Robotic Hide and Seek

Geoff Gordon

Multi-robot reconnaissance and surveillance

Geoff Gordon

Multi-robot planning

- Huge crossproduct state spaces
- Partially observable
- Nonstationary

Coordination w/ teammates

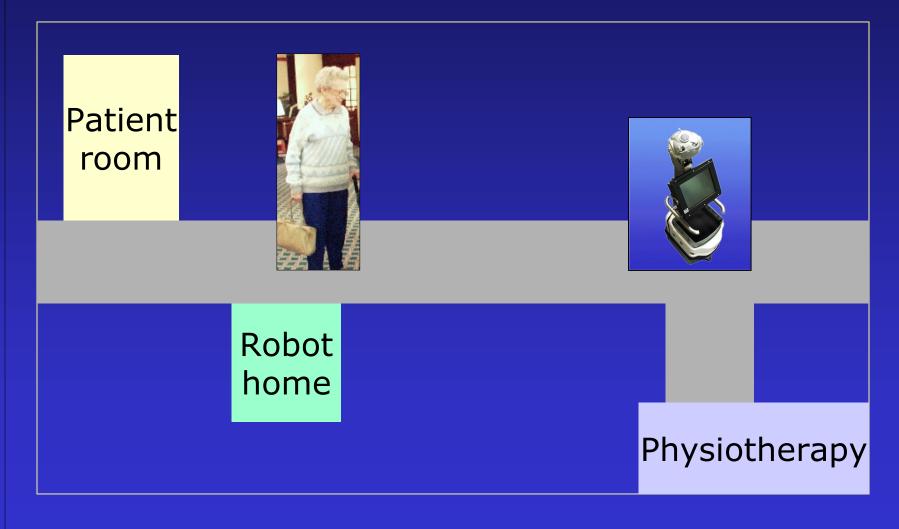
Outline

Factorize and approximate

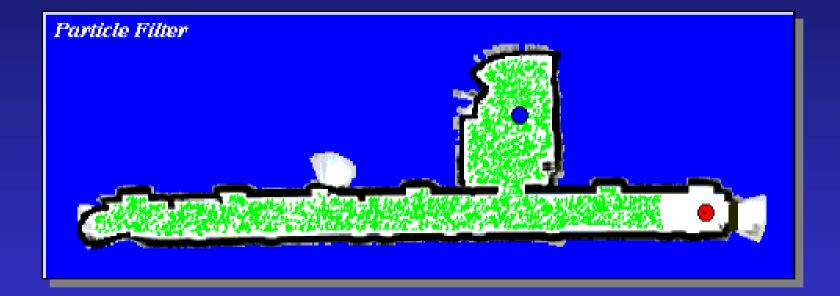
- Belief compression
 - -1 on 1 hide and seek
 - model opponent as hidden state (POMDP)
- Auctions for coordination
 - mixed initiative team reconnaissance problem
 - model teammates as a market

Searching for robots

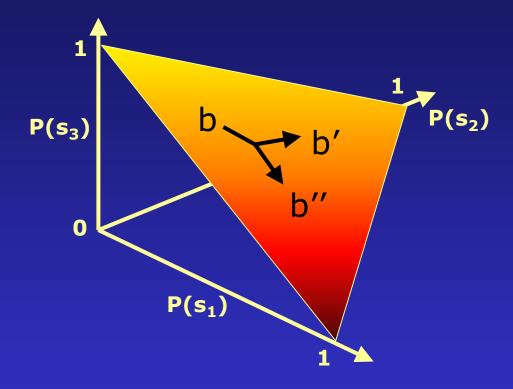
Searching for patients



Example run



Belief dynamics



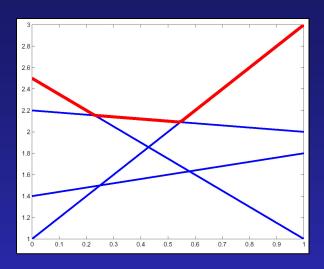
Transitions: $b \rightarrow bT_a$ Observations: $b \rightarrow w_z \times b$

