
Lecture Notes on
Contracts

15-122: Principles of Imperative Computation
Frank Pfenning

Lecture 2
August 29, 2013

1 Introduction

In these notes we review contracts, which we use to collectively denote
function contracts, loop invariants, and other assertions about the program.
Contracts will play a central role in this class, since they represent the key
to connect algorithmic ideas to imperative programs. We follow the exam-
ple from lecture, developing annotations to a given program that express
the contracts, thereby making the program understandable (and allowing
us to find the bug).

In term of our learning goals, this lecture addresses:

Computational Thinking: Developing contracts (preconditions, postcon-
ditions, assertions, and loop invariants) that establish the safety and
correctness of imperative programs.

Developing proofs of the safety and correctness of code with con-
tracts.

Developing informal termination arguments for programs with loops
and recursion.

Identifying the difference between specification and implementation.

Algorithms and Data Structures: Employ integer algorithms (fast power)

Programming: Identify, describe, and effectively use contracts (in C0)

If you have not seen this example, we invite you to read this section by
section to see how much of the story you can figure out on your own before
moving on to the next section.

LECTURE NOTES AUGUST 29, 2013



Contracts L2.2

2 A Mysterious Program

You are a new employee in a company, and a colleague comes to you with
the following program, written by your predecessor who was summarily
fired for being a poor programmer. Your colleague claims he has tracked a
bug in a larger project to this function. It is your job to find and correct this
bug.

int f (int x, int y) {

int r = 1;

while (y > 1) {

if (y % 2 == 1) {

r = x * r;

}

x = x * x;

y = y / 2;

}

return r * x;

}

Before you read on, you might examine this program for a while to try
to determine what it does, or is supposed to do, and see if you can spot the
problem.

LECTURE NOTES AUGUST 29, 2013



Contracts L2.3

3 Forming a Conjecture

The first step it to execute the program on some input values to see its
results. The code is in a file called mystery2.c0 so we invoke the coin inter-
preter to let us experiment with code.

% coin mystery2.c0

C0 interpreter (coin) 0.3.2 ’Nickel’ (r256, Thu Jan 3 14:18:03 EST 2013)

Type ‘#help’ for help or ‘#quit’ to exit.

-->

At this point we can type in statements and they will be executed. One
form of statement is an expression, in which case coin will show its value.
For example:

--> 3+8;

11 (int)

-->

We can also use the functions in the files that we loaded when we
started coin. In this case, the mystery function is called f, so we can evalu-
ate it on some arguments.

--> f(2,3);

8 (int)

--> f(2,4);

16 (int)

--> f(1,7);

1 (int)

--> f(3,2);

9 (int)

-->

Can you form a conjecture from these values?

LECTURE NOTES AUGUST 29, 2013

http://www.cs.cmu.edu/~fp/courses/15122-s11/lectures/01-overview/mystery2.c0


Contracts L2.4

From these and similar examples, you might form the conjecture that
f(x, y) = xy, that is, x to the power y. One can confirm that with a few
more values, such as

--> f(-2,3);

-8 (int)

--> f(2,8);

256 (int)

--> f(2,10);

1024 (int)

-->

It seems to work out! Our next task is to see why this function actually
computes the power function. Understanding this is necessary so we can
try to find the error and correct it.

LECTURE NOTES AUGUST 29, 2013



Contracts L2.5

4 Finding a Loop Invariant

Now we start to look inside the function and see how it computes.

int f (int x, int y) {

int r = 1;

while (y > 1) {

if (y % 2 == 1) {

r = x * r;

}

x = x * x;

y = y / 2;

}

return r * x;

}

We notice the conditional

if (y % 2 == 1) {

r = x * r;

}

The condition tests if y modulo 2 is 1. For positive y, this is true if y is odd.
We also observe that in the loop body, y must indeed be positive so this is
a correct test for whether y is odd.

