
15-122 Homework 5 Page 1 of 12

15-122: Principles of Imperative Computation, Spring 2013

Homework 5 Programming: Text Editor

Checkpoint: Monday, October 14, 2013 by 22:00
Due: Monday, October 21, 2013 by 22:00

For the programming portion of this week’s homework, you’ll implement the core data struc-
ture for a text editor: the gap buffer. There are two deadlines: the first one is to make sure
you’ve started, and will give you your first 10 points on the assignment. The full autograder
will re-run the tests from the first part of the assignment, but will not award points. The
checkpoint represents much less than half the assignment in terms of both lines of code and
conceptual difficulty.

The code handout for this assignment is at

http://www.cs.cmu.edu/~rjsimmon/15122-f13/hw/15122-prog5.tgz

The file README.txt in the code handout goes over the contents of the handout and explains
how to hand the assignment in. There is a 15 handin limit for the checkpoint, and another
15 handin limit for the full assignment. Additional handins will incur a 1-point penalty per
handin.

Task 0 - Style (0 pts) With this assignment, we will again emphasize programming style
more heavily. We will actually be looking at your code and evaluating it based on the criteria
outlined at http://www.cs.cmu.edu/~rjsimmon/15122-f13/misc/styleguide.pdf. We
will make comments on your code via Autolab, and will assign an overall passing or failing
style grade. A failing style grade will be temporarily represented as a score of -25 on the
second part of the assignment. This -25 will be reset to 0 once you:

1. fix the style issues,
2. see a member of the course staff during office hours, and
3. briefly discuss the style issues and how they were addressed.

Task 1 (4 pts) 4 points for this assignment will be given for contracts that are not checked
by the autograder (postconditions and loop invariants).

We will evaluate your code for style in two ways. We will use cc0 with the -w flag that
gives style warnings – code that raises warnings with this flag is almost certain to fail style
grading. (However, keep in mind that the -w flag is a new feature, and if you think it is
flagging anything inappropriately, please upload the ostensibly-offending code in a private
post on Piazza.) Because, the -w flag does not check for good variable names, appropriate
comments, or appropriate use of helper functions, these issues will be checked by hand.

http://www.cs.cmu.edu/~rjsimmon/15122-f13/hw/15122-prog5.tgz
http://www.cs.cmu.edu/~rjsimmon/15122-f13/misc/styleguide.pdf

15-122 Homework 5 Page 2 of 12

1 Overview: A text editor based on gap buffers

In this assignment you will implement a simple text editor based on the gap buffer technique.
A gap buffer is a generalization of an unbounded array: although an unbounded array allows
for efficient insertion and deletion of elements from the end, a gap buffer allows for efficient
insertion and deletion of elements from the middle.

Given an array that is only half filled, adding items after the last item currently in the
array requires very little work, because this simply means placing it in the next unused index
and increasing the size. However, there is no unused space in the middle. The only way to
place a new item in the middle is to shift elements over to make room for the new item.

A gap buffer attempts to overcome the overhead of shifting by placing the empty portion
of the array in the middle. Hence the name “gap buffer" referring to the “gap" in the middle
of the “buffer". The gap is not fixed to any one position. At any time it could be in the
middle of the buffer or just at the beginning or anywhere in the buffer. We can immediately
see the potential benefits of this approach.

By moving the cursor in the text editor, we are automatically moving a gap, and thereby
providing the unused portion of the array to be used for possible insertions. In the worst
case scenario we have to move the gap from the beginning of the text file to the end. But
if subsequent operations are only a few indexes apart, we will get a lot better performance
compared to using a dynamic array. This is why it is said that the gap buffer technique
increases performance of repetitive operations occurring at relatively close indexes. We
claim without proof that the amortized cost of insertion into the gap buffer is constant.

