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Abstract—In this paper, we survey recent progress in Cyber-
Cardia project, a CPS Frontier project funded by the National
Science Foundation. The CyberCardia project will lead to signif-
icant advances in the state of the art for system verification and
cardiac therapies based on the use of formal methods and closed-
loop control and verification. The animating vision for the work is
to enable the development of a true in silico design methodology
for medical devices that can be used to speed the development of
new devices and to provide greater assurance that their behavior
matches designer intentions, and to pass regulatory muster more
quickly so that they can be used on patients needing their care.

The acceleration in medical-device innovation achievable as a
result of the CyberCardia research will also have long-term and
sustained societal benefits, as better diagnostic and therapeutic
technologies enter into the practice of medicine more quickly.

Index Terms—Cardiac electrophysiology, Implantable cardiac
Devices, Formal Methods, Verification and Validation, Closed-
loop control.

I. INTRODUCTION

Cyber-physical systems (CPSs) employ a combination of
computational and physical components in order to process
information about, and influence, the environment in which the
systems operate. The history of CPSs may generally be traced
back to control systems found in aerospace and automotive
domains; in these applications embedded controllers oversee
the operation of subsystems, such as flight control or anti-lock
breaking. The ongoing durability of Moores law, however, has
made it economically feasible to include small, cheap micro-
processors in many device classes, from cardiac pacemakers to
hair dryers. Indeed, recent estimates suggest that over 98% of
new microprocessors are deployed in embedded, non-computer
devices.

Medical devices constitute an already hugely important, yet
relatively new, class of cyber-physical systems. The worldwide
market for medical devices already exceeds $100bn, with

the US market being measured at nearly $40bn and robust
growth forecast. The industry includes devices ranging from
multi-million-dollar imaging and radiation-therapy equipment,
to clinical equipment such as infusion pumps, to implanted
devices such as pacemakers and defibrillators. Other computer-
enabled therapies such as artificial pancreases and seizure-
disruption devices are also on the horizon. The beneficial
impacts on human health and well-being afforded by the cyber-
physical paradigm for medical devices are already being real-
ized, and will continue to grow as new avenues for computer-
enabled diagnosis and therapy are pursued.

The CyberCardia project involves a cross-disciplinary col-
laborative research effort devoted to fundamental new ap-
proaches for radically accelerating the pace of medical-device
innovation, especially in the sphere of cardiac-device design.
The goal is a suite of technologies that enable a full in silio
design paradigm, in which significant parts of medical-device
development may be achieved computationally. The specific
areas of research to be pursued include the following; see also
Fig. 1.

Approximate Verification. To overcome issues of undecid-
ability of property-checking for models of CPSs, approaches
that compute approximate answers to these so-called model-
checking questions will be developed. Methods will also be
investigated for reasoning about stochastic behavior in CPSs.

Compositional and Quantitative Reasoning. To cope
with modeling complexity and device inter-operation issues
in CPSs, we will develop mathematically robust approaches
to composing models of CPSs, and to using the additional
structure in such models to define compositional techniques
for reasoning about model behavior. Methods will also be
developed for computing quantitative, statistical information
about model behavior in the course of undertaking model-
checking analyses of such models.



Fig. 1: The CyberCardia framework for closed-loop verification of Medical CPS. The verification technologies we propose
to develop are shown on the left, the intended applications on the right, and the supporting computational platforms and
repositories along the bottom of the figure

Patient-Specific Modeling. Data from animal experiments,
and research into new numerical modeling and simulation
techniques, will be undertaken to develop more sophisticated
models of the electrophysiology of the heart. These models
are intended to provide a basis for a true in silico approach to
cardiac-device modeling and development, in which impacts
of therapeutic approaches can be assessed across a variety of
different patient types via simulation.

Closed-loop Control and Verification for Cardiac Ther-
apy. Design methodologies will be developed that use the
previously mentioned technologies to support so-called virtual-
device development and closed-loop verification. Abstraction-
based approaches for modeling complex closed-loop systems,
including devices and heart models, will be defined.

Regulatory Concerns. We will conduct research on effec-
tive means for analyzing models from the standpoint of the
safety and security issues that concern regulatory agencies,
and for conveying the results of these analyses in a way that
can streamline regulatory approval.

