
Parameter Estimation of Rule-based Models
Using Statistical Model Checking

Bing Liu and James R. Faeder
Department of Computational & Systems Biology

School of Medicine, University of Pittsburgh
Pittsburgh, PA 15213, U.S.A.

Email: {liubing,faeder}@pitt.edu

Abstract—Rule-based modeling with BioNetGen has been
widely used to study the dynamics of complex biochemical
systems. Rule-based models can be analyzed by carrying out
deterministic or stochastic simulations. However, they are often
difficult to calibrate due to many unknown parameters and
limited experimental training data. Here we present a generic
parameter estimation framework for calibrating rule-based mod-
els. The experimental data as well as qualitative properties of
the system are encoded as a specification formula in a bounded
linear temporal logic. Given a candidate set of parameter values
we apply the statistical model checking procedure to evaluate the
quality of this candidate set. Based on the outcome, a new set of
parameters is chosen using a standard global search strategy. We
have tested our method on a p53-induced apoptosis model. The
results show that our method scales well and efficiently obtains
good parameter estimates.
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I. INTRODUCTION

Cellular processes are driven by networks of biochemical
reactions. The dynamics of these networks play a crucial
role in shaping cellular functions. A better understanding of
the dynamics of the particular networks targeted by drugs in
cells and tissues is required for contemporary drug discovery
and pharmacology [1]. Systems biology approaches have been
applied to identify new drug targets and new uses of known
drugs, and to understand drug side effects in the context of
cellular networks [2]. In particular, computational modeling
has been recognized as a key approach to gain mechanistic
insights of biological systems [3], [4] and to optimize thera-
peutic strategies [5].

A variety of mathematical formalisms have been proposed
to describe the dynamics of biological systems [6]. Ordinary
differential equations (ODEs) are often used to model systems,
in which molecular species are abundantly available and form
a well-stirred mixture in a fixed volume [7]. When the concen-
trations of species are low, the variability of reaction processes
may influence the system’s behavior significantly. Stochastic
models (e.g. continuous time Markov chain (CTMC)) are then
required to capture probabilistic outcomes of the system [8].

A biochemical reaction can be viewed as a rule, which spec-
ifies how (and how fast) the states of reactants are modified to
generate products. Thus, a network of biochemical reactions
can be naturally described using a set of rules over the

molecules (e.g. proteins), where each molecule has a number
of internal states (e.g. the status of post-translational modifi-
cations or bindings with other molecules). Formal languages
such as BioNetGen [9] and κ [10] have been proposed to
quantitatively specify molecules and rules to model biological
systems, and this approach is called rule-based modeling. A
rule-based model is a generalized and compact representation
of conventional models such as ODE and CTMC based mod-
els. The rules that express a high degree of modularity avoid
the explicit enumeration of all possible molecular species or all
the states of a system. They also enable a more natural starting
point for model development than making ad hoc assumptions
to decide the model scope [11]. In this paper, we shall
focus on one major rule-based modeling approach namely
the BioNetGen [9]. The BioNetGen language (BNGL) has
been used to model a variety of biological systems [12], [13].
Software tools have been developed to construct, visualize,
simulate, and analyze BNGL models [14], [15], [16], [17].

A BNGL model involves kinetic parameters including rate
constants and initial conditions. A major bottleneck for quanti-
tative modeling is that in general, only a few of these parame-
ter values will be available or can be measured experimentally,
and the rest must be estimated. Parameter estimation is a
basic but difficult step in the model construction process.
A standard approach to this problem consists of iteratively
searching through the space of parameter values and in each
round computing the fitness of current parameter values to
experimental data. The data will typically consist of time
series measurements for a set of proteins observed at a small
number of time points. It will be of limited precision and often
averaged over a population of cells.

