
15-122 Homework 4 Page 1 of 6

15-122 : Principles of Imperative Computation, Fall 2013

Written Homework 4

Due: Thursday, September 26, 2013 at 10pm

Name:

Andrew ID:

Recitation:

In this homework assignment, we will examine asymptotic complexity, searching and sorting.

Question Points Score

1 6

2 2

3 7

Total: 15

Write your answers neatly on this PDF (or fill out the TeX

handout), and then submit the stapled printout to the handin box

Thursday before lecture or on Thursday afternoon outside of Tom

Cortina’s office (GHC 4117).

http://www.cs.cmu.edu/~rjsimmon/15122-f13/hw/15122-written4.tex
http://www.cs.cmu.edu/~rjsimmon/15122-f13/hw/15122-written4.tex


15-122 Homework 4 Page 2 of 6

1. Runtime Complexity. Consider the following function that sorts the integers in an
array, using swap and is sorted from arrayutil.c0.

void sort(int[] A, int n)

//@requires 0 <= n && n <= \length(A);

//@ensures is_sorted(A, 0, n);

{

for (int i = 0; i < n; i++)

//@loop_invariant 0 <= i && i <= n;

//@loop_invariant le_segs(A, 0, n-i, A, n-i, n);

//@loop_invariant is_sorted(A, ____, _____);

{

int s = 0;

for (int j = 0; j < n-i-1; j++)

//@loop_invariant 0 <= j && j <= n-i-1;

//@loop_invariant ge_seg(A[j], A, 0, j);

//@loop_invariant s > 0 || (s == 0 && is_sorted(A, 0, j));

{

if (A[j] > A[j+1]) {

swap(A, j, j+1); // function that swaps A[j] and A[j+1]

s = s + 1;

}

}

if (s == 0) return;

}

}

(a)(1) Complete the missing loop invariant for the first (i) loop.

Solution:

//@loop_invariant is_sorted(A, _____________, ______________);

(b)(1) The asymptotic complexity of this sort depends on the number of comparisons
made between pairs of array elements. Let T (n) be the worst-case number of such
comparisons made when sort(A, n) is called. Give a closed form expression for
T (n).

Solution:



15-122 Homework 4 Page 3 of 6

(c)(1) Using big-O notation, what is asymptotic complexity of T (n)? This is the worst-
case runtime complexity of sort.

Solution:

T (n) ∈ O( )

(d)(2) Using your answer from the previous part, show that T (n) ∈ O(f(n)) using the
formal definition of big O. That is, find a c > 0 and n0 ≥ 0 such that for every
n ≥ n0, T (n) ≤ cf(n). Show your work.

Solution:

(e)(1) Using big-O notation, what is the best case asymptotic complexity of this sort as a
function of n.

Solution:

O( )



15-122 Homework 4 Page 4 of 6

2. Timing Code

The following run times were obtained when using two different algorithms on a data
set of size n. You are asked to determine asymptotic complexity of the algorithms
based on this time data. Determine the asymptotic complexity of each algorithm
as a function of n. Use big-O notation in its tightest form and briefly explain how
you reached the conclusion.

(a)(1) n Execution Time

1000 0.564 milliseconds

2000 2.271 milliseconds

4000 8.992 milliseconds

8000 36.150 milliseconds

Solution: O( )

(b)(1) n Execution Time

1000 0.043 milliseconds - CORRECTION

1000000 43.68 milliseconds

1000000000 43.9 seconds

Solution: O( )



15-122 Homework 4 Page 5 of 6

3. Computing Overlaps

In this problem, we will study the Overlap Problem, which is the task of computing
the number of shared elements between two arrays. The problem requires an array
A[] of m integers and a second array B[] of n integers. We require the integers of
A[] and B[] to be distinct, meaning no integer will occur more than once in A[]

(or in B[]), though some integers may occur once in each of A[] and B[].

Assume linsearch(x, A, i, j) returns the index of the first occurrence of integer
x in integer array A[i,j) or -1 if x is not found. This function does not require
that the elements be in sorted order.

Consider the following function which counts the number of integers which are in
both of A[] and B[].

/* 1 */ int overlap(int[] A, int m, int[] B, int n)

/* 2 */ //@requires 0 <= m && m <= \length(A);

/* 3 */ //@requires 0 <= n && n <= \length(B);

/* 4 */ // placeholder for future requirement (part b)

/* 5 */ // placeholder for future requirement (part d)

/* 6 */ {

/* 7 */ int count = 0;

/* 8 */ int i = 0;

/* 9 */ while (i < m)

/* 10 */ //@loop_invariant 0 <= i;

/* 11 */ {

/* 12 */ if (linsearch(A[i], B, 0, n) != -1) {

/* 13 */ count = count + 1;

/* 14 */ }

/* 15 */ i = i + 1;

/* 16 */ }

/* 17 */ return count;

/* 18 */ }

(a)(1) Uisng big-O notation, what is the worst-case runtime of this algorithm? Your
answer should be in terms of m and n.

Solution:

O( )



15-122 Homework 4 Page 6 of 6

(b)(2) Suppose we add a third precondition to the function on line 4 as follows:

/* 4 */ //@requires is_sorted(B, 0, n);

Using this additional requirement, explain how to modify the function to solve the
Overlap Problem asymptotically faster than it currently does. (State which line(s)
change and what the change(s) should be.)

Solution:

(c)(1) Using big-O notation, what is the worst-case runtime complexity of your revised
algorithm? Your answer should be in terms of m and n.

Solution: O( )

(d)(3) Suppose we add a fourth precondition to the function on line 5 as follows:

/* 5 */ //@requires is_sorted(A, 0, m);

So now we require that both arrays are sorted prior to execution of this function.
Describe an O(m + n) = O(max(m,n)) algorithm to solve the Overlap Problem.
You should NOT write code; simply explain how the new algorithm works in a clear,
concise manner. Justify in one sentence that the runtime complexity is O(m + n).
(HINT: The algorithm should be very similar to something you’ve seen in class
already.)

Solution:


