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Abstract

This paper discusses the application of TCP tunnels on the Internet and how Internet traffic can benefit from the

congestion control mechanism of the tunnels. Primarily, we show the TCP tunnels offer TCP-friendly flows protection

from TCP-unfriendly traffic. TCP tunnels also reduce the many flows situation on the Internet to that of a few flows. In

addition, TCP tunnels eliminate unnecessary packet loss in the core routers of the congested backbones, which waste

precious bandwidth leading to congestion collapse due to unresponsive UDP flows. We finally highlight that the use of

TCP tunnels can, in principle, help prevent certain forms of congestion collapse described by Floyd and Fall [IEEE/

ACM Trans Networking 7 (4) (1999) 458].

The deployment of TCP tunnels on the Internet and the issues involved are also discussed and we conclude that with

the recent RFC2309 recommendation of using random early drop as the default packet-drop policy in Internet routers,

coupled with the implementation of a pure tunnel environment on backbone networks makes the deployment of TCP

tunnels a feasible endeavour worthy of further investigation. � 2002 Elsevier Science B.V. All rights reserved.

Keywords: TCP tunnels; Aggregation; Quality of service; Congestion collapse; Queue management; Flow back-pressure; Random early

drop routers

1. Introduction

The evolution and deployment of new network
technologies involving the provision of bandwidth
has continually fed the insatiable end user’s ap-
petite for even more bandwidth. Whenever a leap
in network technology for provisioning bandwidth
occurs, the increasing end user demands for more
bandwidth threatens to consume the available ca-
pacity and stress the limits of technology. In ad-
dition, the increasing use of TCP-unfriendly and
unresponsive flows, due to the proliferation of

Computer Networks 39 (2002) 207–219

www.elsevier.com/locate/comnet

qA version of this paper was presented in the IEEE LCN

2000 conference, Tampa, Florida.
* Corresponding author.

E-mail addresses: lee.bp@unityintegration.com (B.P. Lee),

rajeshkr@comp.nus.edu.sg (R.K. Balan), jacobl@comp.nus.

edu.sg (L. Jacob), ananda@comp.nus.edu.sg (A.L. Ananda).
1 Present address: Unity Wireless Integration, 1123 Seran-

goon Road, #02-01 UMW Building, Singapore 328207, Singa-

pore.
2 Present address: Carnegie Mellon University, School of

Computer Science, 5000 Forbes Avenue, Pittsburgh, PA 15232,

USA.

1389-1286/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.
PII: S1389-1286 (01 )00311-5



multimedia applications involving voice and video,
is straining the capacity of the Internet and com-
pounds the problem of tackling congestion on the
Internet.
A TCP tunnel is a TCP circuit, which carries IP

packets over the Internet. By encapsulating user
flows using this construct, we hope to benefit
from the congestion control mechanism of TCP/IP
through the segregation of unresponsive flows
from TCP-friendly flows. Kung and Wang [10]
did related work on the properties of TCP trunks,
which are similar to TCP tunnels. In their paper,
they demonstrate how TCP trunking protects web
users from competing ftp traffic. They also exam-
ine how TCP trunking may be used to allow a site
to control its offered load into a backbone network
so that the site can assure some quality of service
(QoS) for its packets over the backbone.
This paper studies the behaviour and properties

of TCP tunnels in conjunction with random early
drop (RED) routers [7] and examines the benefits
and disadvantages they confer on the IP traffic. We
also study the impact on the congestion within
network backbones, and the protection that tun-
nels offer with respect to the various competing
classes of traffic in terms of bandwidth alloca-
tion and reduced retransmissions. We try to iden-
tify the network conditions and scenarios where
the deployment of TCP tunnels would be benefi-
cial to overall network performance. We also dis-
cuss how TCP tunnels can assist in avoiding
certain forms of congestion collapse on the Inter-
net as considered by Floyd and Fall [6].
We believe that this study of TCP tunnels

would be most relevant now, considering the fact
that commerce on the Internet has fueled signifi-
cant interest and efforts in the deployment of vir-
tual private networks (VPNs) over the Internet,
particularly in assisting resource sharing, work col-
laboration and meeting privacy concerns. Typi-
cally, VPNs are layered over the Internet and these
VPNs are deployed using tunnels. These tunnels
appear as layer-2 constructs to user applications.
We envision one or more TCP tunnels installed

between border routers, which connect the LANs
to the WANs or the Internet cloud (see Fig. 1).
Later, we demonstrate that this architecture has
the effect of confining packet drops to the LAN

side and helps to keep congestion low on core
routers (also known as WAN routers).
TCP tunnels can also be deployed by Internet

