
11-601 Coding & Algorithms Bootcamp
Ralf Brown <ralf@cs.cmu.edu>

TAs:
Ankush Babbar <ababbar@andrew.cmu.edu>

Paramjit Baweja <paramjitbaweja@cmu.edu>

Ajay Mittur <amittur@cs.cmu.edu>

Shaurya Singh <shauryas@andrew.cmu.edu>

Riya Singhal <riyapras@andrew.cmu.edu>

Rajeev Veeraraghavan <rveerara@andrew.cmu.edu>

Chentianye (Glenn) Xu <chentiax@andrew.cmu.edu>

Lecture 01 – August 27, 2024

mailto:ralf@cs.cmu.edu
mailto:ababbar@andrew.cmu.edu
mailto:paramjitbaweja@cmu.edu
mailto:amittur@cs.cmu.edu
mailto:shauryas@andrew.cmu.edu
mailto:riyapras@andrew.cmu.edu
mailto:rveerara@andrew.cmu.edu
mailto:chentiax@andrew.cmu.edu

© 2024 Ralf Brown. All Rights Reserved.

What This Course Is NOT
● “Programming from the Ground Up”

– if you've never taken a Computer Science course, you will struggle

● Easy
– we go through a lot of material

● in three different programming languages

– you'll be spending a lot of time programming
● and even more time figuring out how to solve the problems before programming their

solutions

● A “deep dive”
– because we cover so many different topics

© 2024 Ralf Brown. All Rights Reserved.

This Will Not Be An Easy “A”
● Things are intentionally challenging

● Expect the class average (before curving) to be around 87-89%

● Grades will be rescaled to have a class average of 87% with standard
deviation of 5%; the curve will be regularly updated
– this means the most common grade will be B+ or A-

– last year, just about half the students who completed the course got an A- or
higher

● If you are taking this course with the expectation of getting an “A”,
please consider dropping it now
– there is still a huge waitlist with enrollment raised as much as possible

© 2024 Ralf Brown. All Rights Reserved.

2017-2023 Grade Distribution

R D C- C C+ B- B B+ A- A A+
0

20

40

60

80

100

120

140

160

180

Letter Grade

Pass/Fail

© 2024 Ralf Brown. All Rights Reserved.

Grading
● 20% per-lecture exercises

– no make-ups, but your three lowest scores will be dropped

● 30% homework assignments
– 10% per day penalty for late submission, maximum 5 days late

● 25% mock technical interviews - “The Shuffle”
– 15% for weekly peer interviews (10% for submitting feedback, 5% from

feedback scores)

– 10% for two instructor/TA interviews

● 25% three exams (9%, 9%, and 7%)

© 2024 Ralf Brown. All Rights Reserved.

Lecture Exercises vs. Homework Assignments
● “In-Class”: Coding under

substantial time pressure
– time limit typically a little more

than the median time needed by
previous students

– expect to be unable to finish some
of the exercises

– simulates job-interview situations
and emergency patching

● Homeworks: Coding under very
modest time pressure
– though if you procrastinate and

start the evening the assignment is
due, you may find yourself under
substantial time pressure

© 2024 Ralf Brown. All Rights Reserved.

Homework Exercises
● Problems from “Cracking the Coding Interview” will not be graded

– the solutions are in the book, anyway

● But you should work through them and understand how the solutions
work
– this means actually trying to solve the problem, not just reading the answer!

● ...because those problems will be your questions for the mock technical
interviews

“The Shuffle”
● Mock technical interviews
● Each week, you will give one interview, and be interviewed once

– interviewees and questions are randomly assigned
– you are responsible for arranging a mutually-agreeable interview time
– interviews should last 45-55 minutes
– you will give each interviewee a score; at the end of the semester, your scores will

be normalized
– you will also receive a feedback score on your role as interviewer

● Over the course of the semester (starting after Exam 1), you will also be
interviewed by the instructor and a TA
– 30 minutes each, in addition to that week's peer interviews
– these are required, and count for more than a peer interview

more details
next Tuesday

© 2024 Ralf Brown. All Rights Reserved.

