
15-122 Homework 6 Page 1 of 11

15-122: Principles of Imperative Computation, Fall 2013

Homework 6 Programming: Peg Solitaire
Update 1

Due: Monday, October 28, 2013 by 22:00

For the programming portion of this week’s homework, you will implement a program to
solve peg solitaire puzzles.

The code handout for this assignment is at

http://www.cs.cmu.edu/~rjsimmon/15122-f13/hw/15122-prog6.tgz

The file README.txt in the code handout goes over the contents of the handout and explains
how to hand the assignment in. There is a 25 handin limit for this assignment. Additional
handins will incur a 1-point penalty per handin.

Frequently and incrementally test your code. You can solve small boards without backtrack-
ing, and it is not necessary to use priority queues or hash tables to get full credit on this
assignment. Make an effort to to catch conceptual errors early.

Modification to academic integrity and Piazza policy: The academic integrity policy
for this course does not allow you to view other people’s C0 code or share your C0 code with
others. However, you may share peg solitaire boards that you find useful for testing in public
Piazza posts.

Questions on Piazza that include Autolab error messages and ask “is there any test board
that might help me figure out the problem” are fine, but will not be addressed by course
staff. Tag these posts on Piazza by writing #needaboard in the post. Questions on Piazza
about specific code problems will only be addressed by course staff if they reference a test
board that demonstrates the problem. (Conceptual questions and clarifications are still fine
on Piazza.)

Style and contract testing We do not plan to do systematic style and contract checking
for this assignment. However, we reserve the right to deduct points (up to 5) for significant
issues not caught by the autograder (including contracts), and we may do some style grading,
especially for code that does not pass the -w style checks that cc0 performs.

One reason for this is that your code is liable to get pretty messy as you transform
peg1.c0 into peg2.c0 and peg2.c0 into peg3.c0. In order to succeed at this assignment,
you will want to refactor your code – notice that it has gotten complicated and restructure
it in a way that suits the task better. Refactoring a bit will probably help you write and
debug the assignment, and one purpose of style grading this assignment is to help persuade
you to do this.

http://www.cs.cmu.edu/~rjsimmon/15122-f13/hw/15122-prog6.tgz


15-122 Homework 6 Page 2 of 11

Peg Solitaire
Peg solitaire is a one-player board game with the goal of removing all pegs except one from
a board, starting with some initial board configuration consisting of holes, some of which
are filled with pegs.

A move is always a vertical or horizontal jump of one peg over another, removing the peg that
was jumped over from the board. For example, in the initial configuration of the standard
English board on the left, there are 4 possible moves, all ending in the center. The peg
arriving from the top leads to the configuration on the right.

peg	
  

hole	
  

In the configuration on the right we have now have just 3 possible moves.

The goal of the game is to be left with just one peg. On the standard English board we start
with 32 pegs, so any solution will require exactly 31 moves (each jump removes exactly one
peg from the board). In some variations of the game we also stipulate where the final peg
should come to rest, but in this assignment just reaching a board with a single peg is the
only goal.

See http://en.wikipedia.org/wiki/Peg_solitaire for more on peg solitaire.

Games computers play

The structure of a peg solitaire is well suited to a solution involving recursion. If we want
to play peg solitaire on a board with 32 pegs, then we can enumerate all the valid moves
that can be made on that board. Then, after we make one of those moves, we’re playing peg
solitaire again – only this time on a board with 31 pegs.

http://en.wikipedia.org/wiki/Peg_solitaire


15-122 Homework 6 Page 3 of 11

If we ever reach a point where we’re playing peg solitaire on a board with one peg, it is a
very easy game – we’ve won! A losing game of peg solitaire is one where there are no valid
moves and more than one peg. An unsolvable game of peg solitaire is one where every series
of valid moves leads to a losing game.