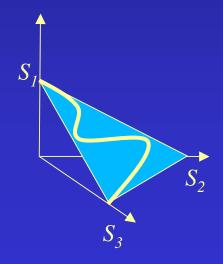
Value iteration

- Planning = finding value function
- V(b) = expected future cost starting at b
- V is best possible heuristic fn when searching for actions

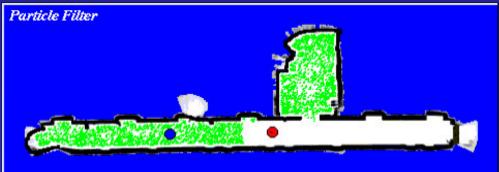
Planning in POMDPs

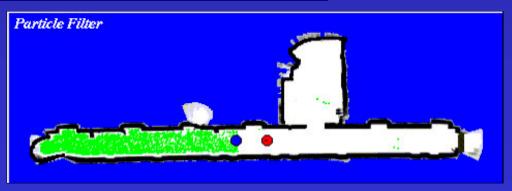
- POMDP VI
 - convexity
 - Littman, Pineau,Poupart, ...
- Transform to MDP and approximate
 - value approximation
 - belief compression



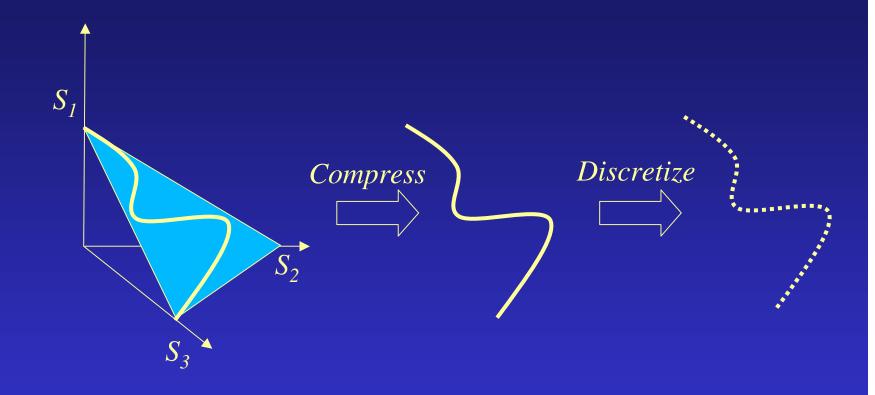


Belief structure





Belief compression



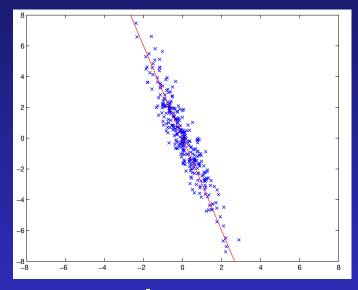
Original POMDP

Low-dimensional belief space B

Discrete belief space MDP

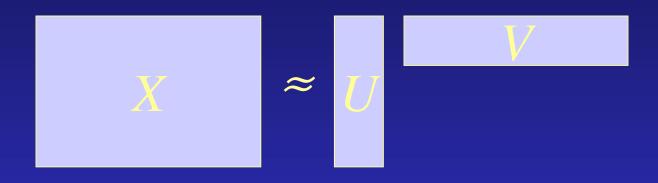
Principal Components

- Pattern recognition algorithm
 - text retrieval,bibliometrics,eigenfaces,compression,



- Finds subspace near data
 - features which reconstruct data
 - model: hyperplane plus noise

