
15-122 Homework 4 Page 1 of 6

15-122: Principles of Imperative Computation, Spring 2013

Homework 4 Programming: Clac

Due: Monday, September 30, 2013 by 22:00

For the programming portion of this week’s homework, you will implement a small for a
postfix claculatorTM , an interpreter for the Clac programming language.

The code handout for this assignment is at

http://www.cs.cmu.edu/~rjsimmon/15122-f13/hw/15122-prog4.tgz

The file README.txt in the code handout goes over the contents of the handout and explains
how to hand the assignment in. There is a FIVE (5) HANDIN LIMIT - you may only submit
to Autolab five times for this assignment without penalty; every additional handin will incur
a half-point penalty.

Testing Because we are setting a very low handin limit, we are going to be very clear how
we intend to test your programs. We will test your Clac implementation by running tests of
the following form:

test_prog(clac_program, initial_stack, final_stack, result);

We will check four things:

1. Your code must compile without violating the library interfaces.

2. When given valid input, your interpreter must run without errors and wind up with
the correct stack.

3. When given invalid input, your interpreter must halt with a call to error, signaling
that the user has written an invalid program.

4. All operations have good asymptotic running time when we compile without -d. (This
means that all operations should take constant time except for skip and pick. The
time it takes to skip n elements or to copy the nth element on the stack ought to be in
O(n).)

The file clac-test.c0 includes examples of how to write and run tests of this form, and the
README.txt explains how to compile and run these tests.

Sharing tests The academic integrity policy for this course does not allow you to view
other people’s C0 code or share your C0 code with others. However, you may share Clac code,
including Clac-only test cases, via Piazza posts. If you share tests, do so non-anonymously
and tag your post with #clactest.

http://www.cs.cmu.edu/~rjsimmon/15122-f13/hw/15122-prog4.tgz

15-122 Homework 4 Page 2 of 6

1 Introducing the Claculator
Clac is a new stack-based programming language developed by a Pittsburgh-area startup
called Reverse Polish Systems (RPS). Any similarities of Clac with Forth or PostScript are
purely coincidental. In the first part of this assignment, we will be implementing the core
features of the Claculator, and in Task 2 we will be adding a few more interesting features.

Clac works like an interactive calculator. When it runs, it maintains an operand stack.
Entering numbers will simply push them onto the operand stack. When an operation such
as addition + or multiplication * is encountered, it will be applied to the top elements of the
stack (consuming them in the process) and the result is pushed back onto the stack. When a
newline is read, the number on top of the stack will be printed. For example, after we start
the we type 3 4 + and then a newline.

% ./claculator
Clac top level
clac>> 3 4 +
7

Clac responded by printing 7, which is now on top of the stack (which is otherwise empty).
We now enter -9 2 / and a newline, after which Clac responds with -4.

clac>> -9 2 /
-4

At this point the stack has 7 (the result of the addition) and -4 (the result of the integer
division) and we can subtract them simply by typing - and a newline.

clac>> -
11

We obtain 11, since 7− (−4) = 11. We can quit our interactions by typing quit.

clac>> quit
11
Bye!

We can type multiple inputs (numbers and operations) on the same line. For example,

% ./claculator
Clac top level
clac>> 11 10 2 9 - + *
33

Please make sure you understand why the above yields 33 on the stack.

15-122 Homework 4 Page 3 of 6

In addition to the arithmetic operations, there are a few special operations you will have to
implement. The table below is the complete set of operations that you will be implementing
in Task 1. To specify the operations, we use the notation

S −→ S ′

to mean that the stack S transitions to become stack S ′. Stacks are written with the top
element at the right end ! For example, the action of subtraction is stated as

- : S, x, y −→ S, x−y

which means: “Pop the top element (y) and the next element (x) from the stack, subtract y
from x, and push the result x−y back onto the stack.” The fact that we write S in the rule
above means that there can be many other integers on the stack that will not be affected by
the operation.

Token Before After Condition or Effect
n : S −→ S, n for −231 ≤ n < 231 in decimal
+ : S, x, y −→ S, x+ y
- : S, x, y −→ S, x− y
* : S, x, y −→ S, x ∗ y
/ : S, x, y −→ S, x / y error, if div by 0 or overflow
% : S, x, y −→ S, x % y error, if mod by 0 or overflow
< : S, x, y −→ S, 1 if x < y
< : S, x, y −→ S, 0 if x ≥ y
drop : S, x −→ S
swap : S, x, y −→ S, y, x
dup : S, x −→ S, x, x
rot : S, x, y, z −→ S, y, z, x
print : S, x −→ S print x followed by newline
quit : S −→ _ exit Clac

Your implementation should explicitly detect and signal an error by calling the function
error with an appropriate error message in the following situations:

• The token is illegal, that is, not one of the ones listed above. Tokens are treated as
case-sensitive. For example, DUP and Dup are undefined, but dup duplicates the top
element of the stack.

• There are an insufficient number of elements on the stack to carry out an operation.
For example, it is an error to call rot when there are less than three integers on the
stack.

