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But what about ...

fun divide conquer (problem) {
subproblems = divide(problem)
subanswers =
map divide conquer subproblems
combine subanswers

}

* |t’s recursivel



Our contribution: Banyan

* Framework for distributing tree-
structured recursive programs

* Begins computation on one processor;
ships subproblems as they arise

e Uses Fly tuplespace for memoization

* Theorem prover case study
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Programmer interface

* Implement two primary functions:
* workHere, to generate subproblems
* childReturned, to combine answers
* Also
* Generic message handler

* Cooperative scheduling functions

e Subproblem identifier for shared memory
indexing



Architecture overview
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Scheduling nodes

* Node priority expressed in tickets

* Job starts with fixed tickets; parents
donate to children

* Active local nodes scheduled round-robin

e Subtrees shipped when local tickets
exceed target

* Coordinator keeps workers balanced



Shared memory

* Fly tuple-space
 Read, write, take
* Read, take match on keyed template

* We use it to avoid duplicating work
e Store node results
* Check store on child create
* Programmer supplies indexing scheme



Case study: Differential dynamic logic

* |Interacting discrete and continuous
components

* Hard parts:

* |Invariant generation
e Quantifier elimination



DL as a Banyan Application

* Three concrete objects extending TreeNode
e Code snippet from AndNode:

def childReturned(child: Int, v: ReturnType): Unit =
v match {
case Proved(rl) =>
numOpenChildren -= 1
i1f (numOpenChildren <= 0) returnNode(Proved(rule))

case GaveUp() =>
returnNode (GaveUp())

e |t works!



Water tank example
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Results — Water tank

Workers Time (s)
1 2978

4 1213

2.4x speedup




Results — Bouncing ball
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Workers T1(s) T2 (s)

1 209 147 3.2x speedup (avg)
4 50 62




Future work

Optimize node distribution
Pause/resume

Dynamically add jobs, workers
Fault tolerance

Improve shared memory
* Inexact matching
* Multi-host flyspace

Compare to simpler models



Conclusion

* We made a framework to facilitate
distribution of tree-structured problems

* You can play with it:
www.cs.cmu.edu/~renshaw/banyan