PCA: matrix factorization



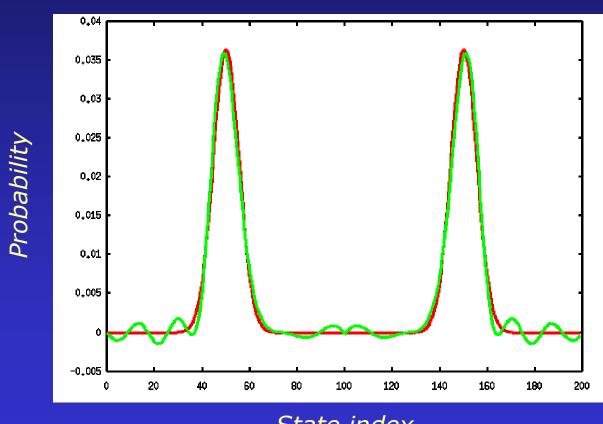
X: data (1 per column)

U: feature vectors

V: feature weights

Problem with PCA

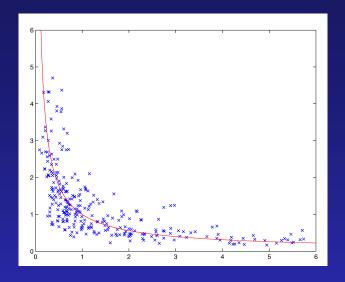
9-dimensional basis

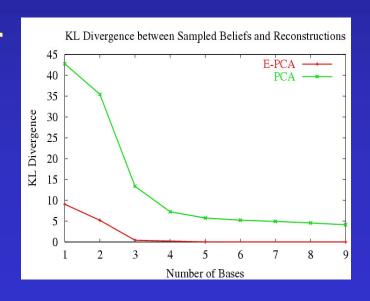


State index

Generalized² Linear² Model

- Fits submanifold like PCA
- Nonlinear like
 GLM
- Nonlinearities
 can allow better
 match to data
 with fewer
 feature vectors





(GL)²M: nonlinear factorization

$$X$$
 \approx f(U

$$U = g(A)$$
 $V = h(B)$

X: data (1 per column)

U: feature vectors

V: feature weights

Link functions

- Link function f is arbitrary, componentwise monotone
- For this application: f = exp
 - enforces positive probabilities
 - pays more attention to errors near zero
- Inferring sufficient statistics of an exponential family

Comparison of objectives

PCA

$$||X - UV||^2$$

$$||UV||^2 / 2 - X \circ UV + const$$

 $(GL)^2M$ w/ exp

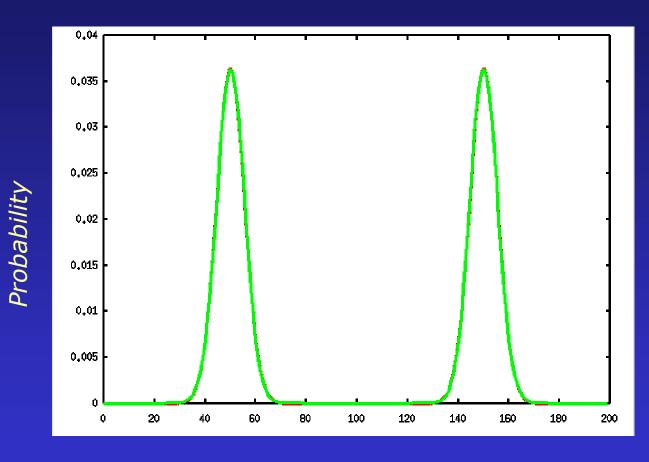
$$D_{KL}(X \mid e^{UV})$$

$$\sum e^{UV} - X \circ UV + const$$

(GL)²M advantages

- Expressive model
 - PCA, sPCA, ICA, GLIM, NMF, ...
- Efficient algorithm
 - alternating minimization
 - Newton's method
 - similar to IRLS

