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Computational Modeling
� Modeling formalisms

� Ordinary Differential Equations
� Petri Nets
� Hybrid Automata
� Markov chains
� Rule-based models: BioNetGen, Kappa, Pathway Logic, PEPA, PRISM, …
� …

� ODE Example (protein association):
+

BA
C

v1

v2

v1=k1[A][B]

v2=k2[C]

d[B]/dt = - v1 + v2 = k1[A][B] – k2[C]

Mass action law
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Rule-based Modeling
� Reactions are rules
� A compact representation of ODE and CTMC models
� Avoid the explicit enumeration of all possible molecular 

species or all the states of a system 
� BioNetGen language

4

… …
begin molecule types 
S(x~u~p,y~u~p) 
E()
end molecule types
begin reaction rules 
E(z) + S(y~u) <=> E(z!1).S(y~u!1) k1, k2
E(z!1).S(y~u!1) -> E(z) + S(y~p) k3 
end reaction rules
… …



BioNetGen Software Suite
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Combinatorial complexity limits the 
standard network modeling approach. 
We can understand the limitations on the 
conventional ODE-based modeling 
approaches through the simple example 
shown in Fig. V.2. A small number of 
molecules interacting in the prescribed 
way can generate a huge number of 
possible species – over 1000 in this case 
– which would require an equal number 
of ODE’s to model. In practice, most 
modelers avoid this complexity by 
making additional assumptions to limit 
the number of possible combinations. 
For example, the complexity drops 
nearly two orders of magnitude here if 
one assumes that only one of the 
adaptors (orange) can bind to the 
receptor (blue) at a time. Although this is 
currently standard practice, there is no 
principled way to carry out this step; doing so requires assumptions that may introduce errors.16 Combinatorial 
complexity arises throughout biology even in apparently simple systems involving the interaction of only a few 
proteins17–19 and becomes a major limiting factor in the modeling of signaling systems as diverse as the 
epidermal growth factor receptor (EGFR),20–22 MAP kinase cascade,23,24 the T cell receptor,25–27 CaMKII,28,29 
and the postsynaptic density.30,31 Conventional network modeling approaches based on ODEs therefore face 
fundamental limits on scalability and accuracy.32 

Rule-based Modeling (RBM) is ODE’s and much more. In RBM molecular interactions, such as those 
shown in the contact map of Fig. V.2, are encoded as rules, which specify the properties that a particular set of 
reactants must possess and a function that determines their rate of interaction. The model that generated this 
contact map had 18 such reaction rules. BioNetGen33–35 can expand these rules to generate the full set of 
ODEs or simulate the model in other ways – using stochastic dynamics, PDEs, etc. (Fig. V.3) Besides 
compactness, another advantage of the rule-based approach is that the coarse-grained structural features of 
the molecules are explicitly represented, which facilitates understanding and enables mapping to finer 
structural scales.  

Network-free simulation 
provides scalable 
simulation of RBMs. RBM 
languages make it easy to 
encode models for which 
the full set of equations is 
too large to enumerate in 
advance.36 “Network-free” 
simulation methods37,38 
avoid explicit generation of 
species and reactions by 
using particle-based 
simulation driven by the 
rules. These simulation 
methods have a 
computational scaling that 
is nearly independent of 
network size.36–38 We have 
introduced a general-
purpose stochastic solver 

 
Figure V.2. Combinatorial complexity in a model of epidermal growth 
factor receptor (EGFR) signaling.20 A. Contact map showing interactions 
of receptor (R), its ligand (EGF), three intracellular proteins through specific 
components that represent sites of binding and posttranslational 
modification (represented by yellow circles). B. Combinatorial complexity in 
the number of EGFR-containing species. Each leaf in the tree represents a 
different possible state of a receptor component. There are 48 possible 
monomeric and 1176 possible dimeric species. 

 
Fig. V.3. Connectivity between BioNetGen and other selected tools for modeling and 
simulation. Green boxes indicate other MMBioS tools, orange boxes indicate tools 
developed by our C&SP collaborators. Current communications are file-based but would be 
more efficiently managed with the development of the libBNG API in Aim 3.1.  

