
Chestnut: Simplifying General Purpose Graphics Processing

Andrew Stromme & Ryan Carlson

May 10, 2010

Abstract

Graphics processing units (GPUs) are pow-
erful devices capable of rapid parallel compu-
tation, but using them for general computing
tasks can be a difficult and tedious endeavor.
We have created a graphical language called
Chestnut that simplifies the process of program-
ming on the GPU. The graphical environment
is supported by a readable backend language
that can be translated into GPU-ready code.
Our language is intuitive, discoverable, and sup-
ports common operations used in parallel com-
puting. Runtime tests demonstrate that our
code is much faster than sequential code run on
the central processing unit (CPU) and is often
comparable to optimized code written specifi-
cally for the GPU.

1 Introduction

There are a number of advantages to using a GPU
for general purpose computation. Since GPUs were
designed to process large amounts of data in paral-
lel very quickly, a user can greatly speed up his or
her runtimes by translating sequential code into code
run on the GPU. Certain problems lend themselves
to such a conversion, commonly called embarrassingly
parallel problems. In this class of programs, one gen-
erally wants to perform the same operation on every
element of large chunks of the data. For example, a
user might want to double every element in an ar-
ray, find the sum of the elements, or sort the array.
Unfortunately, this translation process can be pro-
hibitively difficult for many amateur programmers.
The tools used to program on the GPU require expe-
rience with C or C++, a solid grounding in memory
management, and an understanding of the interac-
tions between the CPU and GPU.

Chestnut is our solution to these problems. It pro-
vides a graphical environment in which users can drag
and drop blocks of data along with the functions that

operate on them. Clearly marked inputs and outputs
allow the user to connect data to functions. Thus
at the graphical level we enforce the paradigm re-
quired for general purpose programming on graphics
processing units (GPGPU) which pushes large blocks
of data through functions that operate on each ele-
ment and output the result as more blocks of data.
The graphical frontend is then translated into a text-
based backend language which we call Chestnut code.
Chestnut code reinforces the data-centric model, is
easy to read and write, and has a simple syntax. We
finally translate the Chestnut code into an existing
language called Thrust which is compiled and run on
the GPU.

The rest of the paper is organized as follows. Sec-
tion 2 discusses work related to introductory pro-
gramming languages and GPGPU languages. In sec-
tion 3 we detail the graphics processing unit and
describe the tools used to program on it. We give
a broad overview of Chestnut in section 4 before
delving into the graphical frontend (section 5) and
the text-based backend (section 6). Qualitative and
quantitative experiments are presented in section 7
showing our code is more readable than the code con-
structed using current tools and provides comparable
speedup benefits. Finally, we add some concluding
remarks in section 8 and discuss the future of the
project in section 9.

2 Related Works

We can break up designing this project into two broad
categories: the pedagogy of programming languages
and the paradigm presented by programming on the
GPU. In other words, we need to equip ourselves with
the tools to design a language, and then we need to
figure out what is necessary to design the language.
Since our language aims in part to be a teaching lan-
guage, we look towards Scratch, a graphical program-
ming language developed at the Massachusetts Insti-
tute of Technology (MIT), for guidance. Scratch pro-

1



vides an appealing graphical environment aimed at
introducing programming to 8-16 year olds. Familiar
programming constructs like conditionals and loops
are present, but are presented in an intuitive manner.
The authors hold that the “computational thinking”
programming affords is a valuable tool that should be
encouraged but is currently lacking in non-Computer
Science curriculum. Most children’s digital fluency
is defined by “reading” but not “writing.” The arti-
cle discusses some of the design decisions that went
into the language. To make it appeal to their target
audience, the authors wanted Scratch to be more tin-
kerable, meaningful, and social. Additionally, we can
think of any programming language as having a “low
floor” (easy to begin), “high ceiling” (ability to be-
come more complex), and “wide walls” (support for
a diverse range of projects). Scratch appropriately
focuses on the low floor and wide walls, arguing that
a higher ceiling is outside the scope of a learning lan-
guage, and if students are interesting in “raising the
ceiling” they can and should look to more established
languages like C or Python (Resnick et al., 2009).

Robertson and Lee (1995) draw parallels between
teaching a second natural language and teaching a
first programming language. The authors claim that
these processes are not as different as one might ex-
pect. While much research has gone into how best to
communicate the syntax and semantics contained in a
natural language, teaching programming languages is
sorely in need of such instruction. In traditional pro-
gramming classes, there is a concentration on writing
code over reading it. But a large and important part
of learning a natural language is an ability to read, di-
gest, and internalize the information being presented.
So, the authors write, we must teach our students to
read the code as well as write it. We note that this
comes as a contrast to the MIT Scratch approach,
which focuses on creation. Clearly, both aspects of
a language are important. We need a language that
is both intuitive to write and readable for others to
interpret.

We now turn to work regarding Compute Unified
Device Architecture (CUDA) (see section 3.3 for more
details). Most of an undergraduate’s computer sci-
ence training is involved with writing single-threaded,
sequential code. Since single-core CPUs are reach-
ing limits on a hardware level, a shift is underway
towards multi-core machines. Tran (2010) describes
how to harness a GPU for general purpose comput-
ing using CUDA and how one might implement this
into a college curriculum. A high-level overview of

the CUDA model is presented along with a sample
algorithm that illustrates the usefulness of teaching
this new paradigm. The most useful part of this pa-
per was the overview of the process that goes into
writing a CUDA program. Given a bird’s-eye view of
the CUDA model, we began to get an idea of how to
shape our own language. For example, in CUDA the
programmer must decide how many threads will be
executed. We have hidden this detail from the user
since it is much too low level.

Finally, we need to consider the paradigm of actu-
ally programming for a graphics processor. Convert-
ing existing programs from a singly threaded model
to the CUDA model can take significant time and
experience, partly because of the mechanical con-
versions needed such as computing array references
instead of using loops. hiCUDA is an example of
an OpenMP style C preprocessor language that al-
lows the programmer to wrap his singly threaded
loops to allow them to be automatically parallelized
by CUDA. It was found that examples written with
the prototype hiCUDA implementation did not per-
form significantly worse than the same examples writ-
ten directly with CUDA. Additionally, the hiCUDA
examples were more concise and better fit into ex-
isting loop-based computation models that are of-
ten present in single-threaded programs. However,
the language is still based around C using compiler
directives and as such do not reflect or emphasize
the models that one must internalize to understand
GPGPU programming. Still, hiCUDA shows a simi-
lar abstraction-minded attitude and gave us an idea
of what can be accomplished when building on top
of existing GPU languages (Han & Abdelrahman,
2009).