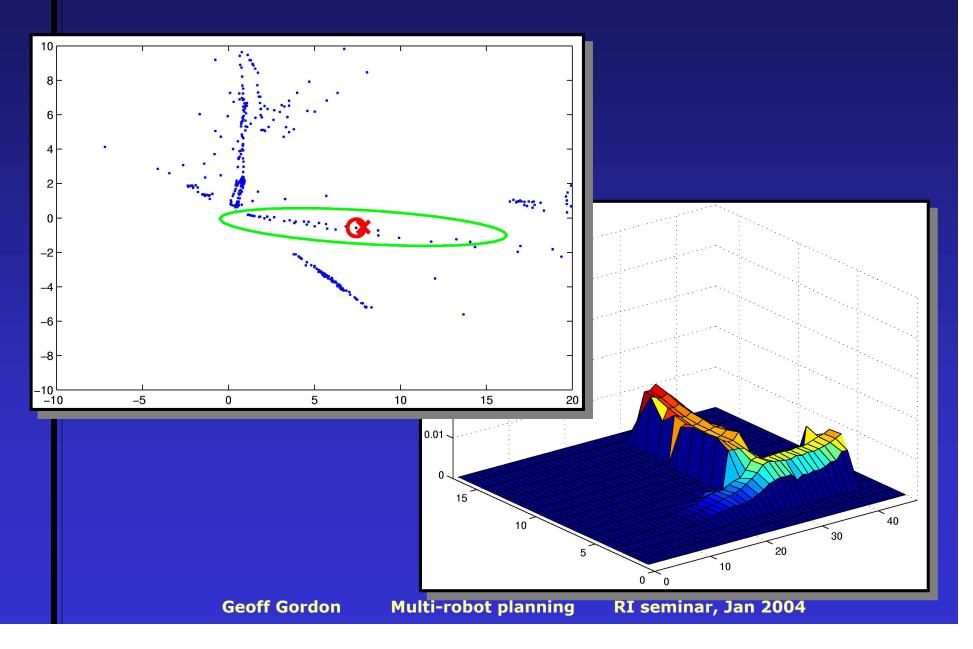
Belief reconstruction performance



4 bases

State index

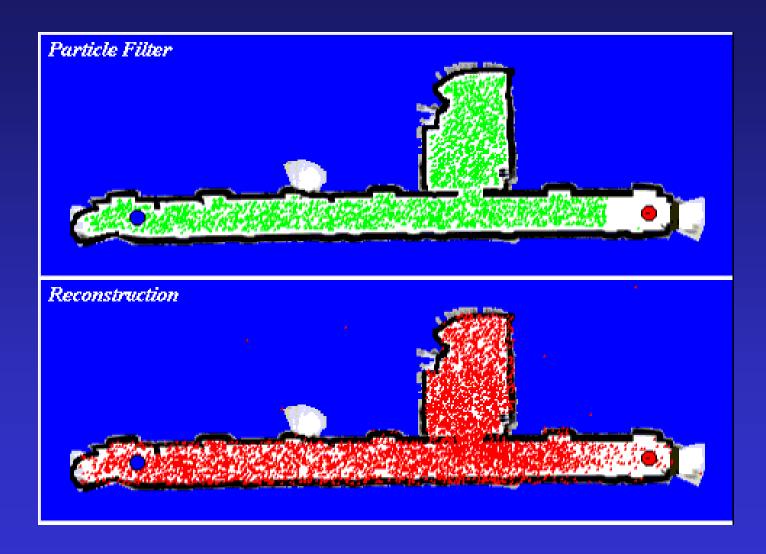
Belief visualization



Does it let us plan?

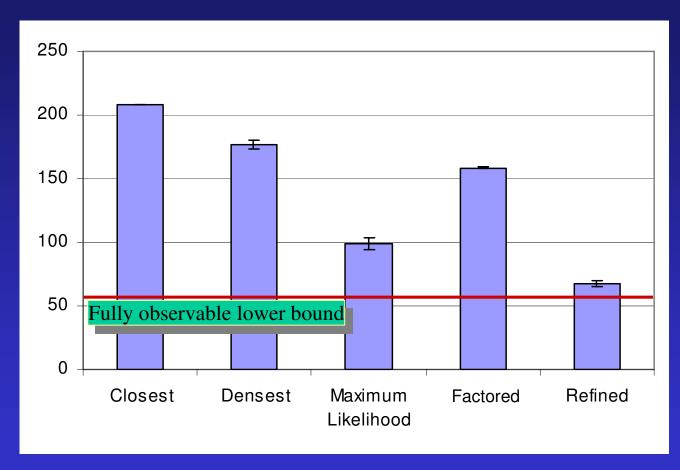
- Drive robot around, collect beliefs
- Learn 6 factors
- Compute approximate value fn
 - one value for each belief sample
 - k nearest neighbor
 - nearest in 6D space
- Evaluate greedy policy