Implementing a text editor as just one gap buffer is not particularly realistic. One large
edit buffer requires the entire file contents to be stored in a single, contiguous block of
memory, which can be difficult to allocate for large files. Instead, a more realistic strategy
is to combine the gap buffer technique with a doubly linked list. The benefit of a linked
list is that it allows the file to be split across several chunks of memory. Therefore, in this
assignment we will represent a text editor as a doubly linked list where each node contains
a specific size of gap buffer. The contents of a text file represented in this way is simply the
concatenation of the contents of each gap buffer in the linked list.

Warning: In the course so far, we have previously considered interfaces that did not expose
their internal representation to the user and that were tested as an opaque interface (black-
box testing). The data structures and interfaces we implement for this assignment expose
their internal representation to the client.

The expectation is that the client (who is sometimes the text editor, and sometimes
you!) will mostly use this representation to read, and they will usually not write to the data
structures themselves. However, they are allowed to manipulate the data structures, and so
we expose the data structure invariants (like is_gapbuf) as part of the interface.

This means that your data structure invariants will need to be very good, and we will
test them very thoroughly. They need to permit anything permitted by the specification,
and disallow anything that is not allowed by the specification. One thing we will not require
you to do in this assignment is circularity checking: we will never test your data structures
against a doubly linked list where you can follow next pointers forever without reaching
NULL or one where you can follow prev pointers forever without reaching NULL.

15-122 Homework 5 Page 3 of 12

2 Gap Buffer

A gap buffer is an array of characters. The array is logically split into two segments of text
- one at the beginning of the array, which grows upwards, and one at the end which grows
downwards. The space between those two segments is called the gap. The gap is the cursor
in the buffer. To move the cursor forwards, you just move the gap (assuming that the gap is
not empty). To insert a character after the cursor, you place it at the beginning of the gap.
To delete the character before the cursor, you just expand the gap.

To implement a gap buffer there are a couple bits of information that we need to keep
track of. A gap buffer is represented in memory by an array of elements stored along with
its size (limit) and two integers representing the beginning (inclusive, gap_start) and end
(exclusive, gap_end) of the gap (see Figure 1).

typedef struct gapbuf_header* gapbuf;
struct gapbuf_header {

int limit; /* limit > 0 */
char[] buffer; /* \length(buffer) == limit */
int gap_start; /* 0 <= gap_start */
int gap_end; /* gap_start <= gap_end <= limit */

};

8 2 5

'g' 'a' 'p' 'p' 'y'

0 1 2 3 4 5 6 7

limit buffer gap_
start

 gap_
end

(gap_start) (gap_end) (limit)

Figure 1: A gap buffer in memory.

Task 2 (2 pts) A valid gap buffer is non-NULL, has a strictly positive limit which correctly
describes the size of its array, and has a gap start and gap end which are valid for the array.
Implement the function

bool is_gapbuf(struct gapbuf_header* G)

that formalizes the gap buffer data structure invariants.

Text buffers may allow a variety of editing operations to be performed on them; for the
purposes of this assignment, we’ll consider only four operations: move forward a character,

15-122 Homework 5 Page 4 of 12

move backward a character, insert a character, and delete a character. As an example, below
is a diagram of a gap buffer which is an array of characters with a gap in the middle (situated
between the “p” and the “a” in “space”):

the sp[..]ace race

To move the gap (the cursor in the text editor) forward, we copy a character across it:

the spa[..]ce race

To delete a character (before the cursor), we simply expand the gap:

the sp[...]ce race

To insert a character (say, “i”), we write it into the left side of the gap (shrinking it by one):

the spi[..]ce race

The gap can be at the left end of the buffer,

[..]the space race

or at the right end of the buffer,

the space race[..]

and a buffer can be empty,

[................]

or it can be full (this depends on the buffer size (limit))

the space ra[]ce!!

Note that in an emacs-like interface, where the cursor appears as a highlighted character
in the buffer, the cursor will display on the character immediately following the gap. So
following the examples above,

the sp[..]ace race

would display as:

the space racethespacerace a thespacerace

while
the space race[..]

would display as:

the space race

In the above illustrations, we use dots to indicate spots in the gap buffer whose contents
we don’t care about. Those spots in the gap buffer don’t need to contain the default character
’\0’ or the character ’.’ or anything else in particular.

