_s are the final models, depending on how you going to run the viterbi alignment, it

may be model 3 or model 4. One important thing is that the inversed T table will only be outputed in the final

stage, with the name

${OUTPUT_T_FINAL}.inv

The OUTPUT_ALIGN file contains the full alignment of the final step. It is still possible to find the alignment of

every step, they are in another directory which is also configurable:

ALIGN_DIR=$PWD/align

The naming convention of alignments are a little complex, for example:

R_0_P_1_AT_islr0s10.finish.AH3

It has the pattern R_${ROUND}_P_${PART}_AT_${hostname}.finish.A${MODEL}. The example means that it is

the first round of viterbi training, on part 1 of corpora, at islr0s10, and its model is H3 (from HMM to Model 3).

The ${MODEL} can be 1, H, H3, 3, 34, 4, corresponding to model one, HMM, HMM to Model 3, Model 3, Model 3

to Model 4 and Model 4.

We did not output combined file, and you can do it, I think it is easy:)

-- EdwardGao - 26 Nov 2007

Attachment: Action: Size: Date: Who: Comment:

 pgiza-0.1.tar.gz action 308068 27 Nov 2007 - 23:00 EdwardGao Download PGIZA-0.1 with Script

Revision: r1.4 - 27 Nov 2007 - 22:37 GMT - EdwardGao

ISLwiki > SmtPeople > EdwardGao > ParallelGiza