A BNGL model can be interpreted as an ODE model
or a stochastic model. The parameter estimation for ODE
models can resort to conventional SBML-compactible tools
such as COPASI [18], while the one for stochastic models
can be carried out using BioNetFit [19] that supports network-
free simulation [17], or tools such as ABC-SysBio [20] that
implement Gillespie?s stochastic simulation algorithms (SSA).
These tools only make use of quantitative data (e.g. time series
measurements) to constrain the parameter search space. A
standard modeling workflow involves a model validation step,
which requires reserving a portion of data as a test set to avoid
the overfitting problem. However, in practice, the available



quantitative measurements are often inadequate considering
the number of unknown parameters. Consequently, a model
can be non-identifiable [6]. To cope with this, we recently
proposed a statistical model checking (SMC)-based method
for calibrating ODE-based models with prior distributions
of initial states [21]. This method allows us to estimate
parameters by utilizing not only quantitative measurements
but also prior knowledge concerning qualitative properties of
the systems. The enriched training and test data sets further
constrain the parameter search space and may lead to better
parameter estimates.

In this paper, we extend our SMC approach and present
a parameter estimation method for generic BNGL models.
We define a linear temporal logic BLTL to describe the
experimental time series data and also encode prior knowl-
edge about the qualitative behavior of the system. We use a
sequential hypothesis test known as SPRT [22] to determine
the number of trajectories that are to be generated in each
round of the parameter estimation while at the same time
lending statistical weight to the score assigned to the current
set of parameters values. We then use a online model checker
to solve the parameter estimation problem. We recall that the
goal is to compute the values of unknown parameters so that
the resulting model can reproduce experimental observations
[23]. A common approach is to formulate this as a non-
linear optimization problem, and solve it by iterating two
major steps: (i) “guess” the values of the parameters (ii)
evaluate the goodness-of-fit of the guessed values. For step (i),
guesses may be generated randomly in the first round but later
guesses are guided by the goodness-of-fit results of previous
rounds according to the chosen search strategy. We use an
evolutionary strategy [24] to implement step (i) and deploy
our statistical model checking procedure to implement step
(ii). BNGL trajectories can be generated using the ODE solver,
SSA, NFsim, or hybrid particle/population (HPP) algorithms
[25]. In this paper, we focus on demonstrating our method
using SSA trajectories. We tested our method on a large
p53-induced apoptosis model [8]. The parameter estimation
results demonstrate that our SMC-based method is efficient
and useful.

A. Related Work

The BioLab algorithm has been developed to verify the
temporal properties of BioNetGen models [26]. Its proba-
bilistic BLTL does not allow to encode experimental data
since it can not specify that a certain property will hold
exactly at time t from now. Further, it uses an offline model
checker which is inefficient comparing to our online model
checker when dealing with a large number of trajectories.
There have been previous attempts to synthesize parameters
for quantitative models using model checking methods [27],
[28], [29], [30], [31]. Comparing to our method, these methods
lack a systematic search method and do not have an auto-
matic way to incorporate qualitative prior knowledge. Our
previous work [21] was focused on ODE systems with a
prior distribution of initial concentrations. We required that

the vector fields defined by the ODE system will be a C1

(continuously differentiable) function, in order to defined a
probability measure to the set of trajectories that satisfy a
given specification formula. Here we extend our method by
focusing on stochastic rule-based models. We relax the C1

function assumption since it has been proven that a probability
measure can be assigned to the set of CTMC trajectories that
satisfy a given specification formula [26].

B. Organization

The next section introduces rule-based models in BioNet-
Gen language. In Section 3, we discuss our specification logic
and the statistical model checking procedure. In the subsequent
section we present our parameter estimation method based on
statistical model checking. We present our experimental results
in Section 5. We conclude with a discussion on future research
directions.

II. RULE-BASED MODELING WITH BIONETGEN

A formal and detailed description of the BioNetGen lan-
guage can be found at [9]. The basic idea is to use molecules
to describe the building blocks of a biological system such as
proteins, genes, and metabolites respectively. Each molecule
will have a number of sites with associated internal states
that are used to represent the status of post-translational
modifications or bindings with other molecules. The rules
describe the interactions among molecules including associa-
tions, dissociations, modifications to the internal state of a site
as well as the production or consumption of molecular species.
Patterns are used to identify a set of molecules that share
the same internal states. For instance, a protein S with two
phosphorylatable sites x and y, we define a molecule S(x, y) to
represent S, where the sites x and y can take an internal states
from u, p (i.e. unphosphorylated and phosphorylated states),
denoted as S(y ∼ u ∼ p). Thus, S(x ∼ u, y ∼ u) denotes
a species S that both its sites x and y are unphosphorylated.
Note that the pattern S(y ∼ u) matches both S(x ∼ u, y ∼ u)
and S(x ∼ p, y ∼ u) so that the rules follow the “don’t care,
don’t write” convention.