15-122 Homework 5 Page 5 of 12

Task 3 (4 pts) Implement the following utility functions on gap buffers:
Function: Returns true iff...
bool gapbuf_empty(gapbuf G) . . . the gap buffer is empty
bool gapbuf_full(gapbuf G) . . . the gap buffer is full
bool gapbuf_at_left(gapbuf G) . . . the gap is at the left end of the buffer
bool gapbuf_at_right(gapbuf G) . . . the gap is at the right end of the buffer

Task 4 (4 pts) Implement the following interface functions for manipulating gap buffers:
gapbuf gapbuf_new(int limit) Create a new gapbuf of size limit
void gapbuf_forward(gapbuf G) Move the gap forward, to the right
void gapbuf_backward(gapbuf G) Move the gap backward, to the left
void gapbuf_insert(gapbuf G, char c) Insert the character c before the gap
void gapbuf_delete(gapbuf G) Delete the character before the gap

See page 4 for details. If an operation cannot be performed (e.g., moving the gap backward
when it’s already at the left end), a contract should fail.

All functions should require and ensure the data structure invariants. Furthermore, the
gap buffer returned by gapbuf_new should be empty. Use these facts to help you write your
code, and document them with appropriate assertions.

2.1 Testing

You can test your gap buffer implementation interactively by compiling and running the
provided gapbuf-test.c0; you are encouraged to use this file as a starting point for writing
your own unit tests.

% cc0 -d -w -o gapbuf-test gapbuf.c0 gapbuf-test.c0
% ./gapbuf-test

Try entering “space race<<<<<<<<^p<<the >>^p>>>>>>>>!!<<<<<<<^^^^^great” and see-
ing what happens. (It is okay to share strings like this on Piazza.)

15-122 Homework 5 Page 6 of 12

3 Doubly-Linked Lists

Another data structure that will be used to represent an edit buffer is a doubly-linked list
with a point. We have seen singly-linked lists used to represent stacks and queues—sequences
of nodes, each node containing some data and a pointer to the next node. The nodes of a
doubly-linked list as we will use them in this assignment contain a data field just like those
of a singly-linked list, but in contrast, the doubly-linked nodes contain two pointers: one to
the next element (next) and one to the previous (prev).

prev	
 data	
 next	

‘a’	

prev	
 data	
 next	

‘b’	

prev	
 data	
 next	
 prev	
 data	
 next	

start	
 point	
 end	

Figure 2: An editable sequence as a doubly-linked list in memory.

An editable sequence is represented in memory by a doubly-linked list and three pointers:
one to the start of the sequence, one to the end of the sequence, and one to the distinguished
point node where updates may take place (see Figure 2). We employ our usual trick of
terminating the list with “dummy” nodes whose contents we never inspect.

typedef struct dll_node dll;
struct dll_node {

elem data;
dll* next;
dll* prev;

};

typedef struct dll_pt_header* dll_pt;
struct dll_pt_header {

dll* start;
dll* point;
dll* end;

};

We can visualize a doubly-linked list as the sequence of its data elements with terminator
nodes at both ends and one distinguished element, called point:

START <--> ’a’ <--> ’b’ <--> END

For now, we do not concern ourselves with the type of the data elements: basic doubly-
linked list functions are agnostic to it anyway. (The picture above treats the data elements
as C0 characters.)

15-122 Homework 5 Page 7 of 12

Task 5 (5 pts) A valid doubly-linked list has the following properties:
• the next links proceed from the start node to the end node, passing point node along
the way
• the prev links mirror the next links
• point is distinct from both the start and the end nodes, i.e., the list is non-empty

Implement the function

bool is_dll_pt(struct dll_pt_header* B)

that formalizes the linking invariants on a doubly-linked list text with a point.
You may find that writing a helper function bool is_dll_segment(dll* a, dll* b)

will help you implement is_dll_pt. You are not required to check for circularity, but you
may find it to be a useful exercise (it’s actually easier for a doubly linked list than for singly-
linked ones).

