
15-122 Written Homework 11 Page 1 of 7

15-122 : Principles of Imperative Computation, Fall 2013

Written Homework 11 [Update 2]

Due: Thursday, November 21, 2013 by 10pm

Name:

Andrew ID:

Recitation:

The written portion of this week’s homework will give you some practice working with more
C programming issues and tries. You can either type up your solutions or write them neatly
by hand, and you should submit your work in class on the due date just before lecture begins.
Please remember to staple your written homework before submission.

Question Points Score

1 7

2 8

Total: 15

Write your answers neatly on this PDF (or fill out the TeX
handout), and then submit the stapled printout to the handin box

Thursday before lecture or on Thursday afternoon or Friday
outside of Tom Cortina’s office (GHC 4117).

http://www.cs.cmu.edu/~rjsimmon/15122-f13/hw/15122-written10.tex
http://www.cs.cmu.edu/~rjsimmon/15122-f13/hw/15122-written10.tex

15-122 Written Homework 11 Page 2 of 7

1. Typecasting and Function Pointers in C

Suppose that we are working with the expected implementation-defined implementation
of unsigned and signed (2’s compliment) short (16 bits, two bytes) and int (32 bits,
four bytes).

(a)(3) We begin with the following declarations:

short w = -15;
unsigned short x = 65521;
int y = -65521;

Fill in the table below. In the third column, always use four hex digits to represent
a short, and eight hex digits to represent an int. You might find these numbers
useful: 216 = 65536 and 232 = 4294967296.

Solution:
C expression Decimal value Hexadecimal

w -15 0xFFF1

(unsigned short)w 65521 0xFFF1

(int)w -15 0xFFFFFFF1

x 65521

(int)x

(int)(short)x

y -65521

(unsigned int)y

15-122 Written Homework 11 Page 3 of 7

(b)(2) Consider the following C definition for the factorial function:
int factorial(int n)
{

REQUIRES (n >= 0);
int result = 1;
for (int i = 1; i <= n; i++) {

result *= i;
}
return result;

}

Use typedef to define a C type named int2int that represents a function pointer
that requires an int as its parameter and returns an int as its return type.

Solution:

typedef __;

Let the variable f be of type int2int. (That is, f is a function pointer to a function
that has one parameter of type int and returns a result of type int.) Show how
to initialize f with the address of the factorial function given above using the
address-of operator.

Solution:

int2int f = ___;

Write a C instruction that prints out 10! using the variable f defined above. Use
an explicit derefencing operation on f to get to the factorial function.

Solution:

printf("10! = %d\n", ___);

Suppose we wanted to set x equal to 8! using the function above. Is the following
valid in C? (Yes or No)
int x = f(8);

Solution:

15-122 Written Homework 11 Page 4 of 7

(c)(2) Suppose we have a (signed) char array of length 4 and we want to store that array
in a single (4-byte) int by storing the char array {1, 2, 3, 4}, for example, as
0x01020304. Remember that char is an integer type in C.
Write a C function that takes a length-4 char array named F and condenses it into
a single int as outlined above. Do not cast directly between signed and unsigned
types of different sizes, and make sure your solution works for char arrays containing
negative values.
Your solution should be clear and straightforward; convoluted code will not receive
full credit.

Solution:
int condense(char *F) {

}

15-122 Written Homework 11 Page 5 of 7

2. Ternary Search Tries
Consider the TST shown below.

m	

e	

r	

t	

h	

o	

r	

i	

s	

k	

a	

t	

p	

a	

g	

e	

e	

As in the lecture notes, the dotted lines connect a node to its middle child, and solid
lines connect a node to its left and right children. An X in the top left indicates
that this node ends a valid word. There could be a link to a corresponding value,
like a word definition, for example.
[Update 1, clarification.] The lecture notes and accompanying code describe a
desirable invariant of TSTs: that if the middle child is NULL, the node has to end
a valid word. This TST does not have this property due to the topmost m and e
nodes, but it is not a necessary invariant for safety or correctness. (The insertion
and lookup algorithms work even without that invariant.)

(a)(2) List all of the valid words stored in the TST above, in alphabetical order.

Solution:

15-122 Written Homework 11 Page 6 of 7

(b)(3) Add the words me, rake, hope, hot, top, and act to the TST given on the previous
page, one at a time, in the order given.

Solution:

m	

e	

r	

t	

h	

o	

r	

i	

s	

k	

a	

t	

p	

a	

g	

e	

e	

15-122 Written Homework 11 Page 7 of 7

(c)(3) For this question, review the published code for tries from lecture.
It is possible to implement trie_lookup as an iterative function rather than a recur-
sive one. Fill in the blanks so that the function shown below correctly implements
lookup in a TST.
The lines involving the variables lower and upper are used only to prove that the
loop invariant (written in the incorrect location as an assertion in the code below)
is preserved. You should not use lower or upper when filling in the blanks.

Solution:
elem trie_lookup(trie TR, char *s) {

REQUIRES(is_trie(TR));
REQUIRES(s != NULL);
tnode *T = TR->root;
int charmin = 0;
int charmax = (int)CHAR_MAX + 1;
int lower = charmin;
int upper = charmax;

while (T != ___________________________________) {
ASSERT(is_tnode(T, lower, upper)); // Loop invariant
if (*s == T->c) {

if (*(s+1) == ’\0’) {

return ___;
} else {

lower = charmin;
upper = charmax;
s++;

T = __;
}

} else if (___) {
lower = T->c;

T = __;

} else {
upper = T->c;

T = __;
}

}
return NULL;

} // Update 2: missing ’}’ before the ’else if’ case