Semester Organization
● First five weeks (until Exam 1): Java

● Then six weeks of Python (until Exam 2)

● and three weeks of JavaScript

● we will look at how the three languages differ from each other in syntax
and philosophy, and what they have in common

© 2024 Ralf Brown. All Rights Reserved.

HackerRank
● An online system for programming-skills tests: www.hackerrank.com

● We will be using it for today's programming exercise; you should have
received an email from hackerrank.com this morning

● HackerRank accounts are free for users, but I have only a limited
amount of assignment invites so I can't use it the entire semester
– and it does not integrate with Canvas

© 2024 Ralf Brown. All Rights Reserved.

Codio
● An online system for programming assignments

– includes editor and debugging tools

– for the course staff, includes plagiarism detection and the ability to view and
comment on your code

– integrates with Canvas – you will access assignments by following links from
Canvas

● Will be used starting with Exercise 2 (but you don't need to sign up until
after the lecture) and Homework 1 (due Tuesday night)

● Requires a paid account at codio.com (about $48)

© 2024 Ralf Brown. All Rights Reserved.

Q&A

© 2024 Ralf Brown. All Rights Reserved.

Academic Integrity
● aka “Cheating”
● taken very seriously at CMU – two violations and you're out of the

university (and some departments are even stricter)
● in this course, the first offense gets you at least a full letter reduction in

your final grade
– plus it gets reported to your department head, who may impose additional

penalties
● when an academic integrity violation is found, you can expect all of

your previous work to be re-examined
– any previously-undiscovered offenses that come to light may then count as the

first violation

© 2024 Ralf Brown. All Rights Reserved.

Academic Integrity Violations
● copying from another person
● copying from the Internet without attribution

– including using AI systems such as ChatGPT, Google Bard, GitHub CoPilot
● supplying answers to another student

– or providing them exam questions before they take the exam
● collaborating with others without attribution
● having someone else take an exam for you
● etc. -- the above is not an exhaustive list

– basically, anything that is misrepresented as your own work which
isn't, or helping another make such a misrepresentation

Note that exact rules can vary from course to course

© 2024 Ralf Brown. All Rights Reserved.

AIV (1)
● Nancy lets Mark copy her homework. Who is guilty of an academic

integrity violation?

© 2024 Ralf Brown. All Rights Reserved.

AIV (1)
● Nancy lets Mark copy her homework. Who is guilty of an academic

integrity violation?

● BOTH. Mark for copying, and Nancy for allowing the copying.

© 2024 Ralf Brown. All Rights Reserved.

AIV (2)
● Otto puts a copy of his code in a public Dropbox folder. Paul finds it,

and submits a copy as his own solution. Who is guilty of an AIV?

© 2024 Ralf Brown. All Rights Reserved.

AIV (2)
● Otto puts a copy of his code in a public Dropbox folder. Paul finds it,

and submits a copy as his own solution. Who is guilty of an AIV?

● BOTH. Otto should have safeguarded his code.
– Keep your code and other homework materials secure!

– This also means not posting it publicly even after the end of the course.

© 2024 Ralf Brown. All Rights Reserved.

AIV (3)
● Rosa finds code for a particular function that gave her a lot of trouble on

StackOverflow. She carefully documents the source of that function's
code in comments in her code. Is she guilty of an AIV?

© 2024 Ralf Brown. All Rights Reserved.

AIV (3)
● Rosa finds code for a particular function that gave her a lot of trouble on

StackOverflow. She carefully documents the source of that function's
code in comments in her code. Is she guilty of an AIV?

● NO. But if the rules of the assignment disallowed using Internet code,
she will still lose points on that specific problem.

© 2024 Ralf Brown. All Rights Reserved.

