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1 Introduction

Latent factor models (LFMs) are a set of unsupervised methods that model observed high-
dimensional data examples by linear combination of latent factors. To enable efficient pro-
cessing of large data collections, LFMs aim to find concise descriptions of the members of a
data collection while preserving the essential statistical information which is useful for basic
tasks such as classification, indexing or summarization. Due to its simple form and compu-
tation convenience, latent factor models have been very popular in modeling and analyzing
massive data sets such as text documents and images [Hastie et al., 2001].

In this paper, our goal is to learn interpretable lower dimensional latent representations
from a set of data samples and simultaneously model the relationship between latent factors.
This is largely motivated by the massive-scale data corpora available online, and the urgent
demands for understanding the hidden structure inside these high-dimensional data sets. It
is very helpful to not only find the common hidden factors but also explore the structural
relationship between these latent groups. For example, a piece of news text about ”budget
spending” is much more likely to be about ”war”, compared to the ”entertainment” topics.
These types of “positive correlated” or “negative correlated” relationships between latent
topics will help us explore and visualize a large collection of documents much more deeply
and in a more structured way.

In this paper, a method named “structured latent factor analysis” is proposed to simulta-
neously learn the latent factors and their pairwise relationships from data. Derived from
probabilistic modeling of data, SLFA can be seen as a generalized matrix factorization task
using a special regularization term. By modeling the distributions of sample embedding vec-
tors via a Sparse Gaussian Graphical model, we discover the pairwise relationships between
latent factors through SGGM’s precision matrix. On multiple synthetic and real-world data
sets, SLFA demonstrates its superiority over both classic and state-of-the-art methods.

2 Preliminaries

Latent Factor Models Latent factor models' study a random vector x € RM by assum-
ing that it is generated by a linear combination of a set of basis vectors, i.e.,

x=Bs+e=Bis1+---+Bgskg +e¢ (1)

!Throughout this paper, we abuse the term ’latent factors’ to indicate the basis vectors
B, ..., Bk, which is different from the convention that s1, ..., sk are called factors and By, ..., Bk
are called the loading vectors.



where B = [By,...,Bk] stores the set of fixed but unknown basis and e describes noise.

Given a set (with size N) of observations x € R from X = [Xy,...,Xy] € RM*N
LFM could be generally formulated as a matrix factorization problem that minimizes the
reconstruction error over the whole dataset with respect to B € RM*K and § € RE*¥:
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where || - || is the matrix Frobenius norm and certain constraints or penalties normally
apply on B and S. Once the B and S are obtained, we can analyze the dataset by checking
the meaning of the latent factors Bi,...,Bx and use the K dimensional representation
S =[S4,...,Sn] of the original data X for further tasks such as classification.

If the sample mean of X is zero, principal component analysis (PCA) [Hastie et al., 2001]
gives the optimal solution for problem (2), though PCA is usually formulated as eigenvalue
problem for the sample covariance matrix 33 = %XTX. One can also directly apply singular
value decomposition (SVD) on the data matrix without the centering step. In information
retrieval (IR) community, the method of computing the SVD of the document-term ma-
trix is called Latent Semantic Analysis (LSA) [Deerwester et al., 1990] and produces a set
of orthogonal topics. Other important variants include non-negative matrix factorization
(NMF) [Lee and Seung, 1999], which imposes non-negativity upon B and S; sparse coding
or dictionary learning [Olshausen et al., 1996], which imposes sparsity on S; and sparse
LSA [Chen et al., 2011], which enforces sparsity on B. Despite the popularity of these pre-
vious methods, none of them considers the relationship between the latent factors. In this
sense, they are incapable of recovering the deeper structure of the dataset.