Service Providers (ISP) on point-to-point links to
take advantage of attributes of TCP tunnels and
offer better service. For instance, if traffic from
interactive applications such as telnet or http ar-
rive at a last hop bottleneck link and are liable to
be dropped, TCP tunnels can be deployed over this
link to offer protection from losses due to con-
gestion.
The experiments that are described in this paper

make reference to the testbed depicted in Fig. 2.
RedHat 6.0 with Linux Kernel version 2.2.12 are
installed on our PCs, all of which are Intel Celeron
300A processor-based with 128 MB of main
memory each. The network cards we use are the
Intel Ether Express Pro 10/100 (100 Mbps) models.
We hacked a traffic shaping kernel module

called ‘‘rshaper’’ and installed it onto the delay/
error box. The delay/error box buffers and delays

Fig. 1. TCP tunnels as transport mechanisms for IP flows over

the Internet.

Fig. 2. Testbed.
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packets to simulate various latencies, and selec-
tively drops and corrupts packets according to the
uniform distribution. We use ttcp [11] and iperf
[8] to generate bulk TCP traffic and Surge [2] for
generating http traffic. tcpdump is used to collect
the traffic and the traffic analysis is carried out
using tcptrace. RED and Tail-Drop are imple-
mented using the Linux Traffic Control Extensions
[1].
We developed our TCP tunnel implementation

in C. The TCP tunnel transmitter receives IP
packets from the in-coming interface using libpcap
routines and re-transmits these packets over one
or more TCP connections, which we term TCP
tunnels. We configure a Tail-Drop queue of 1000
packets leading into each TCP tunnel. The TCP
tunnel receiver reads the IP frames from the vari-
ous TCP connections and writes them out to the
outgoing interface using raw sockets.
The rest of the paper is as organised as follows:

Section 2 will cover the protection that tunnels can
offer to TCP-friendly flows in various scenarios.
The effects of TCP tunnels and RED on router
queue lengths are discussed in Section 3. Section 4
elaborates on the congestion control property of
TCP tunnels and explains how this attribute gives
rise to back-pressure which pushes congestion to
edge routers from the core routers. The types of
congestion collapse that may arise on the Internet
and the congestion control property of tunnels
that can help to prevent some forms of congestion
collapse are discussed in Section 5. Section 6 cov-
ers the possible application of tunnels in the pro-
visioning of proportional differentiated services
over the Internet and Section 7 touches on the
deployment issues for TCP tunnels.

2. Protection of TCP-friendly flows

UDP traffic is not TCP-friendly [6]. Such TCP-
unfriendly traffic does not respond to packet drops
which typically signals congestion and critical sit-
uations of starved router and link resources. This
aggressive behaviour degrades and even shuts out
TCP-friendly flows such as bulk transfers (ftp) and
interactive applications (http and telnet) and pre-
vents them from obtaining their fair share of their

bandwidth when they compete for bandwidth over
a congested link.
In this section, we examine how TCP tunnels

can be deployed to isolate different types of traffic
from one another and protect interactive user ap-
plications from aggressive flows.

2.1. Protection of TCP bulk flows from unresponsive
UDP flows

In this section, we show how TCP flows carry-
ing bulk traffic are protected from aggressive UDP
flows over a congested link. We assume that a
number of tunnels are deployed over the link, each
carrying a specific kind of traffic, and that they
compete with each other for bandwidth. All traffic
flows, UDP or TCP, traversing the congested link
has to go through at least one of the tunnels. As a
result, UDP flows are prevented from clogging the
congested link as the tunnels carrying the UDP
flows will suffer packet drops and will be forced to
throttle their sending rates. Here, we see that the
UDP flows are endowed with a crude form of end-
to-end congestion control by virtue of being
wrapped in TCP tunnels.
We demonstrate this by sending a 10 Mbps

UDP flow (CBR data) from A to X and 100 TCP
flows (representing 100 concurrent file transfers of
512 KB each) from C to Y (see Fig. 3). The end-
to-end round trip time (RTT) is 10 ms and all the
links are 10 Mbps except the link D2–T2 which is
1 Mbps. The UDP flow is very aggressive and