Representation of the Board

In this programming assignment you will have to make some choices regarding the represen-
tation of moves, hash table keys, etc., but we specify the representation of boards. A board
is always an array of size 8 × 8 = 64 integers, where −1 means the location is blocked (i.e.
has no hole and cannot accept a peg), 0 means the location is a hole without a peg, and 1
means the location is a hole occupied by a peg. The board is laid out starting at the top
left.

peg	
  

hole	
  

blocked	
  

0	
   1	
   2	
   3	
   4	
   5	
   6	
   7	
  

0	
  

1	
  

2	
  

3	
  

4	
  

5	
  

6	
  

7	
  

The notation we use for a location on the board is row : col , starting both row and col at
0 in the upper left-hand corner. For example, the first move illustrated in the example on
the previous page would be from 1:3 to 3:3. Remember that we represent the board as a
one-dimensional array, so 1:3 corresponds to array index 1 ∗ 8 + 3 = 11 in the board array
and 3:3 corresponds to array index 3 ∗ 8 + 3 = 27 in the board array. Please refer to the
definitions in the file lib/peg-util.c0, including

typedef int[] board;

This file also contains functions to read board configurations from a file and print board
configurations.

Representation of a Move

It is up to you how to represent moves.

typedef ________ move;



15-122 Homework 6 Page 4 of 11

Some suggestions for representations: triples of integers (representing the three board indices
involved), pairs of integers (the first and last index of the move), or four integers representing
the row and column values of the peg before and after the move. These could be represented
by structs, or could be compressed into something like a single int. This involves a tradeoff
between compactness and ease or speed of determining the possible moves on a given board.
We do not combine multiple jumps into a single move.

The testing harness will treat the type move as abstract. This means it only uses the following
four functions to extract information from a given move m to check whether the move is
valid:

int row_start(move m);
int col_start(move m);
int row_end(move m);
int col_end(move m);

You can find the testing harness in peg-main.c0. You cannot change this file, but you can
inspect this code (and the code in lib/peg-util.c0) and reuse anything you find useful.

Representation of a Solution

A solution to peg solitaire from a given initial configuration consists of a stack of moves.
The top of the stack should contain the first move, the next element the second move, etc.
The function

bool verify_solution(board B, stack S);

(provided in the file peg-main.c0) verifies that the stack S is a valid solution for the initial
configuration given by board B.

Because the solution is a stack of moves, your code needs to define the type of stack element,
called stackelem in the file peg-client.c0, before the stack library is used. This file also
contains a client implementation for hashtables, which you may use in peg3.c0.



15-122 Homework 6 Page 5 of 11

1 Solving Deterministic Peg Solitaire
Task 1 is preliminary work for the subsequent tasks. For this task your code should try
only one move (if any are possible) for each board configuration, reaching either a winning
configuration (i.e. one peg left) or a losing configuration (more than one peg left, but no
moves possible). This means that if it is given a deterministic board (one where there is
always at most one move possible), it should find the solution if a solution exists. If given
a nondeterministically solvable board (winnable, but with more than one possible move at
some point), it might or might not find the solution. This won’t matter - we will only test
your peg1.c0 implementation on determinstic boards. [Sat Oct 6: updated to clarify that
we’ll test on both solvable and unsolvable deterministic boards.]

The point of this task is to make sure that you can correctly determine possible moves
and correctly generate solutions, and that you are providing appropriate implementations of
the specified interfaces. You may find it very useful to adapt some of the verification code
from peg-main.c0 in the starter code, either directly or as a model. Just copy any useful
code into peg1.c0 and document where it came from in the comments. Also remember to
look at lib/peg-util.c0 (which is included when you compile) and call any useful functions
you find there. (Don’t copy them, just call them!)

Task 1 (7 pts) Based on the problem description given, determine how you want to repre-
sent a move. In the file peg1.c0, define the type move

typedef ________ move;

Also, in the file peg1.c0, define the functions

int row_start(move m);
int col_start(move m);
int row_end(move m);
int col_end(move m);

to return row and column information from a move where start refers to the starting position
of the jumping peg, and end to its ending position.