This task is not trivial. There are many ways for a doubly-linked list to be invalid, even
without circularity. For instance, your is_dll_segment function will be tested against
structures with NULL pointers in various locations and against almost-correct doubly-linked
lists:

prev	
 data	
 next	

‘a’	

prev	
 data	
 next	

‘b’	

prev	
 data	
 next	
 prev	
 data	
 next	

start	
 point	
 end	

‘b’	

prev	
 data	
 next	

Figure 3: Not a doubly-linked list (the point isn’t on the path from start to end).

prev	
 data	
 next	

‘a’	

prev	
 data	
 next	

‘b’	

prev	
 data	
 next	
 prev	
 data	
 next	

start	
 point	
 end	

‘b’	

prev	
 data	
 next	

Figure 4: Not a doubly-linked list (the prev links don’t mirror the next links).

15-122 Homework 5 Page 8 of 12

Task 6 (3 pts) Implement the following utility functions on doubly-linked lists with points:
Function: Returns true iff...
bool dll_pt_at_left(dll_pt B) . . . the point is at the far left end
bool dll_pt_at_right(dll_pt B) . . . the point is at the far right end

and the following interface functions for manipulating doubly-linked lists with points:
void dll_pt_forward(dll_pt B) Move the point forward, to the right
void dll_pt_backward(dll_pt B) Move the point backward, to the left
void dll_pt_delete(dll_pt B) Remove the point node from the list

As above, if an operation cannot be performed, a contract should fail. When deleting
the point, the new point may be either to the right or to the left of the old one.

These functions should require and preserve the data structure invariant you wrote above,
and you should both document this fact and use it to help write the code. Be especially
careful when implementing deletion! Note, we cannot delete the point if it is the only non-
terminator node.

3.1 Testing

You can test your doubly-linked-list implementation interactively by compiling and running
the provided dll_pt-test.c0, which treats elements as C0 characters as in the illustration
above. You are encouraged to use this file as a starting point for writing your own unit tests.

% cc0 -d -w -o dll_pt-test elem-char.c0 dll_pt.c0 dll_pt-test.c0
% ./dll_pt-test

Try entering “steady” as the input word and then “^<<<<^>>^” as the series of actions
and seeing what happens.

If you write your own test code, make sure that you put either gapbuf.c0 (which declares
the type elem to be gapbuf) or elem-char.c0 (which declares the type elem to be char) on
the command line before dll_pt.c0. If you try to compile your dll_pt.c0 file without first
defining what elem is, you will probably get an error "expected a type name, found identifier ’elem’",
because the C0 compiler assumes "elem" is an identifier unless you have already used a
typedef to explain to C0 that it is really a type name.

15-122 Homework 5 Page 9 of 12

4 Putting It Together

Now we will implement the text buffers used by our text editor as a doubly-linked list of fixed-
size gap buffers (each buffer is 16 characters long). The contents of a text buffer represented
in this way is simply the concatenation of the contents of its requisite gap buffers, in order
from the start to the end. The gap representing the text editor’s cursor is the particular gap
at the linked list’s point. To move the cursor, we use a combination of gap buffer motion
and doubly-linked list motion:

** <--> just_a_[.] <--> j[....]ump <--> **

move ←: ** <--> just_a_[.] <--> [....]jump <--> **

move ←: ** <--> just_a[.]_ <--> [....]jump <--> **

4.1 Text buffer invariants

There are a lot of invariants that we want to check in this representation. Two very simple
ones are that our text buffers should be a valid linked lists (is_dll_pt), and each element
in the linked list should be a gap buffer (is_gapbuf).

Another invariant that arises from this representation is that a text buffer must either
be the empty text buffer consisting of a single empty gap buffer like so:

START <--> [................] <--> END

or else all the gap buffers must be non-empty. Additionally, all the gap buffers are themselves
well-formed, and they all have the same size, and the size is 16. (We used gap buffers of size
8 for simplicity in some of the examples, but you must use 16 in your implementation.)