Say we have an enzyme E(z), which can bind to S at y
and catalyze the phosphorylation of the site y, and then unbind
from S. This can be captured by the following rules:

E(z) + S(y u)↔ E(z!1).S(y u!1) k1, k2

E(z!1).S(y ∼ u!1)→ E(z) + S(y ∼ p) k3

where k1, k2 and k3 are rate constants, and ! denotes the
binding.

RuleBender [15] provides graphical interface for users
to construct, visualize, and simulate BNGL models. Given
the initial copy numbers (or concentrations) of molecules:
E(z) = 200, E(y ∼ u) = 300, BioNetGen can simulate
the time evolution of the system through ODE integration
using the CVODE package, Gillespie’s stochastic simulation,
network-free simulation using the NFsim package, or the HPP
algorithm. More details can be found at [14].



III. STATISTICAL MODEL CHECKING

To evaluate the goodness of a candidate set of parameter
values, we generate a representative set of trajectories by
simulating the BioNetGen model with these parameter values
and perform statistical model checking (SMC) to assess to
what extent those trajectories reproduce the experimental ob-
servations. A trajectory generated by simulating a BioNetGen
model is a series of time-dependent states of the form σ =
(s0, t0), (s1, t1), . . ., which means that the system jumps to
state si+1 after staying in state si for ti. Because experimental
data were available at a finite number of time points, we
discretize the time domain into a finite set of time points
T = {0, 1, . . . , T}, where T is the maximum time point
allowed (often determined by the last time point for which
experimental data were available). SMC is a scalable formal
verification technique for testing whether a dynamical system
satisfies a given system property encoded as logic formulas (in
our case, the BLTL detailed below) with guaranteed confidence
levels [32]. The main concept is that given a property ϕ, there
is a probability Pr(ϕ) that a randomly generated trajectory
will have the property ϕ. Thus, whether the system satisfies
the property ϕ can be statistically verified by: (i) setting up the
null hypothesis H0 : Pr(ϕ) ≥ p and the alternative hypothesis
H1 : Pr(ϕ) < p, where p is a confidence level chosen by the
user, (ii) repeatedly generate trajectories of sufficient length
(determined by ϕ) and check whether they satisfy ϕ. Standard
sequential hypothesis testing methods can be used to terminate
this test after deciding whether either the null hypothesis or
the alternative hypothesis holds.

A. Bounded Linear Temporal Logic

Let S be a finite set of real-valued variables. Our BLTL is
defined over a finite set of atomic proposition (AP ), which will
be of the form x#y, where x and y are arithmetic expressions
over real-valued variables in S, and # ∈ {>,<,=,≥,≤}.
The logic operators in our BLTL consist of ∧ (and), ∨ (or), ¬
(negation), O (next), and time bounded U (until), G (global),
and F (future). The formulas of BLTL are defined as: (i) every
AP as well as the constants true and false are BLTL formulas;
(ii) If ψ, ψ′ are BLTL formulas then ¬ψ and ψ∨ψ′ are BLTL
formulas. (iii) If ψ, ψ′ are BLTL formulas and t ≤ T is a
positive integer then Oψ′ ψU≤tψ′, ψUtψ′, F≤tψ′ and G≤tψ′

are BLTL formulas.
The notion of a trajectory σ satisfying a BLTL-specified

property φ at time point t ∈ T is written as σ, t |= ϕ. Its
semantics is defined as follows:
• σ, t |= AP iff AP holds true in state st.
• ¬ and ∨ are interpreted in the usual way.
• σ, t |= ψU≤kψ′ iff there exists k′ such that k′ ≤ k,
t + k′ ≤ T and σ, t + k′ |= ψ′. Further, σ, t + k′′ |= ψ
for every 0 ≤ k′′ < k′.