3 General Purpose Graphics
Processing

In this section we describe the structure of the GPU
and the paradigms associated with GPGPU program-
ming. We then introduce two tools for programming
on the GPU: CUDA and Thrust.

3.1 Structure of the Graphics
Processing Unit

A graphics processing unit is a dedicated piece of
hardware separate from the CPU. It was originally
designed for graphics processing where each pixel is

2



run through a series of transformations and filters
before it is shown on the screen. However, the mas-
sively parallel architecture of the GPU is now being
used for more general purpose programming. As with
conventional multi-CPU parallel programming this is
considerably different from sequential programming,
and in many cases requires some knowledge of the
underlying system to get good performance benefits.

Modern GPUs are structured with dozens of indi-
vidual processing units organized as blocks. Blocks
themselves are arranged as a grid of threads. With
CUDA the programmer has to specify the grid lay-
out of both the blocks and the threads and then from
that information has to know how to access various
parts of memory so that each process can do the right
thing. This is difficult in part because each of these
blocks has access to a small amount of fast block-
shared memory (similar in speed to the cache on a
CPU) and the vastly slower but much larger GPU
main memory. Unlike CPUs, GPUs can not assign
and run different threads of computation simultane-
ously on their many processing units. Instead, they
run a single process (called a kernel) on every unit.
These kernels are able to access both types of mem-
ory and perform their computations in parallel. The
programmer is responsible for writing this kernel, as
well as for designing the way in how threads will be
assigned data. This can be a complex task that re-
quires some low-level knowledge of how the GPU is
designed as well as knowledge of special extensions
to a programming language (e.g. CUDA or OpenCL)
that can tell the GPU what to do.

3.2 Data Flow

GPUs lend themselves to certain types of program-
ming which can differ from what traditional parallel
models offer. For Chestnut we have focused on a
single paradigm that allows for significant and semi-
automatic parallelization. This model is data ori-
ented and focuses on the interactions between func-
tions and data. The model is also fairly common in
present CUDA example code, such as fluid computa-
tion demos or vector shading. Large chunks of data
are assumed, such as large 2D arrays where each el-
ement in the array is a scalar value. Functions are
written to perform the same operation on each el-
ement of data with no ordering constraints. This
means that the operation can be applied to each ele-
ment in any order, and more importantly means that
the operations can be applied in parallel. This model
of programming maps quite nicely onto the core parts

of GPU programming. A single program can be writ-
ten as a kernel and each running instance of that ker-
nel can operate on a small chunk of the overall data.
We think that this is a decent model to support given
our target audience of computational scientists that
need to perform similar calculations on very large
data sets (see section 4.2 for more details). Simi-
larly, we think that it is a relatively simple paradigm
to understand and internalize which should help with
the target audience of people who are just learning
how to program in parallel.

3.3 CUDA

Compute Unified Device Architecture (CUDA)1 is
a system developed by NVidia for performing gen-
eral purpose computations on the GPU. CUDA is
a series of extensions to C along with a specialized
compiler. This results in a very low-level language
where the programmer must know about the GPU
to program for it. Because of the extensions to C
and amount of fine-grained control that CUDA offers
code written in it ends up being verbose and diffi-
cult to understand for someone who has not learned
about how graphics cards work. This creates an enor-
mous learning curve for aspiring GPU programmers.
In CUDA the programmer is responsible for things
such as allocating memory space on both the CPU
and GPU (separately), copying data back and forth
from these two different memories, organizing com-
putations into thread sized chunks and allocating the
correct number of threads per block and blocks per
application. One example of the complexity is the
concept of blocks and threads. As mentioned before,
a single kernel is run many times simultaneously in
the form of many threads. Instead of having a linear
addressing scheme for these threads CUDA chooses
to expose the underlying hardware which is organized
into a 3D structure. Many threads are organized into
a block, and the programmer has to choose how these
threads are organized. One level higher, the blocks
can also be allocated in three dimensions. This is
more useful than allocating in one dimension because
there are limits on how many threads can be in a
block and how many blocks can be run at the same
time. For example, only 65,535 blocks can be allo-
cated in one dimension, but if the programmer uses
two dimensions 65,535x65,535 blocks can be used. In
Chestnut the number of blocks is determined auto-
matically (using Thrust) so that we don’t have to

1http://www.nvidia.com/object/cuda home new.html

3



expose this implementation detail to the user.
CUDA code is also verbose. This verbosity comes

from all of these additional things that the program-
mer needs to specify but also from the format of
the CUDA language itself. There are additional re-
served keywords and code structures required to write
a CUDA program. Everything has to be run through
nvcc which requires buildsystem modifications, and
there are issues with using complex C++-specific con-
structions in code that nvcc processes, regardless of if
the GPU will or won’t be running the code natively.
Debugging and timing are more complicated because
of asynchronous kernel execution and because of how
nvcc modifies the code prior to compilation. All of
this adds up to an extremely powerful and extensible
language but not one that is easily learned, especially
for non-C programmers.

3.4 Thrust

Thrust2 is a C++ template library that provides con-
venient, optimized abstractions for many common
CUDA operations. Where CUDA is very low-level,
verbose, and C-like, Thrust operates on a higher
level, is more succinct, and much more closely re-
sembles C++ code. Thrust makes an introduction
to GPU programming much more feasible compared
to CUDA. However, Thrust code is still more ver-
bose than we would like, is specific to C++ – a
python coder would be lost – and requires knowledge
of the GPU. For example, a Thrust programmer still
needs to know that copying memory between CPU
and GPU is very slow. Using this knowledge, there
are some optimizations that one can use in Thrust
to speed up the execution of code. We want to use
many of the paradigms that Thrust expresses while
simplifying the process such that a user will not need
a deep understanding of the GPU framework. Specif-
ically, we want to capture the essence of applying a
function to a dataset and the simplification of mem-
ory access hidden by the libraries (Hoberock & Bell,
2009).