Avoiding AIVs
● Attribute anything that isn't your own original work

– usually as simple as a one-line comment in your code

● Attribute any collaborations with others (including study groups)

● Don't take the easy way out when you get stuck
– it's better to have a poor score on one assignment worth 3% (or less) of your grade than

losing a full letter or failing the course entirely

– The TAs and your instructor are available to help you out

● In 2022, 16 of 115 students had AIVs and received lowered grades. In 2019,
one enrolled student never got to start 11-601 after being expelled due to AIVs
in a summer remote course.
– Your instructor hates the extra paperwork AIVs cause. It makes him cranky.

Avoiding AIVs
● Attribute anything that isn't your own original work

– usually as simple as a one-line comment in your code

● Attribute any collaborations with others (including study groups)

● Don't take the easy way out when you get stuck
– it's better to have a poor score on one assignment worth 3% (or less) of your grade

than losing a full letter or failing the course entirely

– The TAs and your instructor are available to help you out

● In 2022, 16 of 115 students had AIVs and received lowered grades (6 of 97 in
2023). In 2019, one enrolled student never got to start 11-601 after being
expelled due to AIVs in a summer remote course.
– Your instructor hates the extra paperwork AIVs cause. It makes him cranky.

If you forget or
run out of time,
send email as

soon as possible

© 2024 Ralf Brown. All Rights Reserved.

OK or Not?
● OK

– discussing textbook problems, lecture notes, etc.

– suggesting an algorithm to try on a homework problem

● Dangerous
– showing someone else your solution to a homework problem

– working out pseudo-code together or sharing pseudo-code for a problem
● you will definitely need to acknowledge this in your submission

● Don't even think about it
– emailing/texting someone else your solution

© 2024 Ralf Brown. All Rights Reserved.

OK or Not?
● OK

– discussing textbook problems, lecture notes, etc.

– suggesting an algorithm to try on a homework problem

● Dangerous
– showing someone else your solution to a homework problem

– working out pseudo-code together or sharing pseudo-code for a problem
● you will definitely need to acknowledge this in your submission

● Don't even think about it
– emailing/texting someone else your solution

these actions are OK
after everyone involved has
submitted their assignments

© 2024 Ralf Brown. All Rights Reserved.

OK or Not?
● OK

– discussing textbook problems, lecture notes, etc.

– suggesting an algorithm to try on a homework problem

● Dangerous
– showing someone else your solution to a homework problem

– working out pseudo-code together or sharing pseudo-code for a problem
● you will definitely need to acknowledge this in your submission

● Don't even think about it
– emailing/texting someone else your solutionbut this remains dangerous

(why?)

© 2024 Ralf Brown. All Rights Reserved.

Re-Grade Requests
● If there is an issue with

scoring (e.g. grade in
Canvas differs from
what you remember)
– Send an email or

Canvas message, or
post (privately) to
Piazza

– State where you think
the error is

© 2024 Ralf Brown. All Rights Reserved.

Q&A

© 2024 Ralf Brown. All Rights Reserved.

Java Strings and Arrays

© 2024 Ralf Brown. All Rights Reserved.

Strings versus Character Arrays
● What is the difference?

© 2024 Ralf Brown. All Rights Reserved.

Strings versus Character Arrays
● strings are almost always represented as an array of characters
● they have a means of determining length

– explicit length field or sentinel character

● but in Java, arrays also have an explicit length attribute

© 2024 Ralf Brown. All Rights Reserved.

Strings versus Character Arrays
● strings are almost always represented as an array of characters
● they have a means of determining length

– explicit length field or sentinel character

● but in Java, arrays also have an explicit length attribute

so the difference is mainly conceptual:
– strings are treated as single objects
– arrays are treated as collections of objects

● strings also have string-specific operations such as
– comparison
– insert/delete substrings, substring extraction

© 2024 Ralf Brown. All Rights Reserved.