Fig. 3. Tunnel offering protection of TCP bulk flows from

unresponsive UDP flows.
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unresponsive to the behaviour of other co-existing.
The MTU is 1500 bytes for both sources of traffic.
The bottleneck link of 1 Mbps is fed by a RED
queue (with parameters minth ¼ 20 KB, maxth ¼
520 KB, maxp ¼ 0:02). The run is considered
complete when all file transfers are complete. We
use the above scenario to run two experiments; one
without TCP tunnels and one with TCP tunnels
(tunnels deployed between T1 and T2). The results
of this experiment are shown in Table 1.
Without the tunnels, we observe that the UDP

flow consumes most of the bandwidth, leaving
each TCP flow with a mean throughput of 1.18
Kbps (and standard deviation of 0.15 Kbps).
Things are different when we use TCP tunnels

to isolate both types of traffic. Here, the mean
throughput of the TCP flows increases to 2.85
Kbps (standard deviation of 1.92 Kbps) (see Fig.
4). The UDP flow is carried over one tunnel and
the TCP traffic is carried over a separate tunnel.
Both tunnels are fed by their own Tail-Drop
queues, each of which has a capacity of 1000
packets. Should the TCP tunnels be served by a
single shared queue, the greedy non-responsive
UDP flow would just hog this queue (on T1) and
shut out the TCP flows.
When we run the UDP flow against a few TCP

flows (less than 10), we observe that the TCP flows
are totally shut out and none could complete their
transfers. However, the situation improves when
we increase the number of competing TCP flows to
a significant figure, say, 100 as given above.

In the course of the experiments, we notice that
the aggressiveness of the TCP tunnels is deter-
mined by the nature of the tunnels’ payloads. A
tunnel carrying UDP traffic is more aggressive
when pitted against another tunnel, which carries
a few TCP flows. Presumably, when either tunnel
suffers a packet drop, it reduces its congestion
window and propagates this effect to its payload.
In the case of the tunnel carrying the TCP flows,
the user TCP flows continually decrease their

Fig. 4. Histogram of average throughput of 100 (TCP flows)

concurrent file transfers of 512 KB each.

Table 1

Per TCP flow statistics obtained from tcptrace analysis program

Per TCP flow statistics Without TCP tunnel With TCP tunnel % Improvement

RTT average (ms) 4133.49 15821.83 (�) 282.77
RTT minimum (ms) 1292.33 1200.14 (þ) 7.13
RTT maximum (ms) 4563.39 17103.36 (�) 274.79
Number of RTT samples 83.16 168.50 (þ) 102.62
Retransmitted bytes 385783.90 57773.36 (þ) 567.75
Retransmitted packets 266.78 39.93 (þ) 568.12
Retransmitted data segments over total segments 28.10 6.10 (þ) 360.51
Data segments sent 624.45 397.47 (þ) 57.11
Acknowledgement segments sent 324.27 247.32 (þ) 31.11
Data segments over total segments 65.82 61.66 (þ) 6.74
Total segments 948.72 644.79 (þ) 47.14
Average throughput (kbits/s) 1.18 2.85 (þ) 141.53
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transmission rates, unlike the UDP flow whose
transmission rate is unaffected.
From Table 1, we see that TCP tunnels reduce

the overall amount of traffic sent. The amount of
retransmissions per connection is reduced by over
500% as the tunnel provides reliability in the face
of congestion. Packet loss from the tunnel due to
heavy congestion has minimum impact on TCP
flows and precious link bandwidth is not wasted
on retransmissions.
However, the tunnels degrade the TCP RTT

estimations badly (up to 280%!). Note that when
the TCP tunnel is forced to throttle its sending rate
due to congestion at the bottleneck link, packets
get queued up at the tunnel ingress. The sources,
which are oblivious to the congestion, continue to
send at an increased rate until the queues at the
tunnel ingress overflow. Only packets lost due to
this overflow, are retransmitted by the sender.

