
www.curj.caltech.edu 1 3    S U M M E R  2 0 0 7

ne of the most basic structures in mathemat-
ics is that of a finite set and its subsets. Proving 
theorems without it is like baking cakes without 
a mixing bowl—impossible because there is  
nowhere to put anything. Therefore it is no  

surprise that combinatorialists, who specialize in pointed 
questions about elementary structures, have often studied 
collections (affectionately called `families’) of subsets satisfy-
ing various criteria. One particularly natural question, however, 
has remained unsolved for more than twenty years. Roughly, 
it asks whether a certain optimization problem concerning 
families of intersecting subsets (of a given finite set S) always 
has a simple solution. An affirmative answer would imply the 
resolution of another older, open question that had stumped 
even the legendary mathematician Paul Erdös. The present 
paper documents an attempt to use one specific idea—what 
we will call `reductive smoothing’—to attack this problem. 
Although the method apparently leads to a dead end, it yields 
some insights along the way that are, perhaps, interesting in 
their own right.

The problem itself is easily stated. The only notion that 
requires special definition is that of a `maximal intersecting 
family’ of subsets of S. Here, `intersecting’ means that any 
two members of such a family share at least one common 
element (not necessarily the same for all pairs) and `maxi-
mal’ means that if the family adopts any new members it 
will cease to be intersecting. One important fact about these 
families is that each consists of exactly half of the subsets of 
S. Now suppose that every subset of S is assigned a weight, 
with the restriction that each subset must not weigh more 
than any of its subsets. That is, suppose weight is non-
increasing with respect to inclusion. (The older question  
alluded to above assumes furthermore that weight can only 
take the values 0 or 1.) Then suppose that we would like to find 
a maximal intersecting family whose total weight is as large 
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as possible. In 1979, Daniel Kleitman conjectured that the only 
families we need to check are those which contain a single-
ton—that is, a set of one element. The aim of our research was 
to prove this conjecture.
 Intuitively, the validity of the conjecture might seem almost 
maddeningly obvious. Families that contain a singleton are 
in a sense `pushed down’ as far as they will go (the figures 
provide an explanation of this terminology). Since smaller sub-
sets are heavier, why should not the heaviest family contain 
as many of them as possible? To put it another way, imagine 
a maximal intersecting family that does not contain a single-
ton but has maximum weight. There will be some subset A 
that is a member but that contains no other member. We can 
obtain another maximal intersecting family by trading A for 
its complement Ac, so the weight of A must be greater than 
the weight of Ac. But then should we not be able to make a 
bunch of favorable trades to include all of those heavy sub-
sets contained in A? Or if heavy members somewhere else 
prevent us from doing this, should we not be able to make 
favorable trades to include their subsets? In either case, we 
will ultimately be led to a family that contains a singleton. 
Making this line of reasoning rigorous, however, is not easy. 

Fortunately, we do not need to consider every possible 
weight function individually. A technique introduced by 
Kleitman and later elaborated upon by Peter Fishburn allows 
us instead to focus our attention on the maximal intersecting 
families themselves. The idea, which we will call `smooth-
ing,’ is to take an arbitrary family and show that it can never 
be lighter than some average of singleton-containing fami-
lies. When smoothing succeeds, it demonstrates that one of 
the singleton families must weigh at least as much as the  
original family. Hence, if we can prove that every maximal 
intersecting family can be smoothed, then we will have proved 
the conjecture. In fact, if we ever find a family that cannot be 
smoothed then we will actually have disproved the conjecture. 
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that contain b but not a. Furthermore, each of the sab balls still intact 
after this can be split into a sa/2n-2 ounce portion and a sb/2n-2 ounce 
portion. It is now clear that the weight of F is no greater than the 
weight of an average of singleton families.
 Our idea is to generalize this technique. Evidently, smoothing 
succeeds when F has a doubleton because then we can forget about 
all but two singleton families. It would be helpful in the general case 
if we could forget even about just one singleton family. There turns 
out to be a nice property which, when exhibited by a family, guar-
antees that we can indeed do this. For any maximal intersecting 
family F and any element x of the ground set S, we may consider 
the induced family F(x) obtained by deleting every instance of x from 
the members of F. Of course, F(x) is not necessarily a maximal inter-
secting family, and in general it is not even intersecting. However, 
if the members of F(x) can be partitioned into two classes, each of 
which is intersecting, then the problem of smoothing F reduces 
to the problem of smoothing two families on the smaller ground 
set S\{x}. In other words, by forgetting about the singleton family 
containing {x}, we can reduce to a smaller problem and hence allow 
for an inductive proof of the conjecture.

Which maximal intersecting families allow such `reductive 
smoothing?’ Clearly, if they all do, then a proof of the conjecture 
follows immediately. Unfortunately, the Fano plane dashes any 
such hopes. It is a family of three-element subsets of a seven- 
element set such that any two members intersect in exactly one  
element and each element is contained in exactly three members. 
It fails the test because any family induced from it by deleting an 

An illustration of the smoothing process.

First we write down all subsets of the
ground set. We draw a line segment connecting 
subsets which differ by only one element.

We divide some of the balls intp pieces...

...and move some clay down along line 
segments. The weight of the configuration 
can only increase during this step.

Finally we notice that the resulting configuration 
is an average of singleton families—in this 
case. 1/4 of the ‘a’ family and 3/4 of the ‘b’ family.