Recall that a solution is represented as a stack of moves. In this assignment, our stack is a
stack of stackelems. In the file peg-client.c0, define the type stackelem

typedef _______ stackelem;

so stackelem is consistent with the type move. This will allow the representation of a solution
as a stack of moves. (We couldn’t just write typedef move stackelem because the type move
will not be defined until later in the compilation sequence.)

In the file peg1.c0, define the function

int peg_solve(board B, stack S);

to attempt a deterministic solution to peg solitaire for the given board. The integer that
peg_solve returns is the number of pegs left at the end of the game.



15-122 Homework 6 Page 6 of 11

• If peg_solve returns 1, then our algorithm played peg solitaire and won. In this case,
S should contain the solution in the form of a stack of moves.

• If peg_solve returns a number greater than 1, then our algorithm played peg solitaire
and lost when the board still had \result pegs left on the board. In this case, S can
contain anything.

Notice how peg_solve communicates information to its caller both by the int it returns
and by the moves it pushes onto the stack. Since the stack is really a pointer, peg_solve
and the function that calls it can both access the same area of memory through that pointer.

In order to write the peg_solve function, you should write a recursive helper function
solve that is called from peg_solve. This helper function should take the board, the current
stack of moves, and the number of pegs remaining on the board as parameters. It should
return 1 if there is a solution for the given parameters. It should also alter the given solution
stack by adding the moves for the solution. THINK: What is the base case here for this
recursive function? When do you know you have a solution for the current board?

One strategy for this helper function is to consider all the possible moves that could be
made for the current board. This could be written as an auxiliary function that generates all
the possible valid “next moves,” perhaps returning a new stack containing these valid moves.
(It’s a good idea to write the code to find all possible moves now, even though for this task
you only need one move.)

Then, process the top move of the additional stack of first moves (ignore all of the others)
and recursively try to see if there is a solution to the resulting board. If there is a solution
to the resulting board, there is a solution to the current board. In case there is a solution,
make sure you push the moves of the solution onto the solution stack in the correct order.
It’s easy for the final set of moves to end up in the wrong order on the solution stack.

Testing

You can test your peg1.c0 solution by compiling it as described in README.txt and then
running

% ./peg1 german.txt

This one trivial test won’t tell you very much, however, and you will need to test your code
against other solutions as well. (You are encouraged to share such test cases on Piazza.)

Our testing harness will only test your Task 1 code on peg solitaire boards that are deter-
ministic (boards always have either 1 or 0 moves), but you may want to run your solution
on more complicated boards. If you do, you should expect your code to sometime give up
too early, failing to find a solution even when one exists.



15-122 Homework 6 Page 7 of 11

2 Solving Nondeterministic Peg Solitaire
In the previous task, we only dealt with deterministic peg solitaire boars: with the board in
its current state, we generated a stack of all possible immediate moves we could make from
the current board, chose one, and played peg solitaire on the resulting board (recursively).
Using this approach, if we hit a dead-end in our search for the solution, we’re out of luck –
we would return the number of pegs left on the board to indicate that we did not win the
game. (The first move below is 1:2 to 1:0, and the second move is 2:1 to 2:3.)

We can do better with a strategy called backtracking. Right now we know that the third peg
solitaire board above, with two pegs, is a losing game, which means it is also unsolvable. But
we don’t know that the second peg solitaire board, the one with three pegs, is unsolvable,
because there’s another valid move we could make – 2:2 to 2:0. So we backtrack to this
old board and try working forward from there.

Unfortunately, this second move also leads to a losing board. This means that the board
with three pegs above is unsolvable – all the moves starting from that board lead to losing
boards. We have to backtrack further, to the board with four pegs, and pick a different way
forward. If we pick the valid move 2:1 to 0:1, we will succeed.

In this task you will generalize the implementation from Task 1 so that it can solve boards
that require backtracking for their solution.