2.2. Protection of interactive traffic over congested
links

Interactive end user applications such as http
often suffer long delays and even timeouts over
WAN links as they usually traverse over a bottle-
neck link and compete with other types of traffic.
Usually, the bottleneck link is a single hop of low
latency. The http connections suffer packet drops
at this link, which leads to inevitable timeouts.
An ISP may choose to deploy TCP tunnels over

this short latency bottleneck link to isolate the
interactive traffic from other aggressive traffic. The
TCP tunnels will also handle retransmissions over
this congested link and minimise retransmissions
by the end user applications and possible timeouts.
To demonstrate this scenario, we set-up the

configuration shown in Fig. 5 using the testbed. T1
and T2 are the tunnel end-points and the TCP
tunnels are layered over this 1 Mbps bottleneck.
Note that this bottleneck link is limited to 1 Mbps
in the forward direction (towards X and Y) and
the reverse path is of bandwidth 10 Mbps. The
experimental run lasts 300 s. The 100 http con-
nections from B to Y are started first and the UDP
flow of 5 Mbps, from A to X, is started 10 s later.
Note that each of the traffic classes is carried by a
separate tunnel.

From Table 2, we see that the http connections
protected by the TCP tunnels managed to achieve
higher average packet and aggregated throughput.
More importantly, for the same experimental run
and duration, a greater number of successful and
complete http connections were made with the
help of the tunnels. Without the protection of
the tunnels, numerous http connections suffered
timeouts and were unable to complete their
transfers within the same interval (i.e. 300 s).

2.3. Protection from fragmentation

The performance of user connections on the
Internet is limited by the Path MTU [14]. This re-
fers to the largest size that an IP datagram can take
which permits it to traverse the network without
undergoing fragmentation.
In [9], it was argued that fragmentation is in-

efficient, the loss of any fragment degrades

Fig. 5. Tunnel offering reliability for interactive flows over

congested bottleneck link (T1 to T2).

Table 2

Http flow statistics

Per http flow statistics Without

TCP

tunnels

With

TCP

tunnels

Packets in forward direction

(http requests)

13.64 25.48

Packets in reverse direction (http data) 13.11 30.00

Total packets transferred 27.75 55.48

Forward/reverse aggregated

throughput (bps)

1260/

64,247

1582/

126,325

Successful/total http connections

made

45/208

(21.6%)

290/624

(46.5%)
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performance due to retransmission and that effi-
cient reassembly of fragments is hard. Kent and
Mogul [9] concluded that the disadvantages of
fragmentation far outweigh its benefits and frag-
mentation should be avoided as far as possible.
A TCP tunnel behaves like a level 2 (datalink)

circuit and hides the different MTUs of the un-
derlying networks and links it spans over the In-
ternet. The user flows (in the form of IP packets
which is the tunnel’s payload) are oblivious to
these different MTUs and hence are free to use
their own MTU values, presumably the largest
(limited by the sender’s interface’s MTU setting) to
maximise throughput. If the use of larger MTUs
is permitted, each packet carries less header over-
head and this allows TCP connections to ramp up
their congestion windows quicker.
To get an idea of the relationship between

throughput and MTU sizes, we vary the Path
MTUs as shown in Table 3 (1st column) and
measure the resulting throughput of a TCP. Our
first scenario is without TCP tunnels while the
second is with TCP tunnels. In both scenarios, a
round-trip delay of 211 ms was set between A and
X (Fig. 6) which were the end machines used to
create the TCP connection used in the two sce-
narios. The different MTUs were set on the path
between T1 and T2 (Fig. 6) which has a round-trip
delay of 10 ms. For the scenario with TCP tunnels,
the tunnels were deployed between T1 and T2 to
encompass the path with the different MTU. Ten
runs were conducted per MTU setting. Note that
the traffic source’s MTU (a UDP flow with CBR
of 9 Mbps) setting is fixed at 1500 bytes for
all runs. The links’ bandwidths were 10 Mbps
throughout.
From Table 3, it can be seen that the tunnels

improved the throughput of the end-to-end con-

nection for lower MTU values across T1 to T2.
This was because the tunnels confined the frag-
mentation caused by the lower MTU path to the
tunnel only and did not allow the fragmentation
to be propagated to the rest of the network.
Similarly, UDP flows would experience higher

throughput by sending packets with large MTUs
over links with smaller MTUs via tunnels. Finally,
the use of Path MTU Discovery does not obviate
the relevance of TCP tunnels. With Path MTU
Discovery, the sender still has to send IP frames no
larger than the smallest MTU along the path to
avoid fragmentation. TCP tunnels allow senders to
send packets at the largest possible MTU (limited
by the MTU settings on their interfaces) despite
the smaller MTUs along the path. The presence
of these smaller MTU packets are totally trans-
parent to the sender and the tunnels protect the
sender from fragmentation caused by these smaller
MTUs.