Another important invariant is alignment. It is easiest to observe on larger cases:

** <--> well_i[..] <--> sn’t_[...] <--> this_[..]l <--> [.....]ong <--> **

Notice that for all gap buffers to the left of the point, the gap is on the right. Similarly,
for all gap buffers to the right of the point, the gap is on the left. We call this invariant
alignment. If alignment fails to hold, we will have a very hard time moving the point between
gap buffers. If we had this text buffer instead:

** <--> well_i[..] <--> sn’t_[...] <--> this_[..]l <--> ong[.....] <--> **

then, as we move to the right,

** <--> well_i[..] <--> sn’t_[...] <--> this_l[..] <--> ong[.....] <--> **
** <--> well_i[..] <--> sn’t_[...] <--> this_l[..] <--> ong[.....] <--> **

we find that the cursor suddenly jumps to the end of the buffer, skipping over “ong” entirely.

Task 7 (3 pts) A valid text buffer satisfies all the invariants described above: it is a valid
doubly-linked list containing valid size-16 gap buffers, it is aligned, and it consists of either
one empty gap buffer or one or more non-empty gap buffers. Implement the function

bool is_tbuf(tbuf B)

that formalizes the text buffer data structure invariants.

15-122 Homework 5 Page 10 of 12

Hint: you may find it easier to decompose is_tbuf into multiple functions (such as one
that checks alignment and one that checks that the one-empty-or-all-nonempty property).

4.2 Manipulating text buffers

Task 8 (2 pts) Implement the following utility functions on text buffers:
Function: Returns true iff...
bool tbuf_empty(tbuf B) the text buffer is empty

and a text buffer constructor:
tbuf tbuf_new() Construct a new, empty text buffer with a

gap-buffer-size of 16

Recall that in order to be aligned, a text buffer must satisfy: all gap buffers to the left
of (“before”) the point must have their gaps on the right, and all gap buffers to the right of
(“after”) the point must have their gaps on the left. Alignment specifies nothing about the
properties of the point itself.

To insert into the buffer (of the point node), we have to check if the buffer is full or not.
When a gap buffer is full, we split the point node into two nodes. The data in the buffer
will be split as well:

** <--> splitend[] <--> **

insert ‘s’ : ** <--> spli[....] <--> tends[...] <--> **

To split a full gap buffer, we have to copy each half of the character data into one of two
new gap buffers, taking special note of where the new gaps should end up. The following
diagrams may help you visualize the intended result:

full buffer: abc[]defghABCDEFGH

splits into: abc[........]defgh
[........]ABCDEFGH

full buffer: stuvwxyzSTUV[]WXYZ

splits into: stuvwxyz[........]
STUV[........]WXYZ

We can then link the new gap buffers into the doubly-linked list, taking care to preserve the
text buffer invariants.

Task 9 (4 pts) Implement a function tbuf_split_pt(tbuf B) which takes a valid text
buffer whose point is full and turns it into a valid text buffer whose point is not full. If you
find it helpful to do so, you can extend the interface to gap buffers or doubly-linked lists with
points as part of your solution.

To delete from the buffer we use the gap buffer’s gapbuf_delete function and when one
the buffer becomes empty, we delete it:

START <--> deletio[.] <--> n[........] <--> END

delete: START <--> deletio[.] <--> END

15-122 Homework 5 Page 11 of 12

Task 10 (4 pts) Implement the following interface functions for manipulating text buffers:
void tbuf_forward(tbuf B) Move the cursor forward, to the right
void tbuf_backward(tbuf B) Move the cursor backward, to the left
void tbuf_insert(tbuf B, char c) Insert the character c before the cursor
void tbuf_delete(tbuf B) Delete the character before the cursor

These functions directly respond to a user’s input. That means that if an oper-
ation cannot be performed (e.g., pressing the “left” key to move the cursor backward with
tbuf_backward when it’s already at the left end), the function should leave the text buffer
unchanged instead of raising an error or assertion violation.

4.3 Testing

You can test your implementation by compiling and running the provided tbuf-test.c0
test driver which prints a visual representation of the internal data of a text buffer. You are
encouraged to use this file as a starting point for writing your own unit tests.