Learned policy



Policy Comparison

Average # of Actions to find Person



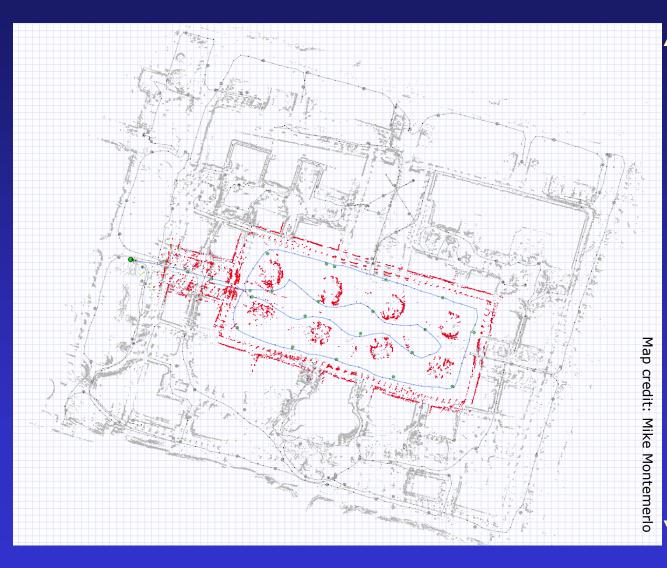
Belief compression

- Finding low-D representation of high-D belief states
- Nonlinear component analysis model & algorithm
- Discretize & plan in low-D space

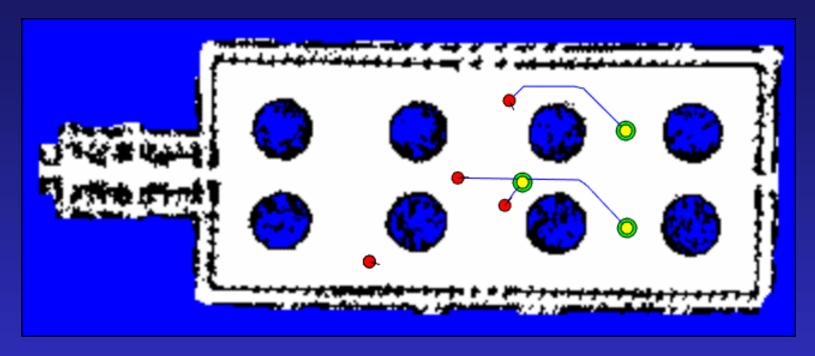
[Gordon, NIPS 02] [Roy, Gordon & Thrun, NIPS 02]

Stanford quad

Stanford quad



Robots in the quad



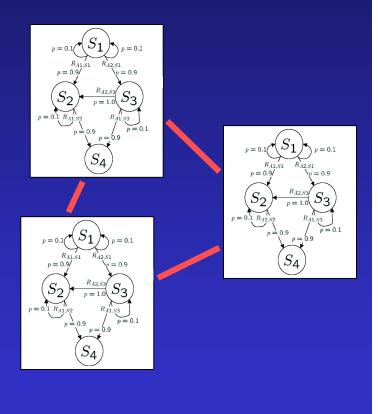
- Team of robots under high-level control by human operator
- Human provides recon goals/rewards, robots decide who goes where

Problem details

- Several possible "flavors"
- All goals known in advance: TSP
- Much faster to move than to serve a goal: queueing problem
- In between: goals arrive often and randomly
 - can't plan too far ahead
 - "getting out of position"

Loose coupling between agents

- Joint MDP has exponential size
 - -in #agents
 - in #goals
- Interaction is limited
- Agents interact only by competing for goals



Market abstraction

- Each agent remembers limited state (own position, current destination)
- Assumes complete control
 - can move, select next goal at will
- Conflict? ⇒ define a resouce
- Assign a price to each resource

Why markets?