3. Effects of tunnels on router queue lengths

Tail-Drop has been adopted widely on routers
as the default packet-dropping policy. However,
this policy causes many TCP flows to throttle their
sending rates at the same time, when the queue
overflows. These flows would then ramp up their
transmission rates until the queue overflows again.
This synchronisation in flow behaviour causes
burst effects and may reduce average flow through-
put and link utilisation. In addition, the average

Table 3

Mean connection throughput for various MTUs

Path MTU

(T1–T2) (bytes)

Mean throughput of 10 runs (Mbps)

No TCP tunnel With TCP tunnel

1500 7.40 7.40 (þ0%)
1006 7.10 7.40 (þ4%)
576 6.50 7.08 (þ9%)
296 5.00 6.70 (þ34%)

Fig. 6. Tunnel offering protection from varying MTU sizes

over link T1 to T2.
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queue length of Tail-Drop routers tends to be high
and this introduces longer packet delays.
RED is designed to penalise TCP-friendly flows,

which consume more than their fair share of
bandwidth by randomly dropping packets from the
flows when the average queue size exceeds the
minimum threshold. RED eliminates the synchro-
nisation and burst effects seen in Tail-Drop. RED,
however, has no effect on UDP or unresponsive
flows, which do not respond to packet drops. The
flows that suffer from RED-induced packet
drops, would be the good guys, the TCP-friendly
flows.
To underscore our point on the queue lengths

of routers adopting RED and Tail-Drop packet-
dropping policies, we run experiments with an
increasing number of TCP flows from a 10 Mbps
source which traverse a bottleneck link of 1 Mbps.
The runs are repeated for RED0.02, RED0.1
(RED with maximum drop probability, maxp, of
0.02 and 0.1, respectively) and Tail-Drop. The
minimum and maximum thresholds for the RED
queues, minth and maxth, are 20 and 520 KB, re-
spectively. The sizes of both RED and Tail-Drop
queues are 520 KB.
Figs. 7 and 8 summarise the results. Note that

the various queues’ hard limits of 520 KB translate
to a maximum queue occupancy of 354 packets of
MTU 1500 bytes each. The confidence interval for
Tail-Drop in Fig. 7 extends past this limit as the
queues contain some small amount of spurious
traffic due to Network Time Protocol (NTP) syn-
chronisation between the machines on our testbed.
Note that the confidence intervals for all queues
given in Fig. 6 are 95%.
From Fig. 7, we can see that the mean queue

length for Tail-Drop is high and the instantaneous
queue lengths are highly variable. The RED poli-
cies manage to keep the average queue lengths low
compared to Tail-Drop. The average queue length
under RED scales with the number of TCP flows.
RED0.1 demonstrates that increasing the maxi-
mum packet-drop probability has the effect of re-
ducing the average queue length. Fig. 8 shows that
the instantaneous queue length of RED0.02 is
close to over-flowing the queue for 80 connections.
Although RED is able to keep the average

queue length low for a small number of flows, its

behaviour seems to approximate that of Tail-Drop
when the number of flows that it has to deal with
becomes large. When RED drops a packet, it af-
fects 1 out of N connections only. It decreases the
load factor by 1=2N only. RED simply cannot
scale with N.

Fig. 7. Average queue occupancy for RED and Tail-Drop (no

TCP tunnels).

Fig. 8. Instantaneous queue occupancy for RED and Tail-

Drop (no TCP tunnels).
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The point we are emphasising is that the de-
ployment of TCP tunnels reduces the number of
flows within the core routers. The core routers
only need to manage the few TCP tunnel flows.
Therefore, as RED is being increasingly adopted
by routers as the default packet-dropping policy
(recommended by RFC2309) [15], we feel that
TCP tunnels in conjunction with RED make an
important contribution towards controlling con-
gestion on the Internet.