• σ, t |= ψUkψ′ iff t+ k ≤ T and σ, t+ k |= ψ′. Further,
σ, t+ k′ |= ψ for every 0 ≤ k′ < k.

We define probabilistic BLTL formulas in the form of
Pr≥r(ψ), where θ ∈ (0, 1], meaning that the probability that

a trajectory σ satisfying ϕ is at least r. Here the probability
measure for ODE systems with prior distribution of initial
states is defined in [21], while the one for stochastic systems
(CTMCs) is defined in the usual way [26]. The statements we
make are in the form of M |= Pr≥r(ψ), meaning that the
probability that the system M satisfies a property ψ is at least
r. For example, we express the property “caspase-3 (c) level
sustains once it reaches certain threshold” as follows:

Pr≥0.95(c ≤ 1U≤10(F≤56(c ≥ 30 ∧G≤44(c ≤ 30))))

B. Statistical Model Checking of Probabilistic BLTL Formulas

With SMC, the verification of such properties can be carried
out approximately but with guaranteed confidence levels and
error bounds. According to [33], whether M |= P≥rψ, can
be formulated as a sequential hypothesis test between the
null hypothesis H0 : p ≥ r + δ and the alternative hypothesis
H1 : p ≤ r − δ, where p is the probability of M satisfying ψ
and δ specifies the indifference region supplied by the user.
The strength of the test is decided by parameters α and β
which bound the Type-I (false positive) and Type-II (false
negative) errors respectively. The test proceeds by generating a
sequence of sample trajectories σ1, σ2, . . .. One assumes a cor-
responding sequence of Bernoulli random variables y1, y2 . . .,
where each yk is assigned the value 1 if σk, 0 |= ψ. Otherwise
yk is assigned the value 0. For each m ≥ 1, after drawing m
samples, we compute a quantity qm as:

qm =
[r − δ](

∑m
i=1 yi)[1− [r − δ]](m−

∑m
i=1 yi)

[r + δ]
(
∑m

i=1 yi)[1− [r + δ]]
(m−

∑m
i=1 yi)

(1)

Hypothesis H0 is accepted if qm ≥ Â, and Hypothesis H1 is
accepted if qm ≤ B̂. If neither is the case then another sample
is drawn. The constants Â and B̂ are chosen such that it results
in a test of strength (α, β). In practice, a good approximation
is Â = 1−β

α and B̂ = β
1−α .

C. Tableau-based Online Model Checking

The most computational intensive task in the model check-
ing procedure is simulating the system for each sample. We
use a-tableau based online model checking method which
combines the process of simulation with model checking.
Instead of simulating the system upto T and then apply the
(offline) model checking procedure, we simulate the system
only until the model checker can make a decision (i.e. returns
either sat or unsat). This can often reduce simulation time and
the overhead of storing the trajectories.

Specifically, we construct and propagate a finite family of
sets F . Each set Fi ∈ F contains a finite number of formulas.
Let ϕ,ψ and γ be BLTL formulas. A literal is defined as
an atomic proposition A ∈ AP or its negation ¬A. For
the purpose of illustration, let’s assume that we convert the
given BLTL formulas into a form in which only the atomic
propositions can appear in negated form. In other words, we
assume our formulas will have the following syntax: (i) Every
literal is a formula. (ii) If ϕ and ϕ′ are formulas so are ϕ∨ϕ′



and ϕ∧ϕ′, Oϕ, Fϕ, Gϕ, ϕUϕ′. Every formula in the original
syntax can be expressed as a formula in the above syntax
where only the APs are negated.