3.4.1 Vectors

There are two types of vectors in Thrust.
The first is the thrust::host vector3, which is

2The Thrust C++ Library is used throughout Chestnut
and is currently the only backend that Chestnut code can be
compiled into. Thrust performs its operations using CUDA
http://thrust.googlecode.com/

3We use the thrust:: notation when introducing a Thrust
object to distinguish Thrust code from Chestnut code.

stored in the CPU memory. The other is the
thrust::device vector, living on the GPU. In gen-
eral, a user can only initialize a vector on the CPU
and then must transfer it over to the GPU. These vec-
tors are very similar to the STL C++ vectors, and as
such are inherently one-dimensional. In Chestnut we
view our data in two-dimensions, but we abstract this
difference away so the user never concerns himself or
herself with the conversion.

If the user wants to fill a vector full of the
same value, Thrust offers the thrust::fill func-
tion, which fills values directly into the device vec-
tor without the need to copy data over. Fill calls
a kernel on the GPU that sets each index in
the vector to the specified value. This is signif-
icantly faster than copying from CPU to GPU.
There also exists a special type of iterator called
a thrust::constant iterator that takes only one
unit of space. The user “fills” it with some constant,
and a query at any index returns that value. For ex-
ample, suppose a user created a constant iterator

called iter with value 2. Making the query iter[0]

would return 2, as would iter[100] or any other in-
dex. Since constant space is reserved for any “size”
vector, using the constant iterator is a great opti-
mization that we have automated so Chestnut users
don’t have to learn the quirks of a language like
Thrust.

3.4.2 Functions

Thrust offers a large library of default functions. For
this project we have chosen to focus on three in par-
ticular: thrust::transform, thrust::reduce, and
thrust::sort. These three functions lay the foun-
dation for manipulating data in Chestnut. We briefly
introduce them here before delving into the transla-
tion from Chestnut code to Thrust code in section 6.4.
The transform function convolves two vectors using
a specified operator. Reduce consolidates a vector
with a given operator. Sort orders the data accord-
ing to a given comparator. Each of these operators
and comparators can be chosen from one of several
provided by Thrust or they can be customized. At
present, Chestnut uses just the default operators and
comparators. For a discussion specifying how Chest-
nut implements these functions, see section 6.2.1.

4



4 Chestnut

In this section we give a high-level overview of Chest-
nut. We discuss our target audience and the general
applications of our language. Additionally, we state
the specific goals for our language.

4.1 Overview

Chestnut is a graphical environment for parallel pro-
gramming. It is composed of a graphical frontend,
an intermediate language and a compiler that trans-
lates the intermediate language into Thrust C++
code. The main point of entry for users is the Chest-
nut GUI, with the simple code underlying this to be
a small but more complicated step towards actual
Thrust code. The GUI was developed in tandem
with the Chestnut language and both are based on
the data-oriented programming model that was ex-
plained earlier. The language is an extremely simple
interface to the Thrust code and vastly simplifies the
common cases while hopefully continuing to provide
some flexibility. The conceptual models are enforced
through the GUI and through the limited syntax of-
fered by the underlying code. When possible the GUI
restricts the actions that the user can perform to try
and prevent coding mistakes. For example, the text
entry box that allows the user to rename variables
only accepts characters in an order that translates
cleanly to C-style variable names (only alphanumeric
characters and can not start with a number). These
components work together to provide an interface for
a style of parallel programming that can be mapped
easily into lower level Thrust and CUDA code that
can use the GPU.

4.2 Target Audience

Chestnut is meant to be a relatively simple introduc-
tion to parallel GPU programming. We expect little
to no experience with C++ and see two categories of
users with this type of knowledge. The first group
is computer science/programming students who have
not had any exposure or introduction to GPU pro-
gramming before. The second group is non computer
science programmers who could benefit from paral-
lelizing their computations. This might include nat-
ural science researchers or computational scientists
who have written number-crunching programs with
parallelizable algorithms in single-treaded scripting
languages.

With both cases the learning curve can be too
steep to encourage these programmers to learn about
GPU programming. With the underlying Chestnut
code we are interested in having a similar syntax
to Python or JavaScript, where the code is similar
to C but without some of the extra syntax such as
namespaces, headers versus source files, includes and
other complexities. We hope that a person with some
knowledge of programming and with a parallel prob-
lem could use Chestnut to write a basic solution to
this problem.

4.3 Target Applications

At this point Chestnut is targeted towards embarrass-
ingly parallel problems. We reason that there are a
vast number of embarrassingly parallel problems out
there that have not been written to take advantage
of the GPUs because of the learning curve associated
with GPU programming. Those are our target prob-
lems. Additionally, we are not convinced that the ex-
tra complexity of fine-grained synchronization, kernel
specification and block/thread allocation is necessary.
This is mainly because our target audience is not the
advanced computer science programmers who would
want to understand enough of those complexities to
take advantage of them.

4.4 Goals

With both the target audience and the target applica-
tions in mind we have identified a few important goals
for Chestnut. Primarily it should expose the data-
focused model that can be translated to the GPU eas-
ily. This can be done by imposing limitations on the
GUI and on the core language syntax. Secondly we
want Chestnut to be modular. This means separat-
ing the GUI interface from the underlying language,
and providing a compiler for this underlying language
that could be changed in the future to not depend
on Thrust or CUDA should either become eclipsed
by other GPU programming environments. Chestnut
needs to be discoverable. The GUI frontend and its
visual and drag and drop interface is a direct result
of this, where the user can see how things are sup-
posed to be connected. Lastly we are still interested
in achieving a speedup when compared to the CPU.
Although Chestnut is not about the fastest possible
runtime on the GPU compared to other GPU pro-
grams we still want it to be faster than running the
same computations on the CPU because even with

5



chestnut there is still a learning curve to working on
the GPU.

5 Chestnut Frontend

The Chestnut frontend is designed with the data-
centric programming model in mind. It is composed
of a canvas upon which objects can be placed and
connected together to represent the dataflow within
a program. Components can be dragged from the left
sidebar onto the canvas and then can be connected
to create the flow of data in the program. From the
GUI the program can be translated into Chestnut
code and then run – which implies compiling into
Thrust, building that Thrust code, and running it on
the GPU then feeding back the response – without
having to drop into the command line.

5.1 Primitives

The frontend has three main types of objects, of
which two are data containers. The simplest data
container is a Value, composed of just a single scalar.
Values are used primarily for the second input to
a map function or the result calculated by a reduc-
tion function. DataBlocks are data containers that
contain multidimensional data. Currently, only 2D
arrays of arbitrary dimensions are implemented, but
this could be expanded to three dimensions. Lastly
there are Functions which operate on the two data
containers. Functions are well specified and strongly
typed; for example, the map function requires two in-
puts: one DataBlock and either another DataBlock

or a Value. The map function then outputs a
DataBlock. Functions (such as map and reduce)
can optionally accept an operation type which takes
two scalars and combines them (for example + or *).
With these three types of primitive objects and the
connections between them we think many embarrass-
ingly parallel problems can be elegantly expressed in
Chestnut code.