• Division or modulus by 0, or division of int_min() by -1, would generate an overflow
according to the definition of C0 (see page 3 of the C0 Reference). This is a 32 bit,
two’s complement language, so addition, subtraction, and multiplication behave just
as in C0 without raising any overflow errors.

http://c0.typesafety.net/doc/c0-reference.pdf

15-122 Homework 4 Page 4 of 6

User errors (errors in Clac code) should always cause error to be called; they should never
cause assertions to fail. An example is in the starter code in the file clac.c0.

Task 1 (10 points) Extend the implementation of the Clac implementation in file clac.c0
to behave according to the specification above. Do not change any of the #use directives in
this file, and make sure your function will satisfy the following declaration:

bool eval(queue Q, stack S)
//@ensures \result == false || queue_empty(Q);

You may freely change anything else in this file. The arguments and return value of the eval
are explained next.

The main function in file clac-main.c0 and the test_prog function in clac-test.c0 both
take lines of input and convert them to a queue of tokens. Each token is just a string. This
part of the Clac implementation has already been programmed for you, and you are welcome
to examine it, but you need not change this code. In Clac, tokens are only separated by
white space. For example, 3 4+ will be read as two tokens ("3" followed by "4+") and will
therefore lead to an error since the token "4+" is not defined.

The stack of integers S will be initially empty. But since the input is processed line-
by-line, the eval function may also be called with nonempty stacks, representing the values
from prior computations.

The eval function should dequeue tokens from the queue Q and process them according
to the Clac definition. When the queue is empty, eval should return true, leaving the stack
in whatever state it is. Upon encountering the token “quit”, eval should return false,
indicating to the main function that it should exit.

You can find the interface to the implementations of queues and stacks in the files
lib/queues_string.c0 and lib/stacks_int.c0, which are just like the code from Lec-
tures 9 and 10.

Reference implementation. You can run a reference implementation of Clac on Andrew
if you’d like to see the results of examples. To try and avoid confusion, we have called the
executable clac-ref.

% clac-ref
Clac top level
clac>> 4 7 - 2 *
-6
clac>> quit
-6
Bye!

15-122 Homework 4 Page 5 of 6

You can also run clac-ref -trace. This will make the reference implementation print out
all the intermediate steps of the computation. For example,

% clac-ref -trace
Clac top level
clac>> 4 7 - 2 *

stack || queue
|| 4 7 - 2 *

4 || 7 - 2 *
4 7 || - 2 *
-3 || 2 *

-3 2 || *
-6 ||

-6
clac>>

Here the left column displays the current stack and the right column displays the current
queue followed by the return stack (which is not displayed in the example above because it
is empty).

2 Manipulating the stack and the queue
In this part of the assignment, we will implement a few more advanced features of Clac that
manipulate the stack and the queue. The first, skip, takes the number n on top of the stack
(which must be non-negative) and removes n tokens from the queue – it is an error if n is
negative or if there aren’t enough tokens immediately available on the queue.

You’ll also implement two special tokens that behave much like skip: if skips either 0
or 2 tokens depending on whether the top of the stack is 0 or not, and else behaves exactly
like “1 skip”. These may seem like strange names, but these two tokens together let us
implement the idiom

if token1 else token3

where 0 acts like false and any non-zero value acts like true. The following example
illustrates this:

clac>> 6 1 if 2 else -2 +
8
clac>> 6 0 if 2 else -2 +
4

The first line computes 8: when if is encountered, 6 and 1 are on the stack, so we push 2,
consuming 1 in the process. Then we see else and skip over the next token -2. Finally we
add 6 and 2, resulting in 8 to be pushed on the stack which is printed back.

In the next line, when if is encountered, 0 is on top of the stack so we skip the next
two tokens, namely 2 and else. Then -2 is pushed on the stack and the addition computes
6 + (−2) and pushes it on the stack.

15-122 Homework 4 Page 6 of 6

To be clear: the two tokens if and else do not have to appear together. They should be
implemented as independent Clac features.

The final addition we will make to Clac is the token pick. If the positive number n
appears at the top of the stack, pick should duplicate the nth element on the stack at the
top of the stack. It is an error if n isn’t positive or if there aren’t n things on the stack to
look through.

This following table summarizes the features we are implementing in this part of the
assignment:

Before After
Stack Queue Stack Queue Cond

S, n || skip, tok1, . . . , tokn, Q −→ S || Q n ≥ 0
S, n || if, Q −→ S || Q n 6= 0
S, n || if, tok1, tok2, Q −→ S || Q n = 0
S || else, tok1, Q −→ S || Q

S, xn, . . . , x1, n || pick, Q −→ S, xn, . . . , x1, xn || Q n > 0

Task 2 (5 points) Extend eval in file clac.c0 to handle skip, if, else, and pick ac-
cording to the specification above.

3 Bonus: Clacworks
We’ve described the behavior of 10 tokens: drop, swap, dup, rot, print, quit, skip, if,
else, and pick. As long as you leave the meaning of programs with numbers and these 10
tokens alone, you can extend Clac with new features and write programs that use these new
tokens.

Task 3 (bonus points) Add some new features to your Claculator by defining the meaning
of new tokens. Write a cool or surprising program in bonus.clac, and describe the behavior
of your new features and your Clac program in bonus.txt.

	Introducing the Claculator
	Manipulating the stack and the queue
	Bonus: Clacworks