Sparse Gaussian Graphical Model A Gaussian graphical model [Jordan, 1998] charac-
terizes the patterns of association among multiple variables that are jointly Gaussian. Zeros
in the inverse covariance matrix (i.e. so-called precision matrix ® = X ~!) correspond to
conditional independence properties among the variables. When given a sample covariance
matrix 3, a sparse Gaussian graphical model [Yuan and Lin, 2007] estimates 3 or @ by
solving a MLE problem with an ¢;-norm penalty encouraging sparsity of precision matrix
or conditional independence among variables:

min(—log det &+ < 3,8 > 49| @) (3)
for some p > 0, where [|®[[1 = >, >, [P

When applying sparse Gaussian graphical model to very high dimensional data such as text,
it is normally difficult to analyze the result, simply due to the huge size of the resulting
graph. This obstacle could be partially tackled for cases where original variables act in the
pattern of groups. In Section 3, we point out that our proposed SLFA could be treated as
a generalization of sparse Gaussian graphical model which finds the associations between
latent groups and therefore provides a smaller graph between factors which is much easier
to analyze.

3 Structured Latent Factor Analysis

3.1 Formulation of SLFA

Assume that data sample x is drawn from the normal distributions, i.e.,

plxln) = (2) M Peap(— s Ix — ] (4)

Let the natural parameter 7 represented by a linear combination of basis vectors n = Bs
where B is the basis matrix. To model the relationship between latent factors, we impose
a Gaussian prior distribution on the coefficient vector: s ~ N(0,®~1), and use a sparsity-
inducing prior for the precision matrix exp(—3p1[|®||1) in order to encourage a parsimonious
and less over-fitting model. Moreover, the sparse structure of ® will ease the analysis of the
relational structure between the latent factors.



Given a set of observations of x which builds the data matrix X = [Xy,...,Xy], the
posteriori is proportional to the product of likelihood function and prior distributions:
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where p = %pl is a hyper-parameter. The Maximum a Posteriori (MAP) estimates of
the basis matrix B, the coefficient matrix S and the precision matrix ® are therefore the
solution of the following optimization problem:
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minimize N”X —-BS|7 +0 (Ntr(S ®S) — logdet(®) + p||P|1)
subject to B >0, |By|| < 1,k=1,..., K,

® = 0. (5)

where additional constrains B > 0 and ||Bg| < 1 are introduced for the identifiability of
the model, and the constraint ® > 0 ensures the precision matrix ® is nonnegative-definite.

The first part of the objective function is a matrix factorization problem minimizing the
reconstruction error. The second part is the sparse Gaussian Graphical Model problem.
Therefore, the first part emphasizes reconstructing the data by the latent factors, while the
second part emphasizes our prior assumption that the coefficient vector s follows a Gaussian
distribution with a sparse precision matrix. The two parts of the objective function will
compete to explain the observed data.

If the parameter o2 = 0 (i.e., non-informative prior), then problem (5) is a semi-nonnegative
matrix factorization problem with nonnegativity constraint on B. If ¢2 > 0 and ® is
fixed, then problem (5) with respect to B and S is a matrix factorization problem with
generalized Tikhonov regularization trace(ST ®S). The difference between problem (5) and
matrix factorization problem with standard Tikhonov regularization ||S||% or sparse coding
with sparsity-inducing regularization such as ||S||; is that this model tends to produce
collaborative reconstruction in the sense that positively related factors attract each other
and exclude negatively related factors. To justify this, one can check that if ®;; > 0,
minimizing the objective function will refrain s; and s; to be simultaneously large or small
(negative). Therefore, the latent factors learned by SLFA are not orthogonal but try to
capture more deeper structures hidden in the dataset, which might be more meaningful
interpretations. We validate this intuition in the experimental section using a hand crafted
dataset.

The hyper-parameter p controls the sparsity of the ®. A large p will result in a diagonal
precision matrix ® meaning the latent factors become conditionally independent. As p — 0,
® becomes denser. However, if we set p = 0, then the subproblem with respect to ® has
a closed form solution ® = (%SST)*, i.e., inverse sample covariance matrix. Plugging it
back to problem (5), we have
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which doesn’t have a lower bound. For unsupervised applications, we can select multiple
values of p to obtain the ® with desired sparsity. For supervised tasks, we can use cross-
validation to choose the proper value of p.