String Representations
● Pointer to array terminated by sentinel (the “C” model)

–
● Pointer to length field, followed by array of characters (the “Pascal”

model)
–

● Pointer to array of characters, preceded by length field
–

● Pointer to a structure containing a length field and a pointer to the array
of characters
–

–

© 2024 Ralf Brown. All Rights Reserved.

String Representations
● Pointer to array terminated by sentinel such as NUL (the “C” model)

– drawbacks: can't use sentinel value as data, strlen() is O(n)
● Pointer to length field, followed by array of characters (the “Pascal”

model)
– explicit length makes strlen O(1), may take more space or limit string length

● Pointer to array of characters, preceded by length field
– may be more efficient to access; use negative index to access length field

● Pointer to a structure containing a length field and a pointer to the array
of characters
– takes more space than any of the above; accessing string value is slower due to

extra indirection
– but the extra indirection allows data sharing

© 2024 Ralf Brown. All Rights Reserved.

Java String Conversions
● String to character array

– String.toCharArray()

● extract character from String
– String.charAt(int N)

● character array to String
– String.valueOf(char a[]) static function

● character to String
– Character.toString(char c) static function

– String.valueOf(char c) static function

0 <= N < stringlength

© 2024 Ralf Brown. All Rights Reserved.

Some Basic String Operations
● Check the length:

– Integer len = s.length();

● Concatenate two strings:
– String result = s1 + s2;

– String result = s1 + “text”;

● We will cover many more on Thursday

© 2024 Ralf Brown. All Rights Reserved.

Building a String
● character by character ● using StringBuilder
String s = new String(“”);
for (...)
 {
 s += ' ';
 }

StringBuilder sb = new StringBuilder();
for (...)
 {
 sb.append(' ');
 }

© 2024 Ralf Brown. All Rights Reserved.

Building a String
● character by character ● using StringBuilder
String s = new String(“”);
for (...)
 {
 s += ' ';
 }

StringBuilder sb = new StringBuilder();
for (...)
 {
 sb.append(' ');
 }

O(n2) because we
keep copying the

partial result

O(n) because
StringBuilder just
updates a buffer

in place

© 2024 Ralf Brown. All Rights Reserved.

Building a String
● character by character ● using StringBuilder
String s = new String(“”);
for (...)
 {
 s += ' ';
 }

StringBuilder sb = new StringBuilder();
for (...)
 {
 sb.append(' ');
 }

O(n2) because we
keep copying the

partial result

O(n) because
StringBuilder just
updates a buffer

in place

We'll cover
“big-O”

notation on
Thursday

© 2024 Ralf Brown. All Rights Reserved.

Duplicate Check
● IsUnique – does the string contain any duplicate characters?

– Q: what are different ways to perform this check?

© 2024 Ralf Brown. All Rights Reserved.

Duplicate Check
● IsUnique – does the string contain any duplicate characters?

– recursively check rest of string

– sort and check adjacent characters

– HashMap of counts

– int[] or bool[]

© 2024 Ralf Brown. All Rights Reserved.

Duplicate Check
● IsUnique – does the string contain any duplicate characters?

– recursively check rest of string O(n2)

– sort and check adjacent characters O(n log n)

– HashMap of counts O(n)

– int[] or bool[] O(n)

© 2024 Ralf Brown. All Rights Reserved.

All things are difficult
before they are easy.

-- Thomas Fuller (1732)

© 2024 Ralf Brown. All Rights Reserved.

Programming
Exercise

© 2024 Ralf Brown. All Rights Reserved.

Exercise 1 - Self-Assessment
● Now would be a good time to start the exercise by following the link

provided in the email you received earlier today

● The median time taken by programmers world-wide for this problem is
seven minutes. Had this been graded, you would have had nine minutes
to complete the exercise.

● This exercise is at the level of Java proficiency being assumed as a
prerequisite. Language features and standard library functions sufficient
to complete the exercise were presented in this lecture.

