IEEE BIBM'2016, Shenzhen, China

Parameter Estimation of Rule-based Models using Statistical Model Checking

Bing Liu and James R. Faeder

Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh

Computational Modeling

- Modeling formalisms
 - Ordinary Differential Equations
 - Petri Nets
 - Hybrid Automata
 - Markov chains
 - Rule-based models: BioNetGen, Kappa, Pathway Logic, PEPA, PRISM, ...
 - •
- ODE Example (protein association):

Rule-based Modeling

- Reactions are rules
- A compact representation of ODE and CTMC models
- Avoid the explicit enumeration of all possible molecular species or all the states of a system
- BioNetGen language

```
begin molecule types
S(x~u~p,y~u~p)
E()
end molecule types
begin reaction rules
E(z) + S(y~u) <=> E(z!1).S(y~u!1) k1, k2
E(z!1).S(y~u!1) -> E(z) + S(y~p) k3
end reaction rules
```

BioNetGen Software Suite

How to answer queries?

• Carry out analysis tasks

- Perturbation
- Sensitivity analysis
- Bifurcation analysis
- Model checking
-

Model Parameters

- Two types of model parameters
 - Initial conditions
 - Rate constants
- Experimental measurements
 - Expensive
 - Not possible to measure all parameters
 - In vitro measurements may not reflect the actual physiological conditions in the cell (*Minton, J Biol Chem, 2001*)
 - Cell population-based measurements are not very accurate (*Kim* & *Price, Phys Rev Lett, 2010*)

Parameter Estimation

- Goal:
 - Find values of parameter so that model prediction generated by simulations using these values can match experimental data (e.g. time serials, steady state)

Optimization Approach

• Minimize the difference between model prediction and experimental data

Given data $\tilde{\mathbf{x}}(t_j)$, find k to minimize $J(\mathbf{k}) = \sum_j ||\mathbf{x}(t_j; \mathbf{k}) - \tilde{\mathbf{x}}(t_j)||^2$

J: objective function

Example: Steepest Decent

• Update following the direction of steepest descent on the hyper-surface of the objective function

Many Challenges

- The curse of dimensionality
- Over-fitting
- Non-identifiable models
- Inherent uncertainty of data

0.5 1.0 1.5 2 2.5 3 3.5

Kim et al. 2007

Parameter Estimation for BioNetGen

• Current solutions: ptempest, BioNetFit, SBML tools

Our Solution

- A statistical model checking (SMC) based approach
 - Encode training data as a **bounded linear temporal logic** formula
 - Evaluate candidate parameters using SMC
 - Perform global optimization (stochastic ranking evolutionary strategy (SRES))
- Advantages
 - Utilize both *quantitative* and *qualitative* knowledge
 - Deal with uncertainty of the biological system/data
 - Good scalability due to the power of statistical testing
- Extending our previous method for ODE models with prior distribution of initial states (*Palaniappan et al, CMSB, 2013*)

Model Checking

• An automated method to formally verify a system's behavior with respect to a set of properties

BLTL

- Atomic proposition: $(i, l, u), L_i \leq l < u \leq U_i$
 - the current concentration level of x_i falls in the interval [l, u]
- The formulas of BLTL are:
 - $\psi ::= AP | true | false | \psi_1 \lor \psi_2 | \neg \psi | \psi_1 \mathbf{U}^{\leq t} \psi_2 | \psi_1 \mathbf{U}^{t} \psi_2$
 - Derived operators: $\land, \supset, \equiv, \mathbf{G}^{\leq t}, \mathbf{G}^{t}, \mathbf{F}^{\leq t}, \mathbf{F}^{t}$
- A finite set of time points $\mathbf{T} = \{0, 1, ..., T\}$

BLTL

- Atomic proposition: $(i, l, u), L_i \leq l < u \leq U_i$
 - the current concentration level of x_i falls in the interval [l, u]
- The formulas of BLTL are:
 - $\psi ::= AP | true | false | \psi_1 \lor \psi_2 | \neg \psi | \psi_1 \mathbf{U}^{\leq t} \psi_2 | \psi_1 \mathbf{U}^{t} \psi_2$
 - Derived operators: $\land, \supset, \equiv, \mathbf{G}^{\leq t}, \mathbf{G}^{t}, \mathbf{F}^{\leq t}, \mathbf{F}^{t}$
- A finite set of time points $\mathbf{T} = \{0, 1, ..., T\}$

BLTL

Semantics

The semantics of the logic is defined in terms of the relation $\sigma, t \models \varphi$ where σ is a trajectory in *BEH* and $t \in \mathcal{T}$.

- $\sigma, t \models (i, \ell, u)$ iff $\ell \leq \sigma(t)(i) \leq u$ where $\sigma(t)(i)$ is the i^{th} component of the *n*-dimensional vector $\sigma(t) \in \mathbf{V}$.
- \neg and \lor are interpreted in the usual way.
- $\sigma, t \models \psi \mathbf{U}^{\leq k} \psi'$ iff there exists k' such that $k' \leq k$, $t + k' \leq T$ and $\sigma, t + k' \models \psi'$. Further, $\sigma, t + k'' \models \psi$ for every $0 \leq k'' < k'$.
- $\sigma, t \models \psi \mathbf{U}^k \psi'$ iff $t + k \leq T$ and $\sigma, t + k \models \psi'$. Further, $\sigma, t + k' \models \psi$ for every $0 \leq k' < k$.