Relational Analysis of Latent Factors By assuming that a random vector s has a
inverse covariance matrix ®, the partial correlation between s; and s; can be computed by

Ty = = ©)
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Magnitude of v; ; reflects the degree of association between s; and s; given all the other
components s,k # 4,7 fixed. In fact, if s follows a normal distribution, s ~ N (0, ®~1),

letting s_; denote the vector (s1,...,8;-1,8i+1,-.-,8K), it can be shown [Yuan, 2010] that
the conditional distribution of s; given s_; is also a normal distribution:
sifs_i ~ N(—sT, 0@, ;, @,;1), (7)



where ®_; ; represents the the j-th column of ® with its ¢-th entry removed. Therefore, two
variables s; and s; are conditionally independent given the rest if and only if v; ; = ®; ; = 0.

Thus, we can avoid the ambiguity of the term ‘relationship’ between latent factors B; and B;
by connecting it to the partial correlation between their corresponding coeflicient variables.
Accordingly, we propose a methodology of studying the relationship between the learned
latent factors via analyzing the sparse precision matrix ® as follows.

e @, ; is nonzero, the coeflicient of factor B; is predictive for the coefficient of factor

'

— 7,; > 0, s; and s; are positively correlated given all other si, k # i,j. We say
B; and B are positively related.

— 7,; <0, s; and s; are negatively correlated given all other sy, k # 4, j. We say
B; and B, are negatively related.

e 7;; = 0, then s; and s; are conditionally independent given all other si,k # 1, j.
We say B; and B; have no relationship.

Relationship to Sparse Gaussian Graphical Model: We can also see SLFA as a
generalization of sparse Gaussian graphical model. In fact, if the reduced dimension K = M,
the problem (5) has trivial solution B = I and S = X such that the problem becomes
the same as (3). When K < M, the subproblem with respect to s has solution s =
(BTB + 02®)~!x. Therefore, s can be seen as a low dimension representation under new
variables which are linear combinations of original variables of x with weights stored in
W = (BTB + 02®)~!. In this sense, SLFA results in the sparse Gaussian graphical model
of s = Wx and thus generalized the model from original variables to the combined variables.

3.2 An Online Algorithm

The objective function in (5) is not convex with respect to all three unknowns (B, S and
®) together. However, it is convex with respect to each one of B, S and ® individually.
Therefore, we can use Block Coordinate Descent algorithm [Bertsekas, 1999] to circularly
update B, S and ®.

Moreover, we propose an online algorithm to tackle larger data sets, which is summarized in
Algorithm 1. In the online algorithm, we randomly pick a mini-batch of observations x at
each iteration, compute their coefficient vectors s and update basis matrix B and precision
matrix ®. For solving the subproblem (3), we adopt the Alternating Linearization Methods
(ALM) developed by [Scheinberg et al., 2010].

Algorithm 1 Online algorithm for SLFA

Input: Initial guess of latent factors B, observations X = [Xy,...,X,,], initial precision
matrix ® = I, number of iterations T, regularization parameters p, step-size y and size of
mini-batch ny.

e fort=1toT

— Draw a mini-batch of observations stored in X from the data set {Xy,...,Xp}

— Compute the coefficient vectors S = (BB + o2®)~'X.

— Update B using a gradient descent step: B <+ B — nibfy[BS - X]ST

— Project all columns of B to the first orthant and the unit ball, i.e., B > 0 and
1Bl < 1.

