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15-122 : Principles of Imperative Computation, Fall 2013

Written Homework 9

Due: Thursday, October 31, 2013, at 10pm

Name:

Andrew ID:

Recitation:

The written portion of this week’s homework will give you some practice working with heaps
and binary search trees. You can either type up your solutions or write them neatly by hand,
and you should submit your work in class on the due date just before lecture begins. Please
remember to staple your written homework before submission.

Question Points Score

1 3

2 3

3 9

Total: 15

Write your answers neatly on this PDF (or fill out the TeX
handout), and then submit the stapled printout to the handin box
Thursday before lecture or on Thursday afternoon outside of Tom

Cortina’s office (GHC 4117).

http://www.cs.cmu.edu/~rjsimmon/15122-f13/hw/15122-written9.tex
http://www.cs.cmu.edu/~rjsimmon/15122-f13/hw/15122-written9.tex
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1. Heaps

Refer to the implementation of heaps discussed in class that is available on our course
website.

(a)(1) Add a meaningful assetion about H to each of the functions below.

Solution:
void pq_insert(heap H, elem e)
//@requires is_heap(H) && !pq_full(H);
//@ensures is_heap(H);
{

H->data[H->next] = e;
(H->next)++;
//@assert ________________________________________________;
int i = H->next - 1;
while (i > 1 && priority(H,i) < priority(H,i/2))

//@loop_invariant 1 <= i && i < H->next;
//@loop_invariant is_heap_except_up(H, i);
{

swap(H->data, i, i/2);
i = i/2;

}
//@assert is_heap(H);
return;

}

elem pq_delmin(heap H)
//@requires is_heap(H) && !pq_empty(H);
//@ensures is_heap(H);
{

int n = H->next;
elem min = H->data[1];
H->data[1] = H->data[n-1];
H->next = n-1;
if (H->next > 1) {

//@assert ___________________________________________;
sift_down(H, 1);

}
return min;

}
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(b)(1) Complete an additional library function, pq_max, that returns, but does not remove,
the element with the maximum priority value from our array-based min-heap. We
have provided part of the function for you. You should examine only those elements
that might contain the maximum. (Note that this is not an operation you would
want to provide for a min-heap priority queue due to its runtime complexity.)

Solution:
elem pq_max(heap H)
//@requires is_heap(H) && !pq_empty(H);
//@ensures is_heap(H);
{

int max = ______________________________;

for (int i = ____________________; i < __________________; i++)

if (priority(H, i) > priority(H, max)) max = i;

return ______________________________;
}
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(c)(1) The library function, pq_build, shown below, takes an array of data elements
(ignoring index 0 of the array) and builds our array-based min-heap in place. That
is, it uses the given array in our heap structure and does not allocate a new array.
heap pq_build(elem[] elements, int arraylength)
//@requires \length(elements) > 0 && \length(elements)==arraylength;
//@ensures is_heap(\result);
{

heap H = alloc(struct heap_header);
H->limit = arraylength;
H->next = 1;
H->data = elements;
for (int i = 1; i < arraylength; i++)

pq_insert(H, elements[i]);
return H;

}
The function above does not respect the boundary between the client and the library.
Complete the following client code so that the pq_empty function will likely abort
by failing its precondition. In your solution, do not deference H or set H to NULL.

Solution:
:
:
//@assert \length(E) = 16;
heap H = pq_build(E, 16);

_________________________________________________________________

_________________________________________________________________

_________________________________________________________________

if (pq_empty(H)) return;
:
:



15-122 Written Homework 9 Page 5 of 8

2. Binary Search Trees and Heaps

(a)(1) Draw the binary search tree that results from inserting the following keys in the
order given:
75 92 99 13 84 42 71 98 73 20
Be sure all branches in your tree are clearly drawn so we can distinguish left branches
from right branches.

Solution:

(b)(2) How many different binary search trees can be constructed using the following five
keys: 73, 28, 52, -9, 104 if they can inserted in any arbitrary order?

Solution:

How many different min-heaps can be constructed using the following five keys: 73,
28, 52, -9, 104 if they can be inserted in any arbitrary order?

Solution:

Consider the shape of a binary tree. How many non-empty binary search tree
configurations can also be min-heaps?

Solution:

Consider the shape of a binary tree. How many non-empty binary search tree
configurations can also be max-heaps?

Solution:
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3. Binary Search Trees: Library Functions

Refer to the implementation of binary search trees discussed in class that is available on
our course website.

(a)(3) Write an implementation of a new library function, bst_height, that returns the
height of a binary search tree. The height of a binary search tree is defined as
the maximum number of nodes as you follow a path from the root to a leaf. As a
result, the height of an empty binary search tree is 0. Your function must include
a recursive helper function tree_height.
HINT: In general, the height of a tree rooted at node T is one more than the height
of its deepest subtree.

Solution:
int tree_height(tree* T)
//@requires is_ordered(T, NULL, NULL);
{

}

int bst_height(bst B)
//@requires is_bst(B);
//@ensures is_bst(B);
{

return __________________________________________________;
}
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(b)(6) Consider extending the BST library implementation with the following function
which deletes an element from the tree with the given key.
void bst_delete(bst B, key k)
//@requires is_bst(B);
//@ensures is_bst(B);
{

B->root = tree_delete(B->root, key k);
}
Complete the code for the recursive helper function tree_delete which is used by
the bst_delete function. This function should return a pointer to the tree rooted
at T once the key is deleted (if it is in the tree).
You will need to complete an additional helper function largest_child that re-
moves and returns the largest child rooted at a given tree node T.

Solution:
tree* tree_delete(tree* T, key k)
{

if (T == NULL) { // key is not in the tree

return _______________________________;

}

if (key_compare(k, elem_key(T->data)) < 0) {

_______________________ = tree_delete(T->left, k);

return T;

} else if (key_compare(k, elem_key(T->data)) > 0) {

_______________________ = tree_delete(T->right, k);

return T;

} else { // key is in current tree node T

if (T->left == NULL) // node has only right child

return ________________________;

else if (T->right == NULL) // node has only left child

return ________________________;
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else { // Node to be deleted has two children

if (T->left->right == NULL) {

// Replace the data in T with the data
// in the left child.

_____________________________________________;

// Replace the left child with its left child.

_____________________________________________;

return T;
}
else {

// Search for the largest child in the
// left subtree of T and replace the data
// in node T with this data after removing
// the largest child in the left subtree.
T->data = largest_child(T->left);
return T;

}
}

}
}

elem largest_child(tree* T)
//@requires T != NULL && T->right != NULL;
{

if (T->right->right == NULL) {

elem e = _________________________________;

T->right = ____________________________________;

return e;
}

return largest_child(________________________________);
}