4. Congestion control and back-pressure effects of

TCP tunnels

In [5], the authors discuss the problems of un-
responsive flows and the danger of congestion
collapse of the Internet, while in [12], the authors
discuss the use of back-pressure in moving con-
gestion away from the core. The rates of UDP
flows are not limited by congestion control and
such aggressive flows only starve TCP-friendly
flows of their rightful share of bandwidth. In ad-
dition, UDP flows typically exacerbate congestion
problems and waste precious bandwidth when
their packets are dropped during the onset of
congestion.
TCP tunnels provide a possible solution out of

this dilemma. Tunnels could be used to wrap UDP
flows at edge routers. The tunnels carry the UDP
flows over the Internet and are then subjected
to the ever-changing conditions of the network.
When congestion occurs, the packet drops force
the tunnels to throttle their sending rates. The
advantage here is that the UDP flows are now
TCP-friendly (so to speak) and sensitive to packet
drops from the perspective of the core routers.
This is of particular relevance when RED is de-
ployed on routers as the default packet-dropping
policy. In short, packet losses in the congested core
routers are now pushed to edge routers.
The main objection to this idea is that the

tunnel would then introduce unnecessary delay
and jitter variances to delay-sensitive UDP flows,
on the order of several RTTs as the tunnel at-
tempts retransmission (the tunnel being a TCP
circuit offering reliable delivery of data). This will
be discussed further in Section 8.

A huge advantage of carrying user flows over
TCP tunnels and deploying tunnels in WAN en-
vironments is that congestion will be pushed to the
edge routers from the core routers (similar to
the back-pressure effect in ATM networks). The
tunnels would seek out their fair share of band-
width as network conditions change and packets
are dropped from the tunnels. In response to the
packet drops, the tunnels would throttle their
sending rates and drop packets of user flows at the
ingress tunnel gateways. The packet drops expe-
rienced by the tunnels within the backbone of
the WAN network (at the core routers) would be
low, since these losses are from the TCP tunnels
themselves which would throttle their transmission
rates in response. Contrast this with the situation
where huge numbers of user flows enter the core
without the deployment of tunnels. The link effi-
ciency and utilization of the core is expected to be
higher when tunnels are deployed. Notice that the
deployment of tunnels is akin to the Virtual Paths
of ATM networks.
To demonstrate the back-pressure effect, we run

50 bulk TCP flows on each of the machines A, B,
and C to destinations X and Y (see Fig. 2). We also
monitor the queue lengths at the core router (D2),
and at the TCP tunnel router (T1). Each one of the
three tunnels is fed by a separate Tail-Drop queue
(maximum size of 1000 packets), and RED is
adopted as the packet-drop mechanism on the core
router, with the following settings: minth ¼ 20 KB,
maxth ¼ 520 KB, limit ¼ 520 KB, maxp ¼ 0:02.
From Fig. 9, we can see that the queue length of

the core router is high. It reaches the limit of the
RED queue. When TCP tunnels are deployed, the
core router experiences a much lower queue length
(peak queue length ¼ 96). Fig. 10 displays the in-
stantaneous queue lengths of the three Tail-Drop
queues of the tunnel router along with that of the
RED queue of the core router. Notice that the
queue lengths at the tunnel router are much higher
than the queue length at the core router, thus in-
dicating that the congestion has been moved from
the core to the edge.
Using the above experimental set-up, we run

experiments to determine the percentage of drop-
ped packets within the core router as the TCP load
is steadily increased. From Table 4, it can be seen
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that tunnels significantly reduce and even stabilise
the percentage of dropped packets in the core
router even when the number of TCP flows in-
creases.

Interestingly, the very low and stable values of
packet drops experienced by user flows over TCP
tunnels demonstrate traffic flow stability and the
tunnels are sharing bandwidth fairly. We are still
currently investigating this phenomenon.

5. Avoiding congestion collapse

In [6], the authors discuss at length the various
forms of congestion collapse.

Classical congestion collapse [13] occurs when
the TCP connections unnecessarily retransmit

Fig. 9. Instantaneous queue occupancies for core router with and without TCP tunnels.

Fig. 10. Instantaneous queue occupancies for core and tunnel routers using TCP tunnels.

Table 4

Percentage of dropped packets in the core router

Number TCP

flows in the core

Without tunnels

(%)

With tunnels (%)

60 3.12 0.15

120 7.27 0.14

180 11.80 0.15

240 19.41 0.16
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packets, which are still in transit or have been re-
ceived, during heavy network load. The network
reaches saturation and continues to operate under
degraded conditions where the throughput is much
lower than normal. This form of congestion col-
lapse has been avoided by the adoption of con-
gestion control principles put forward by Van
Jacobson [16]. TCP tunnels can help to avoid this
form of congestion collapse as the tunnels reduce
the number of unnecessary retransmissions as es-
tablished in Section 2.1.