5.2 Interface Concepts

With Chestnut one of the main goals was to have a
discoverable interface. We’ve taken a number of steps
towards this end. Firstly, each class of objects has a
consistent and unique shape. Functions are rounded
rectangles, DataBlocks are sharp-cornered rectangles
and Values are triangles. This gives the user a visual
reference to the type of the object he or she is looking

Figure 1: A sample program in the chestnut GUI that
adds 4 to every element of a 500x500 DataBlock and
then writes the result to disk.

at rather than having to parse and understand some
text. Objects can have inputs and outputs, known
as sinks and sources. A sink corresponds to an in-
put. It can accept data from some source. A source

is like a fountain of data, produced by some object
and available to connect to an arbitrary number of
sinks. Continuing with the theme of a discoverable
interface, sources and sinks have shapes to represent
how they can be connected; circles can only be con-
nected to other circles, triangles to triangles and so
on. Similarly, sinks are differentiated from sources by
a darker interior color. A sink can not be connected
to another sink, nor can a source be connected to
another source. It is possible to have a sink accept
multiple different types of sources. For example, the
print function can take either a DataBlock or a Value.
This is represented by having both a triangle and a
circle next to each other. To help the user create
acceptable connections between objects, the Chest-
nut frontend specifically prevents the user from do-
ing things that are impossible, such as connecting a
source and a sink of incompatible types or connecting
two sources to one sink.

The drag and drop paradigm is central to the
Chestnut GUI. Objects are placed on the canvas by
dragging them from the left toolbar, connections are
made and destroyed by drags from the respective
sinks and sources, and objects can be rearranged by
dragging them around the canvas. The Chestnut
frontend forces the data-centric GPU model that we
illustrated earlier because of the limitations enforced
with connections and the high level atomic functions
such as sort, reduce, and map.

6



5.3 Translating GUI to Chestnut
Code

In order to translate the graphical representation of
a given program to Chestnut code that we can trans-
late into Thrust code we need a robust method of
traversing the graph and constructing correct code.
It is difficult to decipher a “starting point” in a graph-
ical program, so we start by choosing a node at ran-
dom from the graph. This node may be data or it
may be a function. Each node knows its contribution
to the code and also knows what sinks and sources
it is connected to. Additionally, every node has a
flatten function that builds up the Chestnut code.
Thus, once we have selected our starting node, we call
its flatten function which in turn calls the flatten

function of all its sinks, then provides its contribution
to the Chestnut code, and finally calls the flatten

function of all its sources. Since all sinks are “flat-
tened” before the node’s contribution is added and
all sources are flattened after that point, we ensure
that the order of commands in the resulting Chestnut
code is as the GUI layout intended.

We have so far been vague about what a node does
to provide its contribution. This of course depends
on the node’s type and its specific function. But first
we need to discuss the structure of Chestnut code as
it is being built up. Every Chestnut program can
be broken up into variable declarations and function
calls (for Chestnut code specifications see section 6.2)
and so we can create two lists of strings, one for dec-
larations and another for calls, that will eventually be
written out to disk in the Chestnut code file. Thus
as a node contributes to the list of strings, it adds to
the declarations or calls.

So, when a DataBlock or Value is encountered its
contribution will be to the variable declaration list.
The node uses the context provided by a presence or
lack of sinks to decide whether or not it has been ini-
tialized and adds an appropriate variable declaration
(see section 6.2.2 for a description of variable decla-
rations in Chestnut code). If flatten is called on
a Function, the contribution will be to the list of
function calls. As with the DataBlock the node can
gain context from its sinks and sources, allowing it
to add the appropriate parameters to the Chestnut
code string.

In choosing a random node from the graph and
traversing it as we are, we make two crucial assump-
tions. The first is that any connections a Function

has will either be a DataBlock or Value. Similarly,
any connections to or from a variable must be a

Function. This decision reinforces the data-centric
model of pushing data through functions and getting
data back. We can enforce this at the graphical level
by not allowing two Functions or two variables to be
connected. The second assumption is that the graph
is connected – i.e. there are no disjoint subgraphs.
Since we choose a node at random and traverse the
graph from there, we can only translate code that is
reachable from that initial node. Thus we don’t guar-
antee any correctness if disjoint subgraphs (including
single, unconnected nodes) exist.

6 Chestnut Backend

Once the GUI to Chestnut translation is finished, we
have Chestnut code. In this section we describe the
backend language we have created and discuss the
process that brings our Chestnut code to executable
object code.

6.1 Process

The translation from Chestnut to executable is a four
step process. First, we use Flex4 to tokenize the
Chestnut code. For each valid word in the language,
a token is created. For example, if Flex reads the
word map it outputs the TOKMAP token. While Flex
can return just a token without any extra context,
it also has the ability to recognize and then save the
input in a string or integer and pass that information
along as well. In this case, one might have the vari-
able var1 which gets mapped to the identifier token
ID and additionally saves the string "var1" to pass
along to the next stage. Every valid word or char-
acter in the file (including braces, parentheses, etc.)
must be tokenized to be accepted and passed on. If a
token is not found, Flex will exit with a syntax error,
providing a simple first level of error checking.

As Flex tokenizes the file, it passes each token
along to Bison5 for processing. Bison generates an
LALR(1) (one token Look-Ahead read Left to right
producing a Rightmost derivation) or a GLR (gener-
alized LR) parser. Using very simple regular expres-
sions, Bison generates code that analyzes each token
and matches it to predefined acceptable sequences of
tokens. For example, suppose the input code for a
reduction was "result = reduce(+,data)"6. The
resulting sequence of acceptable tokens to check for

4http://flex.sourceforge.net/
5http://gnu.org/software/bison/
6See section 6.2 for a full description of syntax.

7



would be "ID ASSIGN TOKREDUCE LPAREN OP COMMA

ID RPAREN"7. Once a valid sequence of tokens is iden-
tified, we gather the appropriate information (vari-
able names, operators, parameters) and pass them
into a utility function (part of a utility class) that
takes care of writing all the necessary Thrust code to
disk. Once Thrust code has been written it can be
compiled to object code using the CUDA compiler,
nvcc.