Using the process of backtracking, we start with a board in some current state. We try
a potential first move on a board, changing the board to a new state. If that move does
not work (if the resulting board is unsolvable), we return back to the current state and try



15-122 Homework 6 Page 8 of 11

another potential first move. We repeat this process as long as a first move does not lead to
a solution and there are still potential first moves left to try. If none of the potential first
moves lead to a solution, then we know the current board is unsolvable. We return back to
the previous state of the board and try any remaining first moves still available, and so on.
This backtracking process is also recursive. (Do you see why?)

To summarize, this task differs from the previous task in that your new code will try to
definitively answer the question of whether a particular peg solitaire game can be won. If it
hits a dead-end with no subsequent moves, it undoes the previous move and tries another
move. It that fails, it undoes that move and continues this process.

Task 2 (8 pts) Copy your working code from peg1.c0 to peg2.c0.

Extend the function peg_solve so that it can handle boards that potentially require backtrack-
ing. We will test your code with simple problems requiring backtracking. The most complex
one will be english.txt (the standard English peg solitaire board and initial configuration).

However, if your peg_solve function returns a number greater than 1, indicating that the
peg solitaire board was entirely unsolvable, then the returned integer should be the smallest
number of pegs on any board you encountered. The stack S still only needs to contain a valid
set of moves when the result is 1.

NOTE: For this task do not use hash tables. This will allow you to explore how complex the
problems can be using this technique before you need a data structure like a hash table to
reduce the expanding search space.

Testing

You should test your peg2.c0 solution first with small unit tests and easy-to-solve boards
with the -d option on as described in README.txt.

% cc0 -d -o peg2 peg-client.c0 lib/*.c0 peg2.c0 peg-main.c0
% ./peg2 mediumboard.txt

Then, by compiling with the “fast but unsafe” options described in the README.txt, you can
try solving some trickier boards.

% cc0 -o peg2 -r unsafe -c-O2 peg-client.c0 lib/*.c0 peg2.c0 peg-main.c0
% ./peg2 english.txt

We will test your code with using several boards of increasing difficulty, culminating in
english.txt, the standard English board and starting configuration. Depending on the
order in which you pick moves, your code may be able to handle english.txt, even without
the use of a hash table.

We will set timeouts on the Autolab server so that if your code it too slow it may fail some
of the more difficult tests. So you should pay some attention to efficiency of your code. You
should be aware that the Autolab server may run slower than your laptop (for instance).



15-122 Homework 6 Page 9 of 11

Some Advice

Your solution should probably reuse most of the code from Task 1. You will mainly have to
deal with the problem that applying a move modifies the board. When you backtrack by
returning a number greater than 1 you must make sure to undo your change to the board.
This can be stated as an invariant of the solve function: before it returns the board must
be restored to the configuration it was in when it was called.

If you try to copy the board instead, your code will probably be too slow.

Efficiency is definitely a factor factor at this point. For example, it is probably worth
considering how to efficiently check that you have reached a winning configuration since
you may have to do this many times. We recommend sticking with the so-called brute-force
search rather than trying to rank the possible moves based on their promise.

Most any definition for the type move in peg1.c0 will good enough to get full credit. How-
ever, depending on how the rest of your code is designed, you may see a useful efficiency
improvement if you represent moves as single integer (think about how ARGB pixels pack
four values into a single int). Whether to do this is entirely up to you. If you do, don’t forget
to edit both peg2.c0 and peg-client.c0!

3 Bonus: Memoization
The basic problem with the backtracking search from Task 2 is that it may visit the same
unsolvable peg solitaire boards many, many times. In this (bonus) task, you will memoize
your solve function using a hash table.

If you think of peg_solve as a function that maps a board to the smallest number of pegs
reachable from that board, then the hash table will be the same type of mapping. Once a
board B has been found to be unsolvable, it will be stored in the table with the number of
pegs left in the final configuration.

When trying to solve a board we first check if the board has already been recorded as having
no solution and, if so, we immediately return the answer stored with it in the hash table.
Notice that everything in the hash table represents failure, so there is no need to store the
move stack as part of the hashed element.