In this paper, we survey current research development under
the CyberCardia project. Section II highlights our preliminary
result on approximate and compositional reasoning for closed-
loop verification of cardiac devices. Section III briefly explains
a recently developed parsimonious model of cardiac electro-
physiology presented in [1]. Section IV presents a bi-domain

model for electrocardiac defibrillation. Section V describes
an ongoing work on specifying peak detection algorithms
for cardiac electrograms in quantitative regular expression.
Section VI illustrates a technique for verification of cardiac
alternans based on δ-decidability. Section VII offers conclud-
ing remarks and a number ongoing research activities under
CyberCardia project.

II. COMPOSITIONAL MODELING OF TRACTABLE
VERIFICATION

Techniques, such as model checking and reachability anal-
ysis, run into the well known State Explosion Problem when
large mechanistic ODE systems, such as the IMW model [2],
are used for verification, see Section 3.6 of [3]. Thus, deriving
guarantees for an Implantable Cardiac Devices (ICDs) using a
detailed cardiac model is a grand challenge. Given a property
of interest, the Differential Equation Model (DEM) i) must
have the requisite level of detail, and ii) must be amenable to
tractable formal verification. We have developed two enabling
technologies to facilitate the insightful verification of ICDs
using detailed models: i) Abstraction and ii) Compositionality.

Abstraction is the process of reducing the complexity of a
model by removing the details that are irrelevant to verifying
the desired property. Before elaborating on abstraction, we first
describe what constitutes the complexity of a given cardiac



Fig. 2: Approximate and Compositional reasoning for closed-loop verification of ICDs

model. Complexity has two dimensions to it: coverage and
depth. Coverage of a cardiac model is a measure of the number
of cardiac cells that are used to model the entire cardiac tissue.
In other words, coverage is the spatial resolution of the model.
In Fig. 1, the most abstract model at the top of the hierarchy of
models has only a few representative myocytes, and thus has
a low coverage. On the other hand, the intermediate models
in the middle have a higher spatial resolution and account
for a large number of cardiac cells. A model with higher
coverage has relatively more cell-level models and diffusion
terms, and thus is more complex as compared to a sparse
model with lower coverage. The depth of a cardiac model is
the level of detail at which each myocyte is modeled. Detailed
models such as the IMW model [2], give an in-depth view
of a cardiac cell, which involves various transmembrane ion-
transport mechanisms. The model described in Section III on
the other hand eliminates all the transmembrane mechanisms
and uses abstract variables to sketch a caricature of the APs.

In [4], we employ a hierarchy of Timed automata-based
cardiac models which vary in spatial resolution. These models
are used to verify timing properties of pacemakers using a
CEGAR-based approach. For reducing the detail at the cell
level, we have identified a set of approximation techniques
that allow one to incrementally remove unobservable variables
from the detailed model. The underlying assumption is that
the only observable variable for a cardiac cell is its membrane
potential. A byproduct of this work is to establish a long-
missing formal relation among the existing myocyte models,
facilitating the transfer of properties established at one layer of
abstraction to the other layers. In [5], [6], we proposed a curve
fitting-based technique for identifying two-variable Hodgkin
Huxley (HH)-type abstractions for the 13-variable and 10-

variable Markovian subsystems corresponding to the sodium
and potassium ion channels, used in the IMW[2] model.

Compositionality alleviates the problem of state explosion
by enabling us to substitute a detailed cardiac model, which
is not amenable to verification, by an abstract model of
lower complexity. Compositionality entails reasoning about
a complex system in terms of its components, also known
as subsystems. The electrophysiological behavior of the heart
under the influence of an ICD is modeled using two subsys-
tems: a detailed cardiac model H and a detailed computational
model D of the ICD. The composed model, denoted by
(H×D), captures the electrical behaviors of the heart induced
by the ICDs control algorithms. The process of abstraction
leads to a spectrum of choices for H and D. Consider H ′ and
D′ are the abstraction of heart and device model, respectively.
Due to the larger state-space of its subsystem, (H×D) may not
be amenable to tractable verification. If the abstract models are
approximately equivalent to the detailed models with respect to
verifying the property of interest, then establishing the safety
of the composed system (H ′×D′) amounts to verifying (HD)
modulo some bounded error. The notion of equivalence that
supports such substitutivity arguments is called bisimilarity,
see Definition 4.12 on page 37 of [7].