- Flexible:
 - right to visit goal
 - fuel
 - network bandwidth
 - taxi ride
 - right to pick up passenger

- bridge toll
- right to explore
- machine time
- responsibility to help teammate achieve X
- Help make planning efficient

Basic auction algorithm

- Robot i in state x_i considers action or sequence of actions a_i
- Estimates future discounted cost conditioned on a_i : $Q(x_i, a_i)$
- Bids $Q(x_i, a_i)$ for doing a_i
- Auctioneer examines feasible joint actions $(a_1, a_2, ...)$
- Chooses joint action w/ lowest sum of bids

Hard parts

- Choose state, resources (design):
 - hand pick (criteria on next slide)
- Estimate Q (prediction):
 - hand-designed heuristic
 - ignore future interaction
 - or wait a few slides
- Pick joint action (clearing):
 - break into smaller auctions
 - exhaustive search

How to choose states and resources?

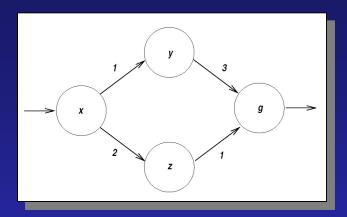
- Market abstraction: when I need a resource I can buy it at a predictable price
- Good resource = efficient market
 - always other agents available to trade (no "thin markets")
 - price not determined by a single agent's actions (no monopolies)
- Good state = helps predict prices

Insight

Market abstraction

Efficient planning is possible

MDP as linear program



$$\max_{\mathbf{f}_a} \sum_{a} \mathbf{c}_a \cdot \mathbf{f}_a$$
$$\sum_{a} \mathbf{f}_a - \gamma \sum_{a} T_a^T \mathbf{f}_a = \alpha$$
$$\forall a : \mathbf{f}_a \ge 0$$

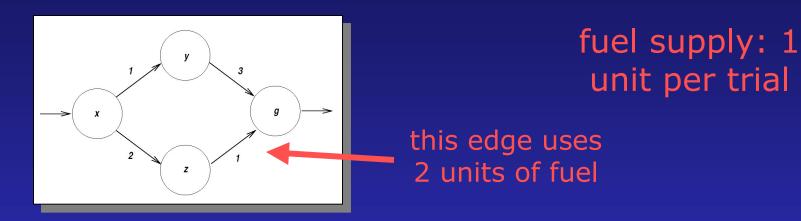
minimization of cost

conservation of probability

minimize $f_{xy} + 2f_{xz} + 3f_{yg} + f_{zg}$ subject to

$$f_{xy}, f_{xz}, f_{yg}, f_{zg}, f_g \geq 0$$

Resource constraints

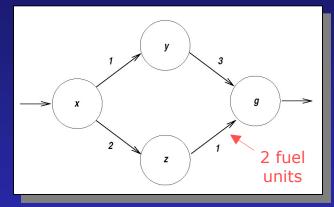


$$2 f_{zg} \leq 1$$

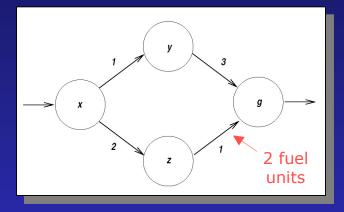
- W/o constraint: use lower path
- With constraint: randomize 50-50