— Solve subproblem (3) to update the sparse inverse covariance matrix ® using
a batch of recently learned coefficient vectors s.

e end for




3.3 Discriminative SLFA for Classification

Since SLFA tends to find latent factors that form a collaborative reconstruction, the K
dimensional representation s is not the ideal feature for discriminative purpose (e.g. classifi-
cation tasks). Therefore, we extend the discriminative power of SLFA by enforcing different
classes to share the same latent factors but to exhibit different relational structures among
latent factors. Namely, we learn the same basis matrix B for all C classes while for each
individual class j € {1,...,C}, we learn a different precision matrix ®;). Therefore, the
training process is to solve the following optimization problem:

c
o1 2 2 1 T
minimize X — BS|} + o Z;{Etr(smj)‘ﬁsuvj)) —logdet(®;)) + p[|®(;)ll1}
iz
subject to B> 0,|Bx|| <1,k=1,..., K,
& 50,

where S(y;) stores the coefficient vectors of the training data from class j. Once we learn
the shared basis B and the precision matrices ®(;),j = 1,...,C, we can fit the training
and testing data x using the model corresponding to each class to obtain the K dimensional
representations s(;) = (BYB+® ;) 'B?x. We then have a CK dimensional representation
by concatenating all the s(;) together which can be used by standard classifier like SVM.

4 Experiment

4.1 A Toy Example

The goal of this toy experiment is to show that SLFA is able to recover more meaningful
basis and their relationship than baseline latent factor models. We set up the experiment
by generating 15000 images of “bugs”, each of which is essentially a linear combination of
five latent parts shown in Figure 1 in the following way. Given 37 basis images, we first
randomly select one of the five big circles as body of the ’bug’. Each shape of body is
associated with four positions for legs of the bug. We then randomly pick 4 legs from its
associating set of 4 small circles and 4 small strokes. However, for each leg, circle and
stroke are exclusive of each other. We then combine the selected five latent parts with
random coefficients that are sampled from uniform distribution and multiplied by —1 with
probability 0.5. Finally, we add a randomly selected basis with small random coefficients
plus Gaussian random noise to the image to introduce noise and confusion in the dataset.
Few examples of data created this way are shown in Figure 1. Using SLFA and other two
baseline algorithms, PCA and semi-NMF, we learn a set of latent factors and compare the
result of three methods in Figures 1, we can see that only the basis generated by SLFA is
very similar to the true latent factors. This is due to the fact that SLFA accounts for the
partial correlation between basis in the optimization problem and encourages collaborative
reconstruction.

More importantly, SLFA provides convenience of analyzing the relationship between the
factors using the precision matrix ®. In Figure 2-a, we analyze the structure learned in
the precision matrix ®. The most negatively related (exclusive) pairs (the ¢ and j entries
with highest postive entries in ®) are circular and stroke legs which conforms fully to the
generation process, since either one of them is chosen for any given location. Accordingly,
the most positively related pairs are a body shape and a leg since every bug has a body and
a leg.

4.2 NIPS documents

In this section, we apply SLFA to NIPS corpus? which contains 1740 abstracts from NIPS
Conferences 1 — 12 for visualization purposes. We show how SLFA is used to organize
and visualize the relationship between the structured topics. SLFA is applied on the 13649

http://cs.nyu.edu/ roweis/data.html



dimensional tf-idf feature vector which is normalized to have unit norm. We fix the number
of topics to be 40 and tune the parameters ¢ and p to obtain ® with proper sparsity for
visualization task. In Figure 2-b, we plot a graph of topics with positive partial correlations
between each other and present the first 5 keywords of a few interested topics. For example,
the topic at the top is about general notions in many learning algorithms and acts as the hub
point of the graph. Many of the nodes connected to the hub node contains words related to
a particular learning algorithm or topic of interest. It is obvious that SLFA not only extracts
underlying topic structure, but is also able to capture the correlations between topics. For
example, on the far left, the topic related to cells is connected to “motion, velocity, ...”,
“objects, image,...” and “spike, neurons, ...” nodes. This subgraph clearly represents topics
related to computational vision and neuroscience. On the far right “robot, planning, ... node
is connected to “controller, control, ... which represents a robotics related topic cluster.