In [4], we use Timed Simulation Equivalence between
their detailed and abstract cardiac models for compositional
reasoning. The proof of equivalence was derived manually.
When applied to cardiac models with real-valued states, inputs,
and outputs, bisimilarity is relaxed to account for small errors
in the observed outputs of the two models. H is said to be
approximately bisimilar to H ′ with precision , denoted by
H ∼=δ H ′, if any state-transition performed by H can be
matched by a state transition of H ′ that results in an output



error of at most δ, and vice-versa [8].
Since the cardiac model is composed with the ICD model

using feedback, the output error incurred by substituting H by
H ′ or substituting D by D′tends to get amplified. For such
feedback-based composed systems, approximate bisimimula-
tion expresses the Input-to-Output Stability (IOS) properties
of the subsystems. Compositional reasoning can be performed
after establishing approximate bisimulation equivalences be-
tween the subsystems. Proving approximate bisimulation be-
tween two given dynamical systems involves finding Bisim-
ulation Functions (BFs). BFs are Lyapunov-like contractive
functions of a pair of states of the two systems that i) bound
the output difference observed for the two states and ii) decay,
along all trajectories that are at the two states at any given
point in time. Level sets of BFs define forward invariants: two
trajectories initialized within the level set remain within the set
for all time. We have devised a Sum-of-Squares optimization-
based automated proof technique [9], [10], [11] for computing
BFs that prove IOS-based approximate bisimulation. Compo-
sitionality arguments for feedback-based systems H ×D and
H ′ × D′ can be made as follows. Suppose we compute i)
a BF SH between the models H and H ′ that characterizes
IOS between the subsystems and ii) a BF SD between D
and D′ that characterizes IOS between the subsystems. The
Small Gain Theorem [12] provides the Small Gain Condition
that must be satisfied by SH and SD such that they can be
linearly composed to obtain a BF between H×D and H ′×D′,
rendering the two composed systems to be approximately
bisimilar.

III. MODELS OF THE CARDIAC ACTION POTENTIAL

Hundreds of physiological models of the cardiac action
potential have been developed over the past decades and they
have been instrumental to furthering our understanding of
how specific cellular processes affect a variety of phenom-
ena including electrical wave propagation and arrhythmia as
well as the effects of drugs. Existing models are derived
almost exclusively from experimental data under a variety
of environmental conditions from a variety of species [13].
These models, which are comprised of tens of variables and
hundreds of parameters tend to be very complex which make
them mathematically unidentifiable and inestimable and are
therefore difficult to validate and analyze [14], [2].

An alternative, and complementary approach compared to
these complex models, is to use phenomenological models
which are designed to represent specific, often macroscopic
phenomena (e.g., rate dependence of action potential (AP) du-
ration) [15], [16], [17]. Phenomenological models are designed
to reproduce one (or two) specific phenomena(on) very well,
and are: simplistic, computationally efficient, and sometimes
amenable to analytical approaches. However, unlike ionic
models, phenomenological models do not provide a direct
link to physiologically meaningful model parameters derived
experimentally. Therefore phenomenological models provide
only limited mechanistic insight, and are not amenable for

reproducing numerous phenomena, nor can they be easily
extended.

Parsimonious Model of Rabbit Action Potential

Recently, we have developed a hybrid physiological-
phenomenological model which addresses many of the limita-
tions listed above. We call this model a parsimonious model of
the rabbit action potential. A model is considered parsimonious
if it accomplishes a desired level of explanation or prediction
with as few parameters as possible. For this model we choose
the desired level of prediction to be the reproduction of
experiments designed to capture well-known and important
action potential phenomena: 1) steady-state sodium current
inactivation as determined from voltage clamp experiments;
2) action potential depolarization in single cells; 3) recovery
of action potential excitability in single cells; and 4) action
potential depolarization dynamics during propagation in the
whole heart. All the experimental data used for model cali-
bration were measured from rabbit ventricular myocytes/tissue
under nearly identical and physiological conditions.