Congestion collapse from undelivered packets
results when precious bandwidth is consumed and
wasted by packets, which are dropped before
reaching their final destination. Open-loop appli-
cations such as voice, video and music applications
probably will be the number one contributors to
this type of congestion collapse as such applica-
tions do not utilise congestion control. The tunnel
guarantees delivery of the permitted amount of
open-loop user traffic to their destination and no
user packets are lost within the tunnel. The use of
TCP tunnels pushes the congestion from the core
routers to the edge routers which causes packet
drops to occur at the entry points, rather than
further down the network.

Fragmentation-based congestion collapse arises
when packets are dropped because their fragments
cannot be reassembled into complete packets as
some fragments are lost, possible due to conges-
tion experienced enroute to the receivers. The
continued congestion by such packets, which will
probably be dropped by the receivers wastes band-
width and results in reduced throughput. Early
Packet Discard and Path MTU Discovery were
highlighted in [6] as two mechanisms useful in
combating this form of congestion collapse. We
claim TCP tunnelling could be one more of such
mechanisms as it confines the fragmentation to the
tunnel alone and permits the use of the largest
possible MTU for a TCP connection.

Congestion collapse from increased control traf-
fic manifests when increasing load is accom-
panied by increased control traffic such as route
updates, multicast join requests etc. TCP tun-
nels can prevent control traffic and their related
user traffic from congesting the busy backbones
by re-mapping the tunnels carrying those types of

traffic to relatively uncongested paths in the net-
work.

6. Providing quality of service guarantees

It was proposed by [10] that TCP Trunks could
be used as a means of assuring QoS by exploiting
the elastic property of the TCP circuit (tunnel).
TCPs congestion and flow control would dynami-
cally probe for available bandwidth when the load
conditions of the network change. Kung and
Wang [10] also suggested that the tunnel and its
payload (user flows) could be allocated a guaran-
teed minimum bandwidth and be given more band-
width when spare link capacity was available. Few
other details were offered on how this was possible
and it seems that deploying TCP tunnels is tricky.
However, the deployment of TCP tunnels and its
benefits would be more apparent if we attempt to
qualify its applications to certain scenarios.
Using TCP tunnels to guarantee absolute QoS

is not feasible without some form of route pin-
ning. The reservation of resources necessary to
support user services have to be instantiated at
every hop of the network, even for tunnels, either
manually or through some form of signalling
(e.g. RSVP). This alone is a huge obstacle in
deploying QoS-enabled tunnels on the Internet.
However, the aggregation of user flows into tun-
nels offering different classes of service naturally
complements any network QoS system (over
WAN) as it contributes to scalability and eases the
problem of flow identification and classification.
A more feasible approach in adapting TCP

tunnels for QoS over the Internet would be to offer
proportional differentiated services (proportional
QoS) vis-a-vis absolute differentiated services (ab-
solute QoS) [3,4]. Consider capacity differentiation
as an example. A CBQ system could offer traffic
class A 30% of the available bandwidth and traffic
class B the remaining portion (70%) over the In-
ternet. However, there is no minimum bandwidth
guarantee that we can extract from the Internet
without the cooperation of hops along the route
and the bandwidth available changes from time to
time. But, tunnels carrying both classes of traffic
are always probing and utilising their fair share of
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the total bandwidth and we think it is not incon-
ceivable that a CBQ system, applying some form
of weighted fair queueing, would be able to deliver
the flow of both traffic classes over the Internet in
the promised proportions.

7. Deployment of TCP tunnels

The greatest mismatch of link bandwidths oc-
curs at the edges of the Internet cloud. This mis-
match is still true today as LANs now offer Gigabit
speeds while WANs struggle to keep up, managing
at most Megabit capacities. We find that TCP
tunnels are most suitable for deployment at border
routers. As traffic transit at such boundaries, TCP
tunnels can be suitably positioned there to manage
various classes of traffic and yet drop excess traffic
closest to the sources, rather than allowing the
unwanted traffic to be discarded in the core back-
bones and consuming precious bandwidth in the
process.
The Internet has managed to meet the needs of

its communities and users simply because its con-
cept and deployment have been rigorously kept
simple and scalable. Aggregation using tunnels
reduces the problem of many flows to that of a few
flows. This allows ISPs to identify and provide
for classes of services in a scalable manner. The
adoption of tunnels by ISPs would be invisible to
user applications and these ISPs could provide
incentives to encourage use of tunnels by favour-
ing tunnels in their routers through the allocation
of traffic priorities and judicious application of
preferred scheduling and queueing policies.
Tunnels lend themselves easily to traffic man-

agement and provisioning through MPLS and
RSVP. Tunnel flows can be uniquely identified by
their IP addresses and ports, i.e. hsource IP, des-
tination IP, source TCP port, destination TCP
porti. However, it is critical to ensure that the
deployment of tunnels do not alter the behaviour
of their payload, especially those of TCP flows.