JR Faeder, unpublished
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How to answer queries?
� Carry out analysis tasks

� Perturbation
� Sensitivity analysis
� Bifurcation analysis
� Model checking
� … …

begin molecule type
L() R()
end molecule type
begin reaction rules 
L(r) + R(l) <-> L(r!1).R(l!1) kp1, km1 
end reaction rules
generate_network() 
simulate({method=>"ode",t_end=>500,n_s
teps=>500})



Model Parameters
� Two types of model parameters

� Initial conditions
� Rate constants

� Experimental measurements
� Expensive
� Not possible to measure all parameters
� In vitro measurements may not reflect the actual physiological 

conditions in the cell (Minton, J Biol Chem, 2001)
� Cell population-based measurements are not very accurate (Kim 

& Price, Phys Rev Lett, 2010)
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Parameter Estimation
� Goal:

� Find values of parameter so that model prediction 
generated by simulations using these values can match 
experimental data (e.g. time serials, steady state)

Time

krbNGF = 0.33, KmAkt = 0.16, kpRaf1 = 0.42 … …

krbNGF = 0.49, KmAkt = 0.08, kpRaf1 = 0.97 … …

krbNGF = 0.88, KmAkt = 0.21, kpRaf1 = 0.05 … …

target
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Optimization Approach
� Minimize the difference between model prediction 

and experimental data
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J: objective function



k2

k1

Example: Steepest Decent
� Update following the direction of steepest descent on the 

hyper-surface of the objective function

J(k1,k2)
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Many Challenges
� The curse of dimensionality
� Over-fitting
� Non-identifiable models
� Inherent uncertainty of data

11Kim et al. 2007
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Parameter Estimation for BioNetGen
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� Current solutions: ptempest, BioNetFit, SBML tools



Our Solution
� A statistical model checking (SMC) based approach

� Encode training data as a bounded linear temporal logic formula
� Evaluate candidate parameters using SMC
� Perform global optimization (stochastic ranking evolutionary 

strategy (SRES)) 

� Advantages
� Utilize both quantitative and qualitative knowledge 
� Deal with uncertainty of the biological system/data 
� Good scalability due to the power of statistical testing 

� Extending our previous method for ODE models with prior 
distribution of initial states (Palaniappan et al, CMSB, 2013)
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Model Checking
� An automated method to formally verify a system's behavior 

with respect to a set of properties

Edmund M. Clarke (Turing Award 2007)



BLTL
� Atomic proposition:

� the current concentration level of xi falls in the interval [l,u]

� The formulas of BLTL are:
�

� Derived operators: 

� A finite set of time points 
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BLTL
� Semantics
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Probabilistic BLTL

� The probability that a trajectory in BEH belong to

� Based on measure theory and our assumptions, we can 
define P(Models(ψ)) 

� Given ODE system S, 

formula BLTL a is  and ]1,0('),1,0[ where),(),( ' ψψψ ∈∈≤≥ rrPP rr

)(ψmodels exceeds or equal to r

18



SMC of PBLTL formulas
� Sequential hypothesis test between

� Generating a sequence of sample trajectories by randomly sampling 
INIT

� Verify each trajectory and determine whether accept H0 or H1 based 
on Type I and Type II error bounds

� Can be an on-line method

))((  where,:H1 and :H0 ψδδ ModelsPprprp =−≤+≥
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Encoding Knowledge
� Quantitative experimental data

� Qualitative properties of the dynamics
� E.g. transient/sustained activation, oscillatory behavior, bistable, …
� ‘trend’ formulas: 

� PBLTL formula: 
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SMC based Parameter Estimation
1. Guess θl

2. Verify                    with the chosen 
strength

3. Compute F(θl)
4. Terminate or make a new guess 

(based on search strategy e.g. 
SRES) and repeat step 1 

qltyψψ ∧exp

21

Model

TRUE or FALSE

Qualitative property:
Ψ: DNA damage 
induces p53 pulses
Qualitative data:

Temporal Logic Formulae

The BTLT expressions of dynamical properties

Property 1 Mdm2 reaches its peak after p53.

Pr�0.95(p53
(N)  0.01nM ^Mdm2(N)  0.01nM

F

300h(p53(N) � 1nM ^Mdm2(N)  0.01nM^
F

300h(p53(N) � 3nM ^Mdm2(N)  0.4nM^
F

300h(p53(N)  4nM ^Mdm2(N)  0.4nM))))

The above property specifies that the level of nuclear p53 reaches a peak value between 3 and 4 nM before
the level of nuclear Mdm2 reaching a peak value around 0.4 nM. This properties was verified to be true.

Property 2 Increased DNA damage induces more p53 pulses.