4.3 Classification on 20 News Group

In this experiment we test the performance of SLFA model on classification of 20 News Group
document data®. The data set consists of 18846 documents from 20 categories, which are
split into training set and testing set by date. We use the frequencies of the most frequent
8000 words out of the original 26214 words as the feature of each document. We use 5
latent factor models, which are Correlated Topic Model (CTM), Latent Dirichlet Allocation
(LDA), PCA, our proposed model SLFA and its extension DiscSLFA, to find K = 36,49, 64
and 64 latent topics and then perform LibSVM [Fan et al., 2008] to train a linear classifier
on the low dimensional representations. td-idf transformation is used for PCA, SLFA and
DiscSLFA and 5-fold cross-validation on the training set is used to tune the parameters in
SLFA and DiscSLFA. We report the average accuracy of 20 categories in Figure 2-c and show
that SLFA performs slightly better than classical dimension reduction algorithm PCA which
produces orthogonal representations. More importantly DiscSFLA, which uses supervised
label information to learn separate precision matrices per class, significantly improves the
accuracy.

4.4 Gene Microarray Data

We test our model for the classification task on a breast cancer microarray data set ob-
tained from [Jacob et al., 2009]. SLFA could deeply explore the latent information in this
data set and can even compete with state-of-the-art classification methods which utilized
extra biological evidence. This data set contains gene expression values of 8,141 genes for
295 breast cancer tumor samples (with 78 metastatic and 217 non-metastatic). We com-
pare six methods on their classification error rates, which include Lasso [Tibshirani, 1996],
GLasso [Jacob et al., 2009], Linear SVM classifier [Fan et al., 2008], PCA with SVM classi-
fier, SLFA with SVM classifier and DiscSLFA with SVM classifier. For GLasso (i.e. a logistic
regression approach using the graph-guided sparsity), a prior biological network information
is provided (42,594 known edges between genes) to construct the graphical regularization.

Since the sample size is very small, we run 10-fold cross validation and use the averaged error
rate on the validation set to indicate the predictive performance of different methods. The
test is repeated for 50 times and for each time all methods use the same spit of training and
validation sets. The boxplot of the CV error rate is shown in Figure 2-d. We can observe
that SLFA and DiscSLFA have lower error rate than methods such as LASSO, SVM and
PCA. Furthermore, compared to the method GLasso [Jacob et al., 2009] which construct
regularization from external information, our method based on SLFA is even better, which
indicates SLFA can extract deep structural information hidden in the data. Unlike document
data using 20 News Group, DiscSLFA doesn’t perform superior than SLFA. This most likely
due to the fact that the sample size for each class is to small and DiscSLFA ends up over-
exploring the information in training data.

3http://people.csail. mit.edu/jrennie/20Newsgroups/
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(a) True basis (b) Sample images (¢) Generating process
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(d) SLFA (f) Semi-NMF

Figure 1: Upper figures show the images of true basis, generated sample images and one
example of generating process. Lower figures show the basis recovered by SLFA, PCA and
semi-NMF. The basis learned by PCA and semi-NMF do not reveal any underlying structure
of generating process.
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(c¢) 20 NewsGroup classification (d) Gene microarray classification

Figure 2: Experiment result: (a) The table shows the five largest and and five smallest entries
in ® and their corresponding B; and B; pairs. For ®(¢,j) > 0, ¢ and j are negatively related
(exclusive), for ®(i,5) < 0, ¢ and j are positively related (supportive). (b) Positively related
topics discovered from NIPS text corpus. (c¢)Classification performance of different methods
on 20 News Group Data. DiscSLFA improves classification rate significantly. (d)Cross-
validation error rate by different methods on Gene Micro-array data. Both SLFA and
DiscSLFA perform better than other methods.
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