With two agents

Robot 1



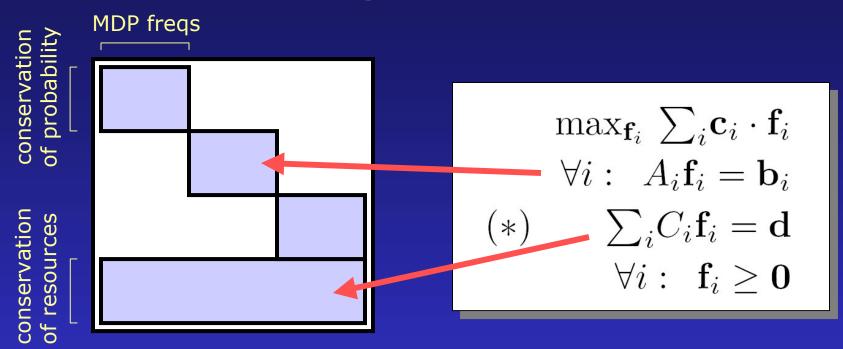
Robot 2



$$2 f_{zg,1} + 2 f_{zg,2} \le 1$$

Each agent uses better path 25% of time

In general

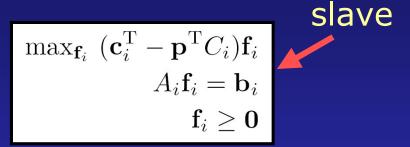


- Mostly independent single-agent MDPs
- Coupling via resource constraints

Dantzig-Wolfe decomposition

master

```
\max_{\mathbf{q}_{i}} \sum_{i} \mathbf{c}_{i}^{\mathrm{T}} F_{i} \mathbf{q}_{i}
(*) \quad \sum_{i} C_{i} (F_{i} \mathbf{q}_{i}) = \mathbf{d}
\forall i : \mathbf{q}_{i} \geq 0
\forall i : \sum_{j} q_{ij} = 1
```

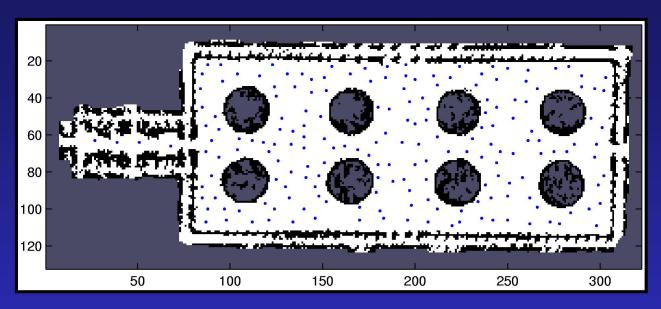


- Divide into master and slave problems
- Slave program: plan for one robot given resource prices
- Repeatedly solve slave, plug resulting policy into master
- Master decides how to combine single-robot solutions, produces new prices

Factorized planner

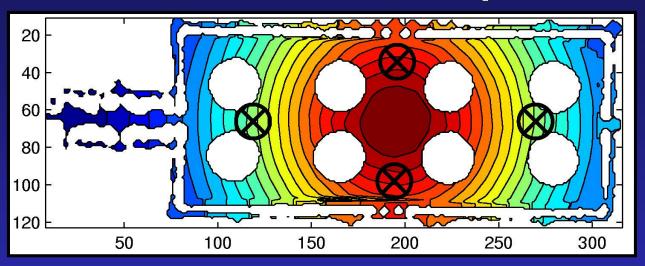
- Repeat until no change:
 - send prices p to robots
 - robot i plans w/ costs c_i C_i'p
 - frequencies $f_{it}(s,a)$, values $v_{it}(s)$
 - send usage $C_i f$, cost $c_i f$ to master
 - solve master for new prices p and weights q_{it}
- robot *i* uses values $\sum q_{it}v_{it}(s)$ for lookahead in basic auction