Pr�0.95(p53
(N)  5nMU

300h

(F12h(p53(N) � 6nM ^ (F12h(p53(N)  5nM^
(F12h(p53(N) � 6nM ^ (F12h(p53(N)  5nM^
(F88h(G88h(p53(N)  5nM)))))))

The above property specifies that upon 12 h IR exposure there are at least two p53 pluses induced. For
insu�cient amount of DNA damage, this property was verified to be false, while it was verified to be true

for su�cient amount of DNA damage. This suggests that increased DNA damage induces more p53 pulses.

Property 3 Sustained caspase-3 once its level reaches certain threshold.

Pr�0.95(C3  0.01nMU

300h(F56h(C3 � 0.3nM ^G

44h(C3  0.3nM))))

The above property specifies that after caspase-3 concentration reaches 0.3nM, it will sustain for at least 44
h and triggers downstream apoptotic cascade. This property was verified to be true.

Property 4 Mutated Bax prevents the p53-mediated apoptosis.

Pr�0.95(C3  0.01nMU

300h(F56h(G100h(C3  0.3nM))))

The above property specifies the case that p53-mediated apoptosis is triggered after IR. It was verified to
be true when k11 = 2 ⇥ 10�5

s

�1. However, if we mutate Bax by reducing the activation rates of Bax, the
property was verified to be false, suggesting that mutant Bax prevents the p53-mediated apoptosis.

Property 5 Inhibition of XIAP enhances p53-mediated apoptosis.

Pr�0.95(C3  0.01nMU

300h(F56h(G100h(C3  1nM))))

The above property specifies a high steady state of caspase-3 after IR. It was verified to be false when the
degradation rate of XIAP equals to 10�4 s�1. However, it was verified to be true when the degradation rate
of XIAP equals to 10�2 s�1, showing that the inhibition of XIAP enhances p53-mediated apoptosis.

Property 6 p53 pulses induce di↵erential expression of target genes.

Pr�0.95(Bax  0.001nM ^ PUMA  0.0011nMU

300h

(F56h(Bax � 0.06nM ^ PUMA � 0.06nM^
(F56h(Bax  0.04nM ^ PUMA  0.04nM^
(F56h(Bax � 0.06nM ^ PUMA � 0.06nM^

(F56h(Bax  0.04nM ^ PUMA  0.04nM)))))
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Parameters Θ: k1, k2,…

simulation
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SMC based Parameter Estimation

Time

krbNGF = 0.33, KmAkt = 0.16, kpRaf1 = 0.42 … …

krbNGF = 0.49, KmAkt = 0.08, kpRaf1 = 0.97 … …

krbNGF = 0.88, KmAkt = 0.21, kpRaf1 = 0.05 … …

target

X
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Case Studies
� Pathway models taken from BioModels database
� Nominal parameters
� Synthetic experimental data
� Qualitative trend
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� ODE model (Brown et al. 2004)
� 32 species
� 48 parameters (20 unknown)

� Training data
� 7 species, 9 time points

� Test data
� 2 species, 9 time points

EGF-NGF Pathway
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EGF-NGF Pathway
� Running time: 2.23 hours

Training data Test data

25



26

Segmentation Clock Network
� ODE model (Goldbeter et al. 2008)

� 22 species, 75 parameters (40 unknown)
� Training data

� Time serials: Axin2 mRNA, 14 time points 
� Qualitative trend: 5 species, oscillatory behavior

� E.g. 

� Test data: Dusp6 protein, qualitative trend
]))))))4.0([]2.2([(]4.0([]2.2([(]4.0(([ ≤∧≥∧≤∧≥∧≤ LmRNALmRNALmRNALmRNALmRNA FFFF



Segmentation Clock Network
� Running time: 2.2 hours

Training data Test data
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MLC Phosphorylation Pathway
� Regulates the contraction of endothelia cells
� ODE model (Maeda et al 2006)

� 105 species, 197 parameters (100 unknown parameters)
� Training data

� Time serials: 8 species, 12 time points
� Qualitative trend: 2 species

� Test data
� 2 species, 12 time points



MLC Phosphorylation Pathway
� Running time: 50.67 hours

Training data Test data
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Conclusion
� A SMC based approach for the parameter estimation of 

bio-pathway models
� Utilize both quantitative experimental data and 

qualitative knowledge
� Deal with uncertainty of the initial states and the noisy 

cell-population data
� Employ standard search strategies
� Can be used to perform global sensitivity anlaysis
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Future work
� Stochastic differential equation (SDE) based models
� Hybrid systems
� GPU acceleration 
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