For a formula ϕ, we define the family of closure sets cl(ϕ)
by structural induction on ϕ:
• If ϕ is true or a literal then cl(ϕ) ={{ϕ}}.
• If ϕ = ψ ∨ γ then cl(ϕ) = cl(ψ) ∪ cl(γ).
• If ϕ = ψ ∧ γ then cl(ϕ) = cl(ψ)× cl(γ).
• If ϕ = Oψ then cl(ϕ) = {{Oψ}}.
• If ϕ = Fψ then cl(ϕ) = cl(ψ) ∪ cl(OFψ).
• If ϕ = Gψ then cl(ϕ) = cl(ψ)× cl(OGψ).
• If ϕ = ψUγ then cl(ϕ) = cl(γ) ∪ (cl(ψ)× cl(O(ψUγ)).
If we have a set of formulas Y = {ϕ1, ϕ2, . . . , ϕn}, then the

closure cl(Y ) can be written as cl(Y ) = cl(ϕ1)×cl(ϕ2) . . .×
cl(ϕn). We can also extend the notion of closure to families
of sets of formulas such as F = {Y1, Y2, . . . , Yk}, and say
that the closure set of F is cl(F) = cl(Y1)∪ cl(Y2) . . . cl(Yk)

We call the set of formulas Y a leaf set iff cl(Y ) = Y .
Further, a set Y is inconsistent iff (i) for an AP p, p ∈ Y
and ¬p ∈ Y or (ii) for some formula ϕ, both Oϕ ∈ Y and
O¬ϕ ∈ Y . The following assertions hold.
• Y is a leaf set iff each formula in Y is a literal or a O

formula.
• cl(ϕ) is a leaf family for each ϕ.
• cl(Y ) is a leaf family for every finite set of formulas Y .
• cl(F) is a leaf family for every family of formula sets
F .

Suppose the current system state is st. If Y is a leaf set
then Y is dead at time t iff Y is inconsistent or st 6|= ` for
some literal ` ∈ Y . Consequently, a family of leaf sets F is
dead iff ∀Y ∈ F : Y is dead. Furthermore, F is terminal iff
∃Y ∈ F : Y is not dead and next(Y ) = ∅, where next(Y ) =
{ψ|Oψ ∈ Y }.

Now assume we are given a formula ϕ and want to check
in an online manner if the system trajectory satisfies ϕ.
We propagate a family of sets and start with F0 = cl(ϕ).
Inductively, assume that we are given the family of sets F t
for t < T . If F t is dead, then we set F t+1 = false, and
if F t is terminal then we set F t+1 = true. Otherwise,
F t is neither dead nor terminal. In this case we know that
∃Y1, Y2, ..., Yk ∈ F t, k ≥ 1 which are not dead. Since these
sets are not dead, we know that ∀i, 1 ≤ i ≤ k : next(Yi) 6= ∅.
We can then build the family of sets for time t + 1 as
F t+1 = cl(next(Y1)) ∪ cl(next(Y2)) . . . ∪ cl(next(Yk)).

The process terminates at time t < T if ∀Y ∈ F t is false
and returns s(0) 6|= ϕ or if ∃Y ∈ F t which is true, and
returns s(0) |= ϕ. Furthermore, if t = T , if F t is a terminal
leaf family at s(T ), the process terminates and returns that
s(0) |= ϕ. Otherwise it returns s(0) 6|= ϕ.

IV. SMC-BASED PARAMETER ESTIMATION

A. Knowledge Encoding

We first describe how quantitative training data can be
encoded as a BLTL formula. Let O ⊆ {x1, x2, . . . , xn} be
the set of variables for which experimental measurements are

available as the training data. Assume Ti = {τ i1, τ i2, . . . , τ iTi
}

are the time points at which the concentration level of xi has
been measured and reported as [`it, u

i
t] for each t ∈ Ti. Here

the interval [`it, u
i
t] is so chosen that it reflects the noisiness

(i.e. error bars), the limited precision and the cell-population-
based nature of the experimental data.

For each t ∈ Ti we define the formula ψti = Ft(`it ≤
xii ∧ xi ≤ uit). Then ψiexp =

∧
t∈Ti ψ

t
i . We then set ψexp =∧

i∈O ψ
i
exp. In case the species xi has been measured under

multiple experimental conditions, then the above encoding
scheme is extended in the obvious way.