Problem dynamics



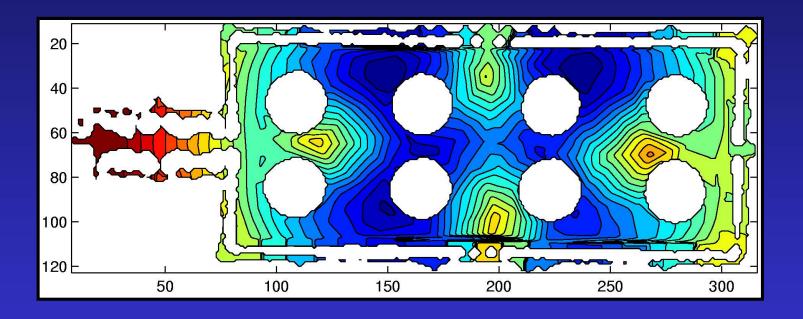
- State: position (80cm grid), destination (~150 points)
- Actions: move, buy goal, declare satisfied
- Reward: -1.25 per meter, +10 per goal,
 \$(price) for buying goal

Constraints and prices

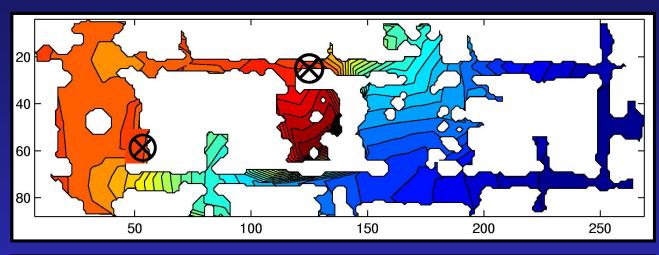


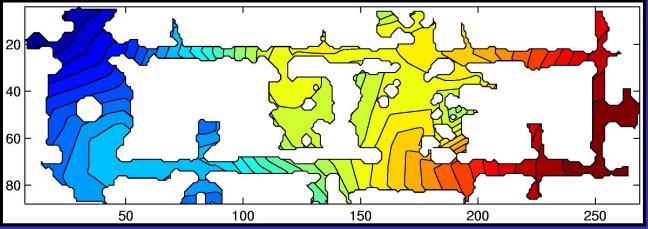
- Goals arrive at rate g(x)
- Frequency of satisfy-goal(x) must match g(x)
- So, learn one price per goal
- Individual planners think goal x is worth \$10-price(x)

Learned value function

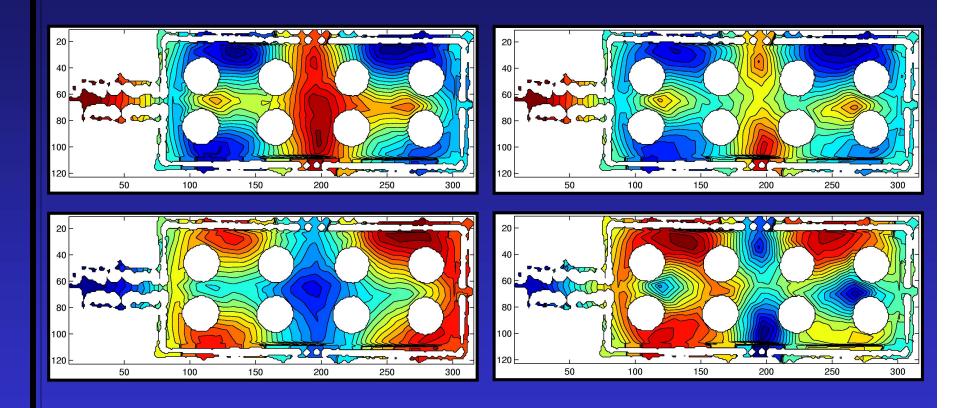


Roles





Roles



Market-based planning

- Approximate robot interactions by defining resources
- Estimate resource prices ⇒ decouple planning problems
- Robots learn roles, effect of future uncertainty

[Guestrin & Gordon, UAI 02] [Bererton, Gordon, Thrun & Khosla, NIPS 03]

Conclusion

- Solve multi-robot planning problems by factorizing and approximating
- Belief compression
- Market-based planning