The utility class knows what files we eventually
want to write to, keeps a symbol table, and has all
the necessary functions to write appropriate Thrust
code. We have broken each file into four general re-
gions: headers (#includes), function declarations,
the main function, and function definitions. Each re-
gion is represented as an STL vector of strings. Thus,
any header files we want to include in a given file or
code we want to write to main get stored as entries
in their respective vectors until the Chestnut code is
finished being parsed. Once our parser reaches the
end of the file, we execute a single write to disk.

The symbol table is implemented as an STL vector
of symbol entry structs. A symbol entry is a simple
container for four fields. The first is the name of the
function or variable. The second is that object’s type,
either int or float. The third field is the category
of the entry. It can be either a FUNCTION or two
different variable types. If the variable is a single
value, we assign the category VARIABLE SCALAR. If
the variable is a vector (or DataBlock, in the frontend
terminology) we assign it VARIABLE VECTOR. Finally,
each entry has a scope. This field is not presently
being used and is by default set to zero.

6.2 Specifications

We currently support two basic variable types, two
variable categories, and seven default functions. Here
we discuss them and specify each of their uses. This
section will introduce the reader to basic Chestnut
syntax and give a sense of the level of abstraction
used.

At this early stage, the only data types we sup-
port are standard C++ int and float. Considering
our target audience and what we anticipate them us-
ing Chestnut for, we believe that in an overwhelm-
ing number of cases these basic number types will
be sufficient. Users will be acting primarily on large
numerical datasets. In the future, we would like to

7OP is short-hand for “operator,” satisfied here by "+"

implement more default types and allow users to de-
fine their own types, described in section 9.

Before a function is called, variables used by that
function must be defined. As discussed earlier, vari-
ables can be either vectors or scalars. If a vector is
going to be assigned data before being used in a func-
tion, it must be initialized using a foreach loop or
a read command, discussed in section 6.2.2. Other-
wise, if data is going to be used as the result of a
function, we must still declare it, but need not spec-
ify anything except its type, name, and category. To
declare a variable in this way, the general syntax is

[type] variableName [category];8

Chestnut currently has seven functions that oper-
ate on data: map, reduce, and sort all manipulate
the data in some way; foreach, read, write, and
print comprise the Input/Output interface of our
language. The general syntax for a function call in
Chestnut is

result = functionName(

param1, . . . , paramk,

inputData);

The result of the operation is always stored in a vari-
able (either a scalar or vector) to be used later. Every
function also operates on some block of data. These
two specifications enforce the data-centric model of
programming. Note that it is easy to modify data
in place by setting both the result and input to the
same variable. Each parami is an extra parameter
that specifies some option of the function. There can
be zero or more such parameters.

6.2.1 Manipulator Functions

Let’s consider the map function, the most complex of
the default functions. A map takes a block of data
and applies the same modification to every element.
For example, we could add 2 to every element in an
array. Our map also works as a convolution operator,
applying an operator to corresponding elements in
two arrays. Formally, given two 2-dimensional arrays
A,B convolved into a resulting array C, each with in-
dices i,j, the resulting array would have the property
C[i][j] = A[i][j] + B[i][j] for all i,j. The re-
sult of a map is a vector. The first parameter is the
operator (e.g. "+"). The second parameter can either

8Bracket notation is used to indicate there a defined set of
choices for the given identifier. Here, [type] could be int or
float, [category] could be vector or scalar.

8



be a single value (e.g. "2") or a DataBlock. The last
parameter is, as always, the input data that will be
mapped over. So, if the end-user wants to modify a
data block inputData by adding 2 to every element
the function call would be

inputData = map(+, 2, inputData);

If instead the user wants to multiply two blocks of
data, input1 and input2, and store the result in
output, the call would be

output = map(*, input1, input2);

The reduce function accumulates every element of
a data block using a specified operator and stores the
value in a scalar. For example, a user could use the
function to take the sum of every element in an array.
The function takes only two parameters, an operator
and an input vector. The output is a scalar. Using
the example from before, to sum over a data block
input and store the result in the scalar reduced, we
have the syntax

reduced = reduce(+, input);

The sort function sorts a block of data according
to the given comparator. The output is always a data
block. The first parameter is the comparator to use
(e.g. "<") while the second is the data to be sorted.
Suppose a user wanted to sort a block of data input

in descending order and wanted to store the result in
that same variable, the syntax is

input = sort(>, input);

We see that each of the manipulator functions
Chestnut offers takes a vector as input, performs an
operation on every element and returns some value
to be stored in another variable. We note that these
functions can be strung together into long sequences
of maps, reduces, and sorts. Indeed, we anticipate
much of the value of Chestnut to arise from the abil-
ity to sequence functions in a pipeline to efficiently
compute results.

6.2.2 Input/Output Functions

To initialize a vector, Chestnut offers two options, one
of which is the foreach construct. This is a simplified
for-loop construction that traverses every element of
the vector and allows the user to create a formula to
dictate what value is stored in each cell. The general
syntax for a foreach declaration is

[type] variableName numRows numCols

foreach (ForeachExpression);

Every ForeachExpression starts with value = and
then some right-hand side expression. The value

keyword is shorthand for the current index of
the data block in the for loop. Thus if the
progress of the loop had reached currentRow,
currentCol, then value would correspond to
array[currentRow][currentCol].

The right-hand side of the equation can be any
arithmetic expression (e.g. 2+4) combined with a set
of reserved words. Note that these words are not
reserved outside of this context, so a user oblivious
of these rules would not be in danger of name con-
flict errors. The user can reference the current row
or column using the row and col keywords, respec-
tively. To reference the total rows or total columns
a vector we use the maxrows and maxcols keywords,
respectively. Finally, users can use the keyword rand

to generate a random number. Since this function
invokes the C++ rand() function, this will be an in-
teger between 0 and the maximum random number.
This offers the highest level of customization for the
user’s random number. So, to fill a 10x10 vector of
random real numbers between 0 and 1, the full state-
ment would be

float data 10 10

foreach (rand/RAND MAX);

Chestnut also allows its users to read data from
disk and write data to disk. We use a very clear,
simple syntax for the files that are read from and
written to. The first line contains the number rows
in the data, then the number of columns. After this
the data is listed in a space-separated format. Re-
call from above that data reads are called only when
variables are declared, so the current syntax follows
the declaration pattern. In the future we may want
to allow data reads at any time. To read from a file
"infile" and store it in a vector data of integers,
we have the syntax

int data read("infile");

The output functions have a different syntax from
other functions. To write a block of data, outdata,
to a file, outfile, the code in Chestnut would be

write(outdata, "outfile");

Similarly, Chestnut provides a function to print the
contents of a data block to standard output. The out-
put is formatted into a two-dimensional array format,
printing a newline character before starting each new
row. To print a data block outdata, one uses the
syntax

9



print outdata;

The input and output functions Chestnut provides
allows the user to view progress in between a series
of computations and to read blocks of data from disk
and later write them out for storage. When deal-
ing with enormous data, it seems that reading and
writing to disk will be most useful. Still, for bench-
marking and various other operations, the foreach

construct is convenient.