8. Summary and future research

We have demonstrated that TCP tunnels offer
TCP-friendly flows protection against aggressive

and unresponsive flows. In addition, we discover
that TCP tunnels hide the different MTU values
(typically smaller) of the underlying network links
from the user flows and this property allows users
flows to send traffic at their greatest MTU settings
(dictated by their end network interfaces).
We also discover that the aggregation property

of user flows in TCP tunnels results in much lower
average queue lengths and dramatically reduces
packet loss within the core routers. The reduction
of packet loss concludes that less bandwidth is
being wasted in the core backbone while the lower
average queue lengths indicate that the core rou-
ters can be provisioned with less memory resources
for handling tunnel flows. In other words, tunnels
allow the routers to handle even more flows
than otherwise possible, using the same amount of
memory resources. By carrying greedy flows over
TCP tunnels, the core routers are able to control
the amount of traffic from unresponsive flows such
as UDP (from multimedia applications) in the
event of congestion within the network back-
bones. Therefore, precious limited bandwidth is
not hogged by unresponsive flows, which will be
wasted when their packets are dropped by the core
routers when congestion occurs.
Aggregating flows into a TCP tunnel unfortu-

nately introduces synchronisation and burst ef-
fects. If the network is in a steady state, the
bandwidth and round trip times offered by the
tunnel is also steady. However, changes in network
conditions may cause wild swings in tunnel be-
haviour and transmit such effects to the user flows,
which it transports. This will probably impact
delay-sensitive traffic badly, especially if the tunnel
attempts data recovery over a long latency link. In
fact, in Section 2.1, we find that TCP tunnels de-
grade RTT estimations due to the tunnels’ reli-
ability since they are, after all, reliable circuits
which recover from packet loss. It would also be
interesting to examine the effect of the sizes of
the queues, which feed the TCP tunnels, have on
the RTTs of user TCP flows.
In order to avoid the debilitating effects of TCP

tunnels on the RTTs of TCP flows, a tunnel with
TCP-like properties, offering the flow and con-
gestion control characteristics of TCP/IP and yet,
without its (TCP’s) reliable delivery of data, may
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be required. Such a protocol would not be unlike
RTP complemented by flow and congestion con-
trol principles of TCP. Using such a tunnel for
transporting IP packets would allow us to reap
the benefits of aggregation and yet, eliminate the
disadvantage of inaccurate RTT estimations by its
payload of TCP user connections. More impor-
tantly, this new protocol would be of greater rel-
evance as a transport protocol for end-to-end
delay sensitive applications.
Ack compression occurs when the regular

spacing of acks in the reverse direction is disrupted
by other traffic interspersed among the acks. The
most likely place where this happens is when acks
are mixed with other traffic in the queue leading
to a bottleneck link. Ack compression may reduce
overall throughput and cause connections to be-
come bursty. We believe that tunnels can help al-
leviate the problems of ack compression as they
(tunnels) prevent unrelated traffic packets entering
from intermediate hops from interjecting between
the acks. The intermediate hops only carry tunnel
traffic. The tunnels also help preserve the order of
the ack packets as they enter and exit the tunnels.
We agree with [3,4] that it looks feasible and

promising to assure QoS over the Internet in the
form of proportional differentiated services (pro-
portional QoS). We are exploring this concept
by deploying TCP tunnels offering classes of user
traffic different classes of QoS guarantees. We feel
that TCP tunnels with its elastic bandwidth and
congestion control properties could aid in deliv-
ering predictable proportional shares of QoS to
end users on the Internet.
We have highlighted some further avenues of

exploration and the need for further research, es-
pecially in determining the effects of tunnels on the
behaviour of TCP flows and in examining the
feasibility of deploying tunnels on actual WANs
and on the Internet.
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