\

SENNVED

A Framework for Distributing
Tree-Structured Problems

Chris, David; Michelle

Context

* From class: MapReduce and Dryad
* Simple interfaces for distributed

programming ? ? ? ’mputﬁ,es
R | R||[R

Stage

X X X X X X
M M?
l/ |

Channels Vertices

(processes)
Output files ; {

But what about ...

fun divide conquer (problem) {
subproblems = divide(problem)
subanswers =
map divide conquer subproblems
combine subanswers

}

* |t’s recursivel

Our contribution: Banyan

* Framework for distributing tree-
structured recursive programs

* Begins computation on one processor;
ships subproblems as they arise

e Uses Fly tuplespace for memoization

* Theorem prover case study

Outline

Programmer interface
Implementation

Case study: theorem prover
Results

Future work and conclusion

Programmer interface

* Implement two primary functions:
* workHere, to generate subproblems
* childReturned, to combine answers
* Also
* Generic message handler

* Cooperative scheduling functions

e Subproblem identifier for shared memory
indexing

Architecture overview

®

Coordinator P> Client
® ol 1
® ®
\ 4
Worker [|[® — == — = > Worker [€ = P Worker
G ®
————— > - >
yy 72— & yY
@l O @l l@ O
Shared Memory

Scheduling nodes

* Node priority expressed in tickets

* Job starts with fixed tickets; parents
donate to children

* Active local nodes scheduled round-robin

e Subtrees shipped when local tickets
exceed target

* Coordinator keeps workers balanced

Shared memory

* Fly tuple-space
 Read, write, take
* Read, take match on keyed template

* We use it to avoid duplicating work
e Store node results
* Check store on child create
* Programmer supplies indexing scheme

Case study: Differential dynamic logic

* |Interacting discrete and continuous
components

* Hard parts:

* |Invariant generation
e Quantifier elimination

DL as a Banyan Application

* Three concrete objects extending TreeNode
e Code snippet from AndNode:

def childReturned(child: Int, v: ReturnType): Unit =
v match {
case Proved(rl) =>
numOpenChildren -= 1
i1f (numOpenChildren <= 0) returnNode(Proved(rule))

case GaveUp() =>
returnNode (GaveUp())

e |t works!

Water tank example

- -
o 06 o6 @
0000~ o0~
@ [2@
* -=00
_ . ® o0 o -
e ° [o o @
¢ s s ¢ o ¢ o
e * v 4 ¢ 8o & Do
2 ® e [£ on o L] ° °
Y Ch @ oo. o o oo o * o ee- o: :
- S 0000000 = - - ooooo.oo
o o ® o009 O O oo - o o 0 b o e oo 00 0: ®
T “ET-1 e00@0 I - - - o e00 - 000900
: : :: oo O - e coc ooo o oot e o ooo T
0.0 -® (T TR 00000 --00600 - 000 (I I = - 00000 - 00
o0 ooo oo - eee® o oooo [)
TS Inooo 1 00 00000 - " TIT IR ;.‘ o0
[1) (1) 0. (]) (1)

‘Proved ‘Gave up Aborted

Results — Water tank

Workers Time (s)
1 2978

4 1213

2.4x speedup

Results — Bouncing ball

i
"

Workers T1(s) T2 (s)

1 209 147 3.2x speedup (avg)
4 50 62

Future work

Optimize node distribution
Pause/resume

Dynamically add jobs, workers
Fault tolerance

Improve shared memory
* Inexact matching
* Multi-host flyspace

Compare to simpler models

Conclusion

* We made a framework to facilitate
distribution of tree-structured problems

* You can play with it:
www.cs.cmu.edu/~renshaw/banyan