% cc0 -d -w -o tbuf-test gapbuf.c0 dll_pt.c0 tbuf.c0 visuals.c0 tbuf-test.c0
% ./tbuf-test

START <--> _[................]_ <--> END
’a’: START <--> _a[...............]_ <--> END
’b’: START <--> _ab[..............]_ <--> END
...

The expected output is stored in expected.txt.
Using this driver you can test either your complete implementation or each function

independently. The testing is based on printing functionality implemented in visuals.c0.
After you’ve completed your text buffer implementation and tested it thoroughly, you

can try it out interactively by compiling against lovas-E0.c0 – a minimalist text editor
front-end written by William Lovas.

% cc0 -d -w -o E0 gapbuf.c0 dll_pt.c0 tbuf.c0 lovas-E0.c0
% ./E0

Enjoy the hard-won fruits of your careful programming labors!

5 Bonus: Extending the Editor
Extend the E0 editor implementation with some interesting features. A few suggestions
to pique your imagination: a better display algorithm, a better splitting algorithm, line
motion, more editing commands, copy and paste – be creative! Feel free to extend the
data structures in any way necessary to support your changes effectively. Submit your
modified implementation as files named bonus-*.c0 and include a bonus-README.txt file
explaining your work and how it can be compiled. The entries will be judged both in terms
of the interactive editing experience, the supporting data structures and algorithms, and the
quality of the code.

15-122 Homework 5 Page 12 of 12

6 Appendix: List of functions to implement
To help you keep track of the large number of functions you’re writing, here’s a list. Of course
you may (should) define other helper functions and extend these interfaces as appropriate.

gapbuf.c0 - Gap buffers
bool is_gapbuf(struct gapbuf_header* G);

bool gapbuf_empty(gapbuf G); /* Returns true if the buffer is empty */
bool gapbuf_full(gapbuf G); /* Returns true if the buffer is full */
bool gapbuf_at_left(gapbuf G); /* Returns true if the gap is at the */

/* left end of the buffer */
bool gapbuf_at_right(gapbuf G); /* Returns true if the gap is at the */

/* right end of the buffer */

gapbuf gapbuf_new(int limit); /* Create a new gapbuf of size limit */
void gapbuf_forward(gapbuf G); /* Move the gap forward, to the right */
void gapbuf_backward(gapbuf G); /* Move the gap backward, to the left */
void gapbuf_insert(gapbuf G, char c); /* Insert char c before the gap */
void gapbuf_delete(gapbuf G); /* Delete the char before the gap */

dll_pt.c0 - Doubly-linked lists with a point
bool is_dll_pt(struct dll_pt_header* B);

bool dll_pt_at_left(dll_pt B); /* Returns true if the point is first */
/* first (non-terminal) node */

bool dll_pt_at_right(dll_pt B); /* Returns true if the point is last */
/* last (non-terminal) node */

void dll_pt_forward(dll_pt B); /* Moves the point forward (right) */
void dll_pt_backward(dll_pt B); /* Moves the point backward (left) */
void dll_pt_delete(dll_pt B); /* Remove the current point */

tbuf.c0 - Text buffers
bool is_tbuf(struct dll_pt_header* B);

bool tbuf_empty(tbuf B); /* Checks if the text buffer is empty */

tbuf tbuf_new(); /* Creates an empty text buffer */
void tbuf_split_pt(tbuf B); /* Splits a full point into two nodes */
void tbuf_forward(tbuf B); /* Move the cursor forward/right by 1 */
void tbuf_backward(tbuf B); /* Move the cursor backward/left by 1 */
void tbuf_insert(tbuf B, char c); /* Insert the char before the cursor */
void tbuf_delete(tbuf B); /* Delete the char before the cursor */

	Overview: A text editor based on gap buffers
	Gap Buffer
	Testing

	Doubly-Linked Lists
	Testing

	Putting It Together
	Text buffer invariants
	Manipulating text buffers
	Testing

	Bonus: Extending the Editor
	Appendix: List of functions to implement