If we find a winning configuration, there is no need to store it since no further searching
should occur.

Three crucial factors will determine the efficiency of your implementation: your choice of
keys, your choice of hash function, and the order in which you try moves.

With respect to keys, we recommend compressing your board into a compact representation
for the hash table containing enough information so that two boards in a given problem have
the same key if and only if they represent the same configuration. The key_equal function



15-122 Homework 6 Page 10 of 11

on this representation should be fast. Note that you could not use the board array itself
anyway without copying, because then your solve function would change the contents of
the hash table. If your key is a copy of the whole length 64 array of integers, then your
implementation will almost certainly still be too slow. It is not a good idea to use strings
for keys, although you may be tempted since you saw a hash function for strings in lecture.

When thinking about efficiency, remember that you’re free to redefine your helper function
solve to take as many parameters as you see fit. For instance, you might find it advantageous
to update keys as you update boards, and pass them around together.

Task 3 (Bonus and scoreboard glory only) Copy your code from peg2.c0 to peg3.c0.

In the file peg-client.c0, provide the client-side implementations of the following types and
functions that are necessary for the hash table to work correctly.

typedef _____* htelem;
typedef _____ key;

int hash(key k, int m);
bool key_equal(key k1, key k2);
key htelem_key(htelem e);

A usable example has been provided for you. In the file peg3.c0, extend your code to take
advantage of the hash table to reduce the search space for a solution.

Testing

We will test your code with

% cc0 -o peg3 -r unsafe -c-O2 peg-client.c0 lib/*.c0 peg3.c0 peg-main.c0
% ./peg3 english.txt

using several boards of increasing difficulties, culminating in the files english.txt and
french*.txt (a French version of peg solitaire).

As in Task 2, we will set some timeouts to prevent your code from consuming unbounded
system resources and verifying that your code is reasonably efficient.

Some Advice

Efficiency is becoming a major factor at this point. Move selection remains an important
issue. The efficiency of your hash function, the compactness of your hash key representation,
the size of your hash table, and the ability of your hash function to avoid collisions are also
important factors. Some of these issues are discussed in performance-debugging.txt.

Be aware that, for hashing to work properly, the keys and elements must not be updated
after they are put in the hash table. If you incrementally update any data that ends up in
the hash table, be sure to pass a copy of it to ht_insert, not the updatable data itself.



15-122 Homework 6 Page 11 of 11

Even with memoization and well-written code, some peg solitaire boards, including the
French boards, can cause your program to run for a very, very long time. Don’t assume that
you have a bug if this happens. Remember that the French boards don’t affect your score
on this lab. Solving them is a bonus.

Going Further

Our solution is entirely brute force, that is, it does not employ any heuristic ordering among
the possible moves. You might consider adding such heuristics to select the most promising
moves first once you get this assignment done. All other aspects of the solution should be
the same as in the required assignment. If you go beyond the required assignment, please
include a HEURISTIC.txt file that explains your strategy.

A Move selection
The order in which you consider moves will not make a big difference to how fast you search
unsolvable boards, but it can make a big difference to how fast you find the solution to a
solvable board. If you pick moves by iterating over the board spaces, there are three obvious
options:

• Every time you find a peg, see if it can jump in every direction (up, down, left, right).

• Every time you find a peg, see if it can be jumped over in every direction.

• Every time you find a hole, see if it can be jumped into from every direction.

We recommend you try the first of these three strategies and then experiment with different
orderings of directions (up-down-left-right versus up-right-down-left and so on) to find one
that works well on the English board. With the right move selection strategy, you can find a
solution to english.txt in Task 3 very quickly (there can be less than 1100 boards in your
hash table after solving the English board).

There is another choice you could experiment with: will you try all possible directions at
each peg/hole before moving on to the next, or one direction at every peg/hole on the board
before trying another direction? This can also make an enormous difference, depending on
many things.


	Solving Deterministic Peg Solitaire
	Solving Nondeterministic Peg Solitaire
	Bonus: Memoization
	Move selection