6.3 Sample Program

We have provided in-depth specifications of Chest-
nut code but have not yet given an example of a full
program written in the language. Here we take the
opportunity to detail a program written in Chestnut
code from start to finish, given in Code Snippet 1.

First, we initialize input1 and input2 with a ran-
dom number and data from file, respectively. We then
need to declare two vectors, sorted1 and sorted2.
Below the declarations, we sort the initial vectors into
their sorted analogues, the first in ascending order,
the second in descending order. To get a peek at the
computation in progress, we print out both vectors.

Once the data are sorted, we want to convolve
over the vectors using the "*" operator and store
them in mapped, which we then write out to the file
"outputdata". Finally, we reduce over a sum and
print out the result, which is stored in reduced. This
sample program shows the ease with which a user can
quickly populate and operate on sets of data. Our
programming model is clearly at work, moving data
through functions and storing the results in more
data.

6.4 Translating Chestnut Code to
Thrust

The process of converting Chestnut Code to Thrust
code consists of expanding single lines into many lines
of code, declaring extra variables that are encoded
implicitly in Chestnut, and making some assumptions
that a Thrust programmer would not need to. In cer-
tain circumstances, we can also optimize some com-
mands. In this section we discuss Thrust code that
is produced from samples of Chestnut code. We also
use this as a vehicle to discuss other design decisions
and assumptions we made regarding the translation.

Code Snippet 1 Sample Chestnut code for a pro-
gram that adds two sorted vectors together, then
sums over their mapped result. Note that line num-
bers do not include blank lines or wraparound. We
do this to focus on the lines of actual code rather than
the code’s organization.

1 float input1 100 100 foreach

(value = rand/RAND_MAX);

float input2 read ("inputdata");

float sorted1 vector;

float sorted2 vector;

5 sorted1 = sort(<, input1);

sorted2 = sort(>, input2);

print sorted1;

print sorted2;

float mapped vector;

10 mapped = map(*, sorted1, sorted2);

write (mapped, "outputdata");

float reduced scalar;

reduced = reduce(+, mapped);

15 print reduced;

6.4.1 Variable Declarations

Any time a variable is declared in Chestnut there are
up to five possible variables that may need to be de-
clared in Thrust. Consider a vector defined using the
syntax int data vector; which just creates a vec-
tor for later use. This causes a utility function to
create a host vector and a device vector along with
variables to contain the number of rows and columns
of the object. None of these variables are initialized
immediately, but they must be declared to be refer-
enced later in the program. The Chestnut code int

data scalar; corresponds to just a single variable
in Thrust code.

When translating a foreach construct, we must
create variables for the host, device, rows, and
columns, but we still have two options after those
declarations. If the user specifies a row, column,
or the random keyword in the foreachExpression,
then we must create a double for-loop that iterates
over every row and column and fill the host vector,
then copy the host vector to the device. But if the
user makes no reference to those reserved words we

10



can optimize the process by using the thrust::fill

function (described in section 3.4.1). Since all other
expressions (those containing maxrows and maxcols

and all arithmetic expressions) are constants, we can
simply pass the expression to the function and have
it move straight to the GPU. Since there is no need to
copy data from CPU to GPU, this operation is much
faster.

When the user calls the read function, we create
the usual four variables and then must also reference
a special DataInfo struct. In the Thrust code, we call
a templated library function we wrote that reads the
data into a host vector, fills out row and column in-
formation and packs them into a special struct. This
is then returned to the Thrust file where it gets un-
packed.

With so many variables in the Thrust code, we
need a convenient naming scheme. The base of every
Thrust variable name is the name given from Chest-
nut. Then some descriptive suffix is added to en-
able us to reference the variable and to ensure there
are no naming collisions. Thus, if a Chestnut vec-
tor was input, the associated host vector in Thrust
would be input host and the number of rows would
be input rows.

6.4.2 Manipulator Functions

Where name collisions caused conflicts when declar-
ing variables, in-place operations cause conflicts when
calling functions in Chestnut. Every function in
Chestnut has an input and an output, and unless
those two are the same object we guarantee that
the function will not modify the input object. But
some functions in Thrust modify the data in place.
For example, if a user writes the Chestnut code
output = sort(<, input), we must copy the con-
tents of input to output and then run an in-place
thrust::sort on output.

Similarly, when using the map function, a con-
flict arises when the user sets both the modi-
fier and the output as the same object, as in
modifier = map(+, modifier, input). Since we
want to guarantee input is not modified, we gener-
ally set the destination (here, modifier) to an empty
vector of the correct size. Thus, left unmodified, the
translation results in modifier being overridden and
then simply filled with the input. We need only
switch the order of the input and modifier to resolve
the problem, because then both input and destina-
tion will be the same object and our algorithm will
treat this as an in-place modification. These prob-

lems are indicative of the level of abstraction we strive
for. General purpose graphics processing requires a
different way of thinking about the data, and to re-
ally establish and enforce this paradigm requires some
bridges between existing code structures and our ab-
stractions.

6.4.3 Output Functions

With the output functions write and print we come
to one of the most crucial assumptions. To write a
data block out to disk or to print an object, the data
must be on the CPU memory. Since the Chestnut
programmer is not informed about the CPU/GPU
boundary and by design has no way of affecting the
location of the data, we must assume that the most
recent copy of the data is on the GPU and thus needs
to be copied over to the CPU on every output func-
tion call. Thus every print and write, even if they are
consecutive calls, necessitates a slow copy. Future
work could look at optimizing this limitation out.

7 Experiments

Experiments with Chestnut take two forms: qualita-
tive and quantitative. The first allows us to evaluate
the readability of code. We compare the Chestnut
code automatically translated from the graphical in-
terface against equivalent Thrust code and CUDA
code. We use this evidence to argue that our language
is much more accessible than the alternatives. The
quantitative experiments help to validate the useful-
ness of Chestnut. We show that Chestnut code is
significantly faster than sequential code executed on
the CPU and is approaching the speed of handwritten
CUDA code.