First, we ensured that the model was identifiable and
estimable given the experimental protocols [18]. Next, we
calibrated the model to match the experimental data, and
ensured that it reproduced the desired phenomena. Finally,
we showed that the model could reproduce several important
emergent phenomena including beat-to-beat cellular alterations
and unstable spiral waves. Under some conditions, unstable
spiral waves in this model give rise to continuous formation of
new spiral waves (i.e., spiral wave breakup) which is thought
to be the underlying cause of cardiac fibrillation and sudden
cardiac death.

Parsimonious Rabbit Action Potential Model Equations

The two most important membrane currents for cardiac
excitability are the rapid sodium current (INa) and the recti-
fying potassium current (IK), which are both highly nonlinear
functions of transmembrane potential (Vm). INa is responsible
for the rapid all-or-none depolarization of the AP upstroke, and
IK is responsible for maintaining the resting potential near -85
mV.

Modeling INa:: The equation of INa current is formalized
by Hodgking-Huxely (HH) [19] and modified by Beeler and
Reuter [20]:

INa = gNam
3h(Vm − ENa) (1)

where Vm is the action potential, gNa is the maximal con-
ductance of INa, m (fast activation), h (fast inactivation) and j
(slow inactivation) are gating variables, and ENa is the Narnst
equilibrium potential for sodium. The dynamics of the gating
variables are of the following form:

ẏ = αy(1− y)− βyy ≡ y∞ − y

τy
(2)

where y represents the gating variable, αy(Vm) and βy(Vm)
represent the voltage-dependent on and off rate constant,
respectively, y∞(Vm) and τy(Vm) are the voltage-dependent



Fig. 3: Transmembrane potential (mV) in a rabbit heart after a strong defibrillation shock (50V/cm) after 1 ms of shock
application. Left frame: nonelectroporating cardiac tissue. Right frame: electroporating cardiac tissue. Note the large difference
between the two color scales in the left and right frames.

steady state fraction of activation or inactivation and time
constant, respectively. The detail of this model can be found
in [1].

Modeling IK: The re-polarization of AP is captured by IK
current, which is described as following equation:

IK = gKe
−b(Vm−EK)(Vm − EK) (3)

where gK is the maximum conductance of IK , b is the
parameter controlling AP shape, EK is the reversal potential
for potassium. The nominal parameters values can be found
in Table 1 of [21].

IV. ELECTROCARDIAC DEFIBRILLATION MODELING AND
SIMULATIONS

Fibrillation in the electrocardiac signals as a leading cause
of death is commonly treated with a defibrillation electrical
shock. We study the mechanism of defibrillation whereby
the chaotic signals are disrupted and the signals are reset
to normal. The defibrillating electrical shock gives rise to
accumulated charges near blood vessels within the heart and
also on the surface of the heart. These charges are called virtual
electrodes, and are expected to disrupt the turbulent or chaotic
electrical signals of the fibrillating state. We are concerned
with the interactions among:
• 3D scroll waves and their centers (1D filaments which are

driving sources of ventricular fibrillation) as a building
block of a fibrillating state [22], [23]

• Charges left at heart tissue surfaces after electrical shock
(virtual electrodes) [24], [25], [26]

• Causes for defibrillation failure (post shock reentrant
wave fronts in the cardiac interior) [27]

• Influence of LEAP (Low Energy Anti-fibrillation Pacing)
[28], [29], [30]

Our goal is a full simulation study of a rabbit heart ventricle,
with scroll waves, defibrillating single strong or multiple weak

electrical shocks and virtual electrodes associated with blood
vessels and the heart surfaces.

We have developed a sharp boundary numerical method to
support the defibrillation studies [31]. It solves the bidomain
equations, representing the cardiac tissue as composed of intra-
cellular and extracellular tissues, as is needed in defibrillation
modeling. The sharp boundaries are defined by the narrow
blood vessels and require high resolution to describe their
effect. The sharp boundary bidomain model has been applied
to defibrillation studies in a slab geometry and some of the
features of this code are illustrated in [31]. The larger vessels
are well resolved while the smallest blood vessel, with 4 mesh
cells in diameter, is marginally resolved.