Often qualitative knowledge (e.g. dynamic trends) will be
available in the literature for some of the molecular species
in the system. For instance, we may know that a species
shows transient activation in which its level rises in the early
time points and later falls back to initial levels. Similarly,
a species may be known to show oscillatory behavior with
certain characteristics. Such information can be described as
BLTL formulas that we term to be trend formulas. Examples
of such formulas can be found in section V. We let ψqlty to
be the conjunction of all the trend formulas.

Finally we fix the probabilistic BLTL formula P≥r(ψexp ∧
ψqlty), where r will capture the confidence level with which
we wish to assess the goodness of the fit of the current set
of parameters to experimental data and qualitative trends. We
also fix an indifference region δ and the strength of the test
(α, β). The constants r, δ, α and β are to be fixed by the
user. In our application it will be useful to exploit the fact
that both ψexp and ψqlty are conjunctions and hence can be
evaluated separately. As shown in [33], [34], one can choose
the strength of each of these tests to be (αJ , β), where J is the
total number of conjuncts in the specification. This will ensure
that the overall strength of the test is (α, β). Further, the results
for the individual statistical tests can be used to compute the
objective function associated with the global search strategy,
as detailed below.

B. Parameter Estimation Algorithm

Let θ = {c1, c2, . . . , cK} be the set of unknown rate
constants whose values we wish to estimate. The outer loop
of our parameter estimation procedure will run as follows. We
shall assume for convenience that the search strategy uses a
single set of parameter values (one for each unknown rate
constant) in each round.

1) Fix θ0, which assigns a value to each unknown rate
constant. This represents the initial guess. Set ` = 0.

2) With θ` as the current set of rate constant values, run
the statistical model checking procedure to verify the
individual conjuncts of ψexp ∧ ψqlty with the chosen
strengths.

3) Based on the answers returned by these tests compute
F (θ`), where F is the objective function.

4) Check if the value of the objective function is sufficiently
high or ` has reached a predetermined bound.

5) If yes, return θ` as the estimated value.



6) Else fix a new set of rate constant values θ`+1 as dictated
by the search strategy. Increment ` to ` + 1 and return
to step (2).

The objective function is formed as follows. Let θ be an
assignment of values to the unknown rate constants. Let J iexp
(= Ti) be the number of conjuncts in ψexp and Jqlty the
number of conjuncts in ψqlty. Let J i,+exp(θ) be the number
of formulas of the form ψti (a conjunct in ψiexp) such that
the statistical test for P≥r(ψti) accepts the null hypothesis
(that is, P≥r(ψti) holds) with the strength (αJ , β), where
J =

∑
i∈O J

i
exp. Similarly, let J+

qlty(θ) be the number of
conjuncts in ψqlty of the form ψ`,qlty that pass the statistical
test P≥r(ψ`,qlty) with the strength (αJ , β). Then F (θ) is
computed via:

F (θ) = J+
qlty(θ) +

∑
i∈O

J i,+exp
J iexp

(2)

Thus the goodness to fit of θ is measured by how well it
agrees with the qualitative properties as well as the number
of experimental data points with which there is acceptable
agreement. To avoid over-training the model, we do not insist
that every qualitative property and every data point must
fit well with the dynamics predicted by θ. It is possible to
introduce additional terms to the objective function in order
to speed up convergence in practice. We discuss one such
method in the supplementary material [35].

The search strategy deployed in step (6) above will use
the values F (θ`) to traverse the space of candidate parameter
vectors. The search method can be local or global. Local
methods such as the Levenberg-Marquardt algorithm [36] have
the advantage of converging fast, but can get stuck in local
minima. Global methods such as Genetic Algorithms (GA)
[37], and Stochastic Ranking Evolutionary Strategy (SRES)
[24] – although computationally more intensive – are much
better at avoiding local minima and in principle monotonically
improve the estimates in proportion to the computational
effort.