7.1 Qualitative

To demonstrate the readability and ease of writing
in Chestnut, we present a simple example involving
a single map operation and show how the verbosity
increases dramatically as we translate the code into
equivalent Thrust and then into CUDA code. We see
in Code Snippet 2 that in three commands the user
can define an array, fill it with a value, add one to
every element in that array, and print out the result.
The commands are clear, succinct, and immediately
accessible to a new user.

Let us contrast the Chestnut code with equivalent
Thrust code. Code Snippet 3 contains the result of

11



Code Snippet 2 Chestnut code mapping over each
element of a 10x10 array, adding 1 to each element,
and printing out the result.

float data 10 10 foreach (value = 2);

data = map(+, 1, data);

print data;

automatic translation from Chestnut to Thrust code,
formatted slightly to fit the page. The first feature to
notice is how many more lines of code are necessary
to do the same thing. In the Chestnut code, we need
only declare the variable and use it without worry-
ing about about whether its contents reside on the
CPU or GPU. That abstraction disappears when we
begin to program in Thrust. First host and device
vectors must be declared and populated. Then a ver-
bose transform function must be called wherein the
user must worry about bounds and optimizations like
the constant iterator (discussed in section 3.4.1).
Finally, the data on the GPU must be copied to the
CPU and printed out.

But Thrust is still a strong improvement in terms
of usability over the low-level CUDA code. In Code
Snippet 4 we see handwritten CUDA code equivalent
to the previous two programs. While there are not
markedly more lines of code in the CUDA program
compared to the Thrust program, each line is nearly
indecipherable for a user not well versed in C pro-
gramming. Among the things a CUDA programmer
needs to worry about are pointers, using CUDA’s set
of memory allocation tools, and running a kernel that
uses obscure syntax. Recall the simple task of adding
1 to a small array. We believe that such an easy to
understand concept should have accompanying code
that is both easy to understand and easy to program.
Chestnut makes this a reality.

7.2 Quantitative

An important step in determining whether Chest-
nut is a viable alternative to other general pur-
pose graphics processing languages is benchmark-
ing. We ran our automatically generated Thrust
code against handwritten sequential C++ code run-
ning on the CPU and optimized, handwritten CUDA
code. We tested Map, Reduce, and Sort. The first
two operations were performed on arrays containing
8192x8192 = 67,108,864 elements. The sorting oper-
ation ran on an array of size 1024x1024 = 1,048,576

Code Snippet 3 Thrust code mapping over each
element of a 100 element array, adding 1 to each ele-
ment, and printing out the result.

1 int main() {

int data_rows = 10;

int data_cols = 10;

// Memory on host and device

5 host_vector<float> data_host;

device_vector<float> data_dev

(data_rows*data_cols);

// populate data

thrust::fill(data_dev.begin(),

data_dev.end(), 2);

/* Begin Map Function */

10 thrust::transform(data_dev.begin(),

data_dev.end(),

thrust::make_constant_iterator(1),

data_dev.begin(),

thrust::plus<float>());

/* End Map Function */

// print out data

data_host = data_dev;

for (int r=0; r<data_rows; r++){

15 for (int c=0; c<data_cols; c++){

std::cout

<< data_host[r*data_cols+c]

<< " ";

}

std::cout << "\n";

}

20 std::cout << "\n";

return 0;

22 }

elements. In all cases, arrays were initialized with
random floats between 0 and 1. Each operation
was executed 100 times per run. Experiments were
conducted using an NVidia GeForce GT 230M card
with 48 CUDA cores and 1GB of memory running at
1100 MHz. The average runtime per operation over
five runs is presented in Table 1. Note that the times
below reflect the runtime of a single operation, not
all 100 operations. Additionally, speedups between
sequential and Thrust code and between Thrust and

12



Code Snippet 4 CUDA code mapping over each
element of a 100 element array, adding one to each
element, and printing out the result

1 int main() {

int* host;

int* dev;

int N = 100;

5 cudaMallocHost((void*)&host,

N*sizeof(int));

cudaMalloc((void*)&dev,

N*sizeof(int));

for (int i=0; i<N; i++){

host[i] = 2;

}

10 // Copy the array host to dev

cudaMemcpy(dev, host,

N*sizeof(int),

cudaMemcpyHostToDevice);

// run map kernel on device

map<<<1, dim3(N)>>>(dev, N);

// copy back dev to host

15 cudaMemcpy(host, dev,

N*sizeof(int),

cudaMemcpyDeviceToHost);

for (int i=0; i<N; i++){

printf("%d ", host[i]);

}

printf("\n");

20 return 0;

}

__global__ void map

(int* array, int cols){

25 int row = threadIdx.x;

int col = threadIdx.y;

array[row*cols + col] += 1;

28 }

CUDA code are featured.

We see from the results that in all cases we have
excellent speedup compared to sequential code. Our

generated Thrust code is anywhere from 13 to 23
times faster than handwritten sequential code. When
we look at the Thrust code against optimized CUDA
code, we (in general) fare respectably. When con-
sidering the map and sort operations, our code is at
most three times slower. The reduction operation,
however, is almost sixty times slower than the CUDA
code. It would appear that the default Thrust reduce
operation is not nearly as optimized as it could be.
We know that the reduce function requires copying
the result from GPU to CPU memory and it may be
the case that the optimized CUDA is getting around
that. While we are satisfied with the map and sort

speedups, we need to look more carefully about how
to handle reductions to get the best runtimes.

A few aspects of our experimental methods should
be made explicit. Since Thrust function calls are
asynchronous, it is difficult to time the actual exe-
cutions of our operations. Thus our timer was the
UNIX time9 utility. To isolate the function runtimes
from the overhead of copying memory from the CPU
to the GPU, we timed the average execution of that
copy without any actual function call and subtracted
that time away from the runs when we issued function
calls. The overhead, however, was nontrivial. Since
we are using Thrust vectors instead of C-style point-
ers, the CUDA code spent less time allocating space
than the Thrust code. Specifically, in the map ex-
periments, memory allocation using Thrust took (on
average) a full 71.9 percent of the runtime compared
to only 30.4 percent using CUDA. So while each oper-
ation is comparable, CUDA definitely beats Thrust
on memory transfer. We don’t view this as a big
problem because we expect the average use case of
our language to involve allocating the data and then
running many consecutive computationally expensive
tasks. As computation increases, the significance of
memory transfer decreases.