We will use the two codes in our study: our ElectroCardiac
(Stony Brook University) [31] and the well studied Chaste
(University of Oxford) [32], [33]. The ElectroCardiac code
is based on the finite volume discretization of the bidomain
equation, using sharp boundary method. The Chaste (Can-
cer, Heart and Soft Tissue Environment) is an open source
software based on the finite element method and used for
the Oxford tetrahedral rabbit heart mesh. We have improved
the membrane current model in the Chaste code to include
the experimentally observed electroporation currents during
strong defibrillating shocks [34], [35], [36]. Fig. 3 shows the
influence of the electroporation, representing the saturation
of the shock-induced transmembrane voltage, needed for a
strong shock defibrillation. The defibrillation electrical shock
creates the virtual electrodes in realistic rabbit heart geometry.
The transmembrane potential with the electroporation model
is relatively constant in time during the period of shock
application, as illustrated by the similarity of Fig. 3 right (1
ms) and Fig. 4 (2 ms).

V. REGULAR EXPRESSIONS FOR IRREGULAR RHYTHM

Medical devices seamlessly blend signal processing (SP)
algorithms with decision algorithms such that the performance



Fig. 4: Transmembrane potential (mV) in a rabbit heart after the defibrillation shock (50V/cm) is applied for 2 ms
(electroporating cardiac tissue

and correctness of the latter critically depends on that of the
former. As such, analyzing a device’s decision making in iso-
lation of SP offers at best an incomplete picture of the device’s
overall behavior. For example, an Implantable Cardioverter
Defibrillator (ICD) will first perform Peak Detection (PD) on
its input signal, also known as an electrogram. The output of
PD is a timed boolean signal where a 1 indicates a peak,
i.e., a local maximum or minimum, which is used by the
downstream discriminators to differentiate between fatal and
non-fatal rhythms.

The detected electrogram peaks indicate when a heart-
beat occurs, and the accuracy of PD directly affects the
correctness of the discriminators’ decisions. Over-sensing (too
many false peaks detected) and under-sensing (too many true
peaks missed) can be responsible for as much as 10% of an
ICD’s erroneous decisions [37], as they lead to inaccuracies
in estimating the heart rate.

Motivated by the desire to verify ICD algorithms for cardiac
arrhythmia discrimination, we seek a unified formalism for
expressing and analysing the SP and discrimination tasks
commonly found in ICD algorithms. We focuses on peak
detection because of the important role it plays in arrhythmia
discrimination, and because PD is a fundamental SP primitive
in its own right.

The signals we analyze (electrograms) have time-varying
frequency content, thereby motivating us to consider the PD
problem in the wavelet domain [38]. We are therefore working
on general, wavelet-based characterizations of peaks in time-
series data (i.e., signals), with and without a blanking period
: a period of time, typically defined by a cardiologist, during
which at most one peak can occur.

An implementation of our wavelet-based characterizations
of peaks would require one to store different values of the input
(wavelet-domain) signal, and to perform complex numerical
operations on the signal. It is therefore unlikely that these

peak characterizations can be expressed succinctly (if at all) in
temporal logic (TL) [39], despite the increasingly sophisticated
variety of TLs that have appeared in the literature. This is the
case even if we use a quantitative semantics [40].

We are therefore working on proposing the use of Quanti-
tative Regular Expressions (QREs) to describe wavelet-based
peak detection. QREs are a formal language based on classical
regular expressions for specifying complex numerical queries
on data streams [41]. QREs’ ability to interleave user-defined
computation at any nesting level of the underlying regular
expression, and the fact that their design is parameterized by
the domain of their input data (time, frequency or other do-
mains), gives them significant expressive power. We will show
that our wavelet-based peak detection algorithms are easily
expressed in QREs. We will also formalize a commercial peak
detector as a QRE. This will allow us to readily study the
accuracy and sensitivity of the resulting algorithms on real
patient electrograms.

As ongoing work, we have used QREs to capture a number
of ICD discriminators. This makes us highly confident that
QREs will serve as the unifying formalism we seek for
expressing and analyzing the SP and discrimination tasks
found in ICD algorithms.