This equivalence (which we will not prove here) is encouraging. 
 The smoothing process can be illustrated by an example. Sup-
pose that F is a maximal intersecting family which contains the 
doubleton {a,b}. Each member of F will then fall into one of three 
disjoint classes, depending on whether it contains a, b, or both. Let 
sa, sb, and sab be the respective sizes of these classes. We know right 
away that sab = 2n-2 because that is how many supersets {a,b} has, 
and all of them must be in F by maximality. This leaves another 2n-2 
members of F that are split in some way between the other classes. 
It turns out that the total weight of F must be less than or equal to 
sa/2n-2 times the weight of the family containing the singleton {a}, 
plus sb/2n-2 times the weight of the family containing {b}. To see 
why this is so, consider the following interpretation. Imagine that 
we have written down all of the subsets of our ground set, and we 
place a one-ounce ball of clay on each subset that is a member of 
F. To calculate the `weight’ of this configuration we multiply the 
real weight of each ball of clay by the value of the weight function 
on the subset it covers. Now, whenever we transfer clay from some 
subset to a subset contained in it, the weight of the configuration 
will remain constant or increase. In fact, it is not too difficult to 
show that we can always transfer clay in this favorable way so as 
to evenly distribute the sa class-a ounces of clay among all subsets 
that contain a but not b, and the sb class-b ounces among all subsets 

element necessarily contains three disjoint members. Nevertheless, 
the Fano plane poses us little difficulty because the unique maximal 
intersecting family generated by it can be evenly smoothed; if we 
place a ball of clay on each member of the Fano plane and on each 
superset of these members, we can then favorably transfer clay to 
obtain the configuration where each subset is covered by an amount 
of clay proportional to its size.
 We conjectured that this will always be so: for every maximal 
intersecting family, either reductive smoothing or even smooth-
ing will succeed. The observation here is that a family F which 
cannot be reductively smoothed is forced to have a certain degree 
of regularity. Namely, for each x in S, there must be a cycle of odd 
length of members of F where adjacent members intersect only in 
x. Contrapositively, families that cannot be evenly smoothed seem 
unlikely to have such a cycle. Consider the case (which will be our 
focus for the rest of the paper) when S has an even number n of 
elements and F has no member with less than n/2 elements. In this 
situation F is `pushed up’ as far as possible, and thus can probably 
be smoothed evenly. One exception is when there is an element x 
that is not in any size-n/2 member of F. Then there are exactly as 
many non-members containing x as members containing x. But 
the x-containing members are the only allowable sources of clay 
for these non-members, and it turns out they cannot provide quite 
enough for an even smoothing. However, this family F is precisely 
the easiest family to reductively smooth, because F(x) is itself inter-
secting. So perhaps the two kinds of smoothing take care of every 
family in this situation.

Surprisingly, our wishful thinking meets with a counterexample 
even in this simplified setting. Since a `pushed-up’ F contains no 
subsets of size less than n/2, all subsets of size greater than n/2 
are members. This means that our only freedom lies in choosing 
which size-n/2 subsets to include in F. The key to our following 
construction is that we can choose a small number of these to pre-
vent reductive smoothing, and we can choose the rest so as not to 
contain some element x, which will still prevent even smoothing. 
Imagine that we have a string and n beads labeled as elements of 
S. We choose one bead to set aside and we string up the rest and 
tie a loop to make a necklace. There are n-1 ways to choose n/2 - 1 
alternating beads on the necklace. Let each of these ways, along 
with unstrung bead x, define a member of F. This guarantees that 
F(x) cannot be partitioned into two intersecting families. We now 
untie the necklace and proceed to set aside a different bead. This 
time we have to be careful when stringing up the necklace because 
some orderings will define subsets that are disjoint from those we 
have already added as members of F. But it turns out that if n is 
large enough then we can always find a good way to do it, and we 
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Now we place a ball of clay on each 
subset which is in our fmaily. 
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This could possibly be taken into account somehow. In any case, 
the study of reductive smoothing isolates some of the difficulties 
inherent in the effort to prove Kleitman’s conjecture. And that is the 
first step towards overcoming them.
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can in fact continue until we have set aside each bead. The reason 
is that although each subset we add to F eliminates a number of 
feasible necklaces, the total number of ways to make a necklace 
out of n-1 beads is large enough to make this irrelevant. When we 
are finished, we will have chosen n(n-1) or less members of F that 
together prevent a reductive smoothing. As mentioned before, we 
choose the rest of the members of F so as not to contain x. Now, 
if F contained no size-n/2 subsets containing x and we tried to 
evenly smooth, the total clay deficit for the nonmembers contain-
ing x would be (as it turns out) exactly 2n-2/n ounces. Each size-n/2 
member of F that does contain x can only help this deficit by one 
ounce. As long as we have chosen n large enough so that 2n-2/n 

- (n-1)n is positive, we find that F cannot be evenly smoothed. Since 
it also cannot be reductively smoothed, F is our counterexample. 
 Thus, our approach evidently fails to provide a breakthrough. 
Reductive smoothing is not strong enough to take care of all families 
that cannot be evenly smoothed. Does this mean that the technique 
is worthless? Probably not. Perhaps there is some nice property 
other than “evenly smoothable” that can be used to fill the gap left 
by reductive smoothing. Or perhaps we did not define reductive 
smoothing itself in the most general way. In fact, there do exist non-
intersecting families of size 2n-1 that are nonetheless smoothable. 

A ‘pushed up’ family for n=6. We hypothesized that any such family would either be evenly or reductive smoothable.

A singleton family for n=6. Such a family is ‘pushed down’ as far as possible.

S P R I N G  2 0 0 7 www.curj.caltech.edu 1 9    