The CUDA and sequential code was a mix of code
we wrote and precompiled executables to which we
did not have access to the source. All sequential code
was handwritten, and since sequential maps, reduc-
tions, and sorts are very straightforward, we find this
reasonable. The C++ STL sort function was used.
We wrote the CUDA map function, which consists of
a single kernel call (as shown in Code Snippet 4). The
CUDA reduce and sort were precompiled and thus
we were limited to the given array sizes.

9http://www.opengroup.org/onlinepubs/9699919799/

utilities/time.html

13



Sequential to Thrust Thrust to CUDA Sequential Thrust CUDA
Speedup Speedup (ms) (ms) (ms)

Map 23.1 1.01 545 24.3 24.1
Reduce 19.2 58.0 266 13.9 0.24
Sort 13.7 3.32 409 29.8 8.97

Table 1: Runtime statistics comparing automatically generated Thrust code to Sequential code run on the
CPU and optimized CUDA code. Map and Reduce were run on arrays containing 67,108,864 elements while
Sort was run on 1,048,576 elements. Each operation was executed 100 times per run and the average runtime
per operation is presented in milliseconds. Speedup in the first column is calculated as sequential time

Thrust time , the

second column is Thrust time
CUDA time .

8 Discussion

In this paper we have presented our graphical lan-
guage Chestnut aimed at simplifying general purpose
graphics processing. Taking advantage of the GPU
can greatly speed up runtimes but, with the tools
available now, require more knowledge and overhead
than many users are willing or able to put in. With
Chestnut we provide a simple, discoverable, intuitive
interface that allows amateur programmers or scien-
tists perform many common data-centric tasks with-
out learning about the details of the GPU. Chestnut
can also serve as a teaching tool to introduce pro-
grammers to the mindset of parallel programming.
Our language is much faster than sequential code run-
ning on the CPU and is in most cases comparable to
handwritten, optimized CUDA code. While our lan-
guage is limited in this early stage and will never be
as fast as well-tuned CUDA code, the resulting Chest-
nut code is much more readable and easier to follow
than the alternatives.

9 Future Work

As we have acknowledged, Chestnut is still in its early
stages. We have a working solution to many of the
problems that make GPGPU programming difficult,
but there is still much room for expansion and im-
provement. In this section we present some options
for the future of this project.

9.1 Custom Functions

A significant limitation with the current Chestnut im-
plementation is that it doesn’t support the creation of
custom functions from within Chestnut code or from
the GUI. This complicates the use of Chestnut for
applications with some data inter-dependence. One

example of such an application is Conway’s Game of
Life10 which requires knowledge of the eight neighbor-
ing squares to calculate the game state for any given
square. Custom functions would need significant lim-
its on how they could access memory to ensure that
the data-centric GPU model is followed, but we think
that they are possible. A custom function would have
a limited syntax and would be able to assign the val-
ues to each bucket based on the value at that bucket
and the values of other nearby or arbitrary buckets.
A sample syntax for custom functions is presented in
Code Snippet 5 where the specific keywords above,

below, left, right correspond to the values in the
array at those positions relative to the current bucket
and the keyword value represents the value in the
output array of the current bucket.

Code Snippet 5 Proposed syntax for a custom func-
tion in Chestnut code.

function average(Input in, Output out) {

value = above + below + left + right;

value = value / 4;

}

9.2 More Functions and Datatypes

Chestnut currently supports integers and real values
(floats); both are very primitive datatypes. Users
would benefit from a larger array of types to choose
from, including doubles and strings as well as a pair

type capable of combining two values into a single
datatype. We would also like to expand the list of de-
fault functions and expand the functionality of those
we currently provide. For example, if a user had
control of a pair or some arbitrary n-tuple, he or

10http://en.wikipedia.org/wiki/Conway’s Game of Life

14



she could run different sort functions along different
subfields. We would also like to provide a mechanism
by which users could define their own functions and
data types. This would greatly increase the function-
ality and usefulness of Chestnut. The syntax for these
functions is something we need to carefully consider
before implementing. We need to stick to our goals
of being intuitive and discoverable while making the
process as configurable as possible.

9.3 Refine GUI

As features are added to the Chestnut language it
is important to continue to find ways to have them
cleanly map into the GUI. Custom functions should
appear alongside predefined functions and should fol-
low the same semantics for advertising their available
inputs and outputs as sinks and sources. The GUI
also currently lacks any way of saving or loading a
workspace. It would additionally be important to
streamline the build process. Currently it takes quite
a few steps and it should be closer to a one click pro-
cess if the user is unfamiliar with the different parts
that make up the Chestnut system.

9.4 For Loops

In the current language, there is no looping structure
to execute multiple function calls without explicitly
laying each one out. For example, to run 100 maps a
user needs to place 100 map calls and all the necessary
intermediate connections. This is of course infeasible
in its current state, especially in the graphical envi-
ronment. In the future we would like to provide a for

loop that specifies the number of times to execute a
section of code. To implement this functionality, we
first need to get the backend to recognize the con-
struct and figure out where data needs to be copied
to provide reliable and well-defined results. Then we
need to implement the appropriate frontend support
and decide on the most intuitive way to present a
looping construct to the user.

References

Han, T. D., & Abdelrahman, T. S. (2009, March).
hiCUDA: A High-level Directive-based Lan-
guage for GPU Programming. Proceedings of
2nd Workshop on General Purpose Processing
on Graphics Processing Units, 383 , 52–61.

Hoberock, J., & Bell, N. (2009). Thrust: A parallel
template library. Available from http://www

.meganewtons.com/ (Version 1.2)
Resnick, M., Maloney, J., Monroy-Hernández, A.,

Rusk, N., Eastmond, E., Brennan, K., et al.
(2009, November). Scratch: Programming for
All. Communications of the ACM , 52 (11), 60–
67.

Robertson, S. A., & Lee, M. P. (1995, December).
The Application of Second Natural Language
Acquisition Pedagogy to the Teaching of Pro-
gramming Languages – A Research Agenda.
SIGCSE Bulletin, 27 (4), 9–12.

Tran, Q.-N. (2010, April). Teaching Design & Anal-
ysis of Multi-Core Parallel Algorithms Using
CUDA. Journal of Computing Sciences in Col-
leges, 25 (4), 7–14.

15