In practice, global methods usually maintain a set of pa-
rameter value vectors in each round. Each round is called
a generation and the current set of parameter value vectors
is called a population. Here, for the sake of convenience,
we have explained the basic structure of the algorithm by
pretending that each population is a singleton. We use the
SRES strategy in our work since it is known to perform well
in the context of pathway models [23]. The particular choice
of search algorithm, however, is orthogonal to our proposed
method.

V. RESULTS

We have tested our method on a p53-induced apoptosis
model [8]. The tumor suppressor protein p53 is an important
mediator of cell response to genotoxic stress. The model has
been used to evaluate pharmacological strategies for control-
ling ionizing radiation (IR)-induced cell death in order to
mitigate radiation damage and alleviating the side effects of

anti-cancer radiotherapy manifested in surrounding tissue mor-
bidity. We constructed a rule-based model using BioNetGen
based on the reaction network shown in Figure 1. Our model
consists of 86 rules and 160 parameters. We used the nominal
parameter values to generate synthetic experimental data by
simulating the model using SSA. To mimic a population
of single cell measurements, we generated 100 trajectories
and compute their means and standard deviations at 5 time
points for 4 species to assemble the training data set. We
also incorporated the following qualitative knowledge into the
training data.

Property 1: Mdm2 reaches its peak after p53.

Pr≥0.9(p53
(N) ≤ 0.01nM ∧Mdm2(N) ≤ 0.01nM

F≤100h(p53(N) ≥ 1nM ∧Mdm2(N) ≤ 0.01nM∧
F≤100h(p53(N) ≥ 3nM ∧Mdm2(N) ≤ 0.4nM∧
F≤100h(p53(N) ≤ 4nM ∧Mdm2(N) ≤ 0.4nM))))

The above property specifies that the level of nuclear p53
reaches a peak value between 3 and 4 nM before the level
of nuclear Mdm2 reaching a peak value around 0.4 nM.

Property 2: Sustained caspase-3 once its level reaches
certain threshold.

Pr≥0.9(F≤56h(C3 ≥ 0.3nM ∧G≤44h(C3 ≤ 0.3nM)))

The above property specifies that after caspase-3 concentration
reaches 0.3nM, it will sustain for at least 44 h and triggers
downstream apoptotic cascade.

Property 3: p53 pulses induce oscillatory behaviors of target
genes.

Pr≥0.9(F≤56h(Bax ≥ 0.06nM ∧ PUMA ≥ 0.06nM∧
(F≤56h(Bax ≤ 0.04nM ∧ PUMA ≤ 0.04nM∧
(F≤56h(Bax ≥ 0.06nM ∧ PUMA ≥ 0.06nM∧
(F≤56h(Bax ≤ 0.04nM ∧ PUMA ≤ 0.04nM))))

The above property specifies the oscillatory behavior of Bax
and PUMA.

We fixed a subset of 10 rate constants to be unknown,
and run our parameter estimation procedure. The experiments
were carried out on a machine with two Intel Xeon E5-2650
2.00GHz processors and 32GB RAM. The parameters used
for the statistical model checking algorithm were r = 0.9,
α = 0.05, β = 0.05, δ = 0.05. Parameter estimation was
done with a population size of 50 per generation and for 50
generations. The time taken by SRES-based search was 4.2
hours. Figure 2 shows the fit to training data for simulated
time profiles with the best parameters found. Figure 3 shows
simulated time profiles fit the specified qualitative properties.

VI. CONCLUSION

We have presented a statistical model checking based frame-
work for estimating unknown parameters of rule-based mod-
els. Our method can utilize both quantitative experimental data
and qualitative properties of system dynamics as training and
test data. We perform online model checking to evaluate the
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Fig. 2. Simulation results vs. quantitative training data.

goodness of parameter values and use an evolutionary strategy
to explore the parameter space. We have tested our method
on a stochastic p53 pathway model. The preliminary results
look promising. Currently, we focused on testing our method
by performing Gillespie’s stochastic simulations. We plan to
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Fig. 3. Simulation results reproduce qualitative properties.

carry out more case studies using the network-free simulator.
We also plan to develop a GPU-enabled implementation to
further improve the performance [38], [39], [40].
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