We can now define $models(\psi) = \{ \sigma \mid \sigma, 0 \models \psi, \sigma \in BEH \}.$

Probabilistic BLTL

 $P_{\geq r}(\psi), P_{\leq r'}(\psi)$, where $r \in [0,1), r' \in (0,1]$ and ψ is a BLTL formula

- The probability that a trajectory in *BEH* belong to $models(\psi)$ exceeds or equal to r
- Based on measure theory and our assumptions, we can define $P(Models(\psi))$
- Given ODE system *S*,

$$\mathcal{S} \models P_{\geq r} \psi \text{ iff } P(Models(\psi)) \geq r$$

 $\mathcal{S} \models P_{\leq r'} \psi \text{ iff } P(Models(\psi)) \leq r'$

SMC of PBLTL formulas

- Sequential hypothesis test between H0: $p \ge r + \delta$ and H1: $p \le r - \delta$, where $p = P(Models(\psi))$
 - Generating a sequence of sample trajectories by randomly sampling *INIT*
 - Verify each trajectory and determine whether accept Ho or H1 based on Type I and Type II error bounds
- Can be an on-line method

Encoding Knowledge

• Quantitative experimental data

 $\boldsymbol{\psi}_{i}^{t} = \mathbf{F}^{t}(i, l_{i}^{t}, u_{i}^{t})$ $\boldsymbol{\psi}_{\exp} = \wedge_{i \in O}(\wedge_{t \in T_{i}} \boldsymbol{\psi}_{i}^{t})$

- Qualitative properties of the dynamics
 - E.g. transient/sustained activation, oscillatory behavior, bistable, ...
 - *'trend'* formulas: $oldsymbol{\psi}_{qlty}$
- PBLTL formula: $P_{\geq r}(\psi_{exp} \wedge \psi_{qlty})$

SMC based Parameter Estimation

- 1. Guess θ_l
- 2. Verify $\psi_{exp} \wedge \psi_{qlty}$ with the chosen strength
- 3. Compute $F(\theta_l)$
- 4. Terminate or make a new guess (based on search strategy e.g. SRES) and repeat step 1

$$F(\theta) = J_{qlty}^{+}(\theta) + \sum_{i \in O} \frac{J_{exp}^{i,+}}{J_{exp}^{i}}$$

Let $J_{exp}^{i,+}(\theta)$ be the number of formulas of the form ψ_i^t (a conjunct in ψ_{exp}^i) such that the statistical test for $P_{\geq r}(\psi_i^t)$ accepts the null hypother $F(\theta) = J_{qlty}^+(\theta) + \sum_{i \in O} \frac{J_{exp}^{i,+}}{J_{exp}^i}$ (that is, $P_{\geq r}(\psi_i^t)$ holds) with the strength $(\frac{\alpha}{J}, \beta)$, where $J = \sum_{i \in O} J_{exp}^i$. Similarly, $J_{qlty}^+(\theta)$ be the number of conjuncts in ψ_{qlty} of the form $\psi_{\ell,qlty}$ that pass the statistical test $P_{\geq r}(\psi_{\ell,qlty})$ with the strength $(\frac{\alpha}{J}, \beta)$.

SMC based Parameter Estimation

krbNGF = 0.33, KmAkt = 0.16, kpRaf1 = 0.42

target

krbNGF = 0.49, KmAkt = 0.08, kpRaf1 = 0.97

krbNGF = 0.88, KmAkt = 0.21, kpRaf1 = 0.05

Case Studies

- Pathway models taken from BioModels database
- Nominal parameters
- Synthetic experimental data
- Qualitative trend

EGF-NGF Pathway

- ODE model (*Brown et al. 2004*)
 - 32 species
 - 48 parameters (20 unknown)^{freeEGFI}
- Training data
 - 7 species, 9 time points
- Test data
 - 2 species, 9 time points

EGF-NGF Pathway

• Running time: 2.23 hours

Training data

Segmentation Clock Network

- ODE model (*Goldbeter et al. 2008*)
 - 22 species, 75 parameters (40 unknown)
- Training data
 - Time serials: Axin2 mRNA, 14 time points
 - Qualitative trend: 5 species, oscillatory behavior
 - **E.g.** $(([LmRNA \le 0.4] \land (\mathbf{F}([LmRNA \ge 2.2] \land \mathbf{F}([LmRNA \le 0.4] \land (\mathbf{F}([LmRNA \ge 2.2] \land \mathbf{F}([LmRNA \le 0.4])))))))$
- Test data: Dusp6 protein, qualitative trend

Segmentation Clock Network

• Running time: 2.2 hours

MLC Phosphorylation Pathway

- Regulates the contraction of endothelia cells
- ODE model (*Maeda et al 2006*)
 - 105 species, 197 parameters (100 unknown parameters)
- Training data
 - Time serials: 8 species, 12 time points
 - Qualitative trend: 2 species
- Test data
 - 2 species, 12 time points

MLC Phosphorylation Pathway

• Running time: 50.67 hours

Conclusion

- A SMC based approach for the parameter estimation of bio-pathway models
- Utilize both quantitative experimental data and qualitative knowledge
- Deal with uncertainty of the initial states and the noisy cell-population data
- Employ standard search strategies
- Can be used to perform global sensitivity anlaysis

Future work

- Stochastic differential equation (SDE) based models
- Hybrid systems
- GPU acceleration

Acknowledgements

University of Pittsburgh Ivet Bahar's Lab

Carnegie Mellon University Edmund M. Clarke's Lab

National University of Singapore P.S. Thiagarajan David Hsu Jeak Ling Ding