In summary, our main contribution will be the following:
• We will present general wavelet-based characterization

of peaks along with two PD algorithms based on this
characterization.

• We will show that our wavelet-based PD algorithms,
and a commercial PD algorithm from Medtronic Inc.
found in defibrillators currently on the market,, are easily
expressible in Quantitative Regular Expressions (QREs).

• Finally, we study the accuracy and sensitivity of the
resulting QRE-based PD algorithms on real patient data
and show that the wavelet-based algorithm peakWPM
outperforms the other two PD algorithms, yielding results



that are on par with those provided by a cardiologist.

VI. FORMAL VERIFICATION OF CARDIAC ALTERNANS
USING δ-DECIDABILITY

An important component of cardiac electrodynamic model-
ing is the ability to understand and predict qualitative changes
that take place in the dynamics as model parameters are
varied [42], [43], [44]. One well-known change involves a
transition to alternans: a phenomenon characterized by a
period-doubling bifurcation where, while cells are paced at a
constant period, their response has different dynamics between
even and odd beats, with one long action potential following a
short one [45]. Alternans are known to destabilize waves [46]
and initiate re-entrant waves and represent an important physi-
ological indicator of an impending life-threatening arrhythmia
such as ventricular fibrillation [47], [48].

About 100 mathematical models [49] have been developed
to recreate and study, to varying degrees of complexity, the
electrical dynamics of a cardiac cell (i.e., cardiomyocyte).
A particularly appealing one in terms of its mathematical
tractability is the model of Mitchell and Schaeffer [50],
which represents the cellular electrodynamics using only two
state variables: a voltage variable v that describes the trans-
membrane potential, and a gating variable h that describes the
internal ionic state of the cell.

In [51], we present a bifurcation analysis of electrical alter-
nans in the two-current Mitchell-Schaeffer (MS) cardiac-cell
model1 using the theory of δ-decidability over the reals [52].
The bifurcation analysis we perform determines, for each
parameter τ of the MS model, the bifurcation point in the
range of τ such that a small perturbation to this value results
in a transition from alternans to non-alternans behavior. To the
best of our knowledge, our analysis represents the first formal
verification of non-trivial dynamics in a realistic cardiac-cell
model.

Our approach to this problem rests on encoding alternans-
like behavior in the MS model as an 10-mode, multinomial
hybrid automaton (HA). For each MS model parameter, we
then apply a sophisticated, guided-search-based reachability
analysis to this HA to estimate ranges for both alternans
and non-alternans behavior. The bifurcation point separates
these two ranges, but with an uncertainty region due to
the underlying δ-decision procedure. This uncertainty region,
however, can be reduced by decreasing δ at the expense of
increasing the model exploration time. Experimental results
are provided that highlight the effectiveness of this method.

VII. CONCLUSION

In this paper, we present a brief summary of current research
progress in the CyberCardia project. The goal of the project is
to develop the state of the art techniques for system verification
and cardiac therapies based on the use of formal methods
and closed-loop control and verification. We envision the
development of a true in silico design methodology for medical

1A third current Is, which is not intrinsic to the MS model, is used to
stimulate the cell to produce an action potential.

devices that can be used to speed the development of new
devices and to provide greater assurance that their behavior
matches designer intentions, and to pass regulatory muster
more quickly so that they can be used on patients needing their
care. The fundamental research directions we are pursuing
to achieve our goal and vision are: 1) accurate modeling of
patient’s heart and device, 2) specifying safety property for
appropriate therapy in formal language and 3) Closed-loop
verification and validation of devices using compositional,
quantitative and approximate reasoning. In this paper, we
summarize the preliminary research in 1) approximate and
compositional reasoning for closed-loop verification of cardiac
devices, 2) a parsimonious model of cardiac electrophysiol-
ogy, 3) bidomain model of cardiac defibrillation, 4) formal
specification language to express peak detection algorithms of
cardiac devices, and 5) formal verification of cardiac alternans.
As per ongoing research activities, we are continually working
on the development of personalize patient heart model, model-
based clinical trial, devising an algorithm to discriminate fatal
and non-fatal arrhythmia to administer appropriate therapy and
reachability-based safety verification of the device and heart
model.
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