Each time around the loop we divide y by 2, using integer division
(which rounds towards 0). It is exact division if y is even. If y starts as
a power of 2, it will remain even throughout the iteration. In this case r
will remain 1 throughout the execution of the function. Let’s tabulate how
the loop works for x = 2 and y = 8. But at which point in the program do
we tabulate the values? It turns out generally the best place for a loop is just
before the exit condition is tested. By iteration 0 we mean when we enter the
loop the first time and test the condition; iteration 1 is after the loop body
has been traversed once and we are looking again at the exit condition, etc.

iteration x y r

0 2 8 1

1 4 4 1

2 16 2 1

3 256 1 1

After 3 iterations, x = 256 and y = 1, so the loop condition y > 1 becomes
false and we exit the loop. We return r ∗ x = 256.

LECTURE NOTES AUGUST 29, 2013



Contracts L2.6

To understand why this loop works we need to find a so-called loop in-
variant: a quantity that does not change throughout the loop. In this exam-
ple, when y is a power of 2 then r is a loop invariant. Can you see a loop
invariant involving just x and y?

LECTURE NOTES AUGUST 29, 2013



Contracts L2.7

Going back to our earlier conjecture, we are trying to show that this
function computes xy. Interestingly, after every iteration of the loop, this
quantity is exactly the same! Before the first iteration it is 28 = 256. After
the first iteration it is 44 = 256. After the second iteration it is 162 = 256.
After the third iteration is it is 2561 = 256. Let’s note it down in the table.

iteration x y r xy

0 2 8 1 256

1 4 4 1 256

2 16 2 1 256

3 256 1 1 256

Still concentrating on this special case where y is a power of 2, let’s see
if we can use the invariant to show that the function is correct.

LECTURE NOTES AUGUST 29, 2013



Contracts L2.8

5 Proving the Loop Invariant

To show that the quantity xy is a loop invariant, we have to prove that
if we execute the loop body once, xy before will be equal to xy after. We
cannot write this as xy = xy, because that is of course always true, speaking
mathematically. Mathematics does not understand the idea of assigning a
new value to a variable. The general convention we follow is to add a prime
(′) to the name of a variable to denote its value after an iteration.

So assume we have x and y, and y is a power of 2. After one iteration
we have x′ = x ∗x and y′ = y/2. To show that xy is loop invariant, we have
to show that xy = x′y

′
. So let’s calculate:

x′y
′

= (x ∗ x)y/2 By definition of x′ and y′

= (x2)y/2 Since a ∗ a = a2

= x2∗(y/2) Since (ab)c = ab∗c

= xy Since 2 ∗ (a/2) = a when a is even

Moreover, if y is a power of 2, then y′ = y/2 is also a power of 2 (subtracting
1 from the exponent).

We have confirmed that xy is loop invariant if y is a power of 2. Does
this help us to ascertain that the function is correct when y is a power of
two?

LECTURE NOTES AUGUST 29, 2013



Contracts L2.9

6 Loop Invariant Implies Postcondition

The postcondition of a function is usually a statement about the result it re-
turns. Here, the postcondition is that f(x, y) = xy. Let’s recall the function:

int f (int x, int y) {

int r = 1;

while (y > 1) {

if (y % 2 == 1) {

r = x * r;

}

x = x * x;

y = y / 2;

}

return r * x;

}

If y is a power of 2, then the quantity xy never changes in the loop (as we
have just shown). Also, in that case r never changes, remaining equal to 1.
When we exit the loop, y = 1 because y starts out as some (positive) power
of 2 and is divided by 2 every time around loop. So then

r ∗ x = 1 ∗ x = x = x1 = xy

so we return the correct result, xy!
By using two loop invariant expressions (r and xy) we were able to

show that the function returns the correct answer if it does return an an-
swer. Does the loop always terminate?

LECTURE NOTES AUGUST 29, 2013



Contracts L2.10

7 Termination

In this case it is easy to see that the loop always terminates, because if we
start with y = 2n we go around the loop exactly n times before y = 2n−n = 1
and we exit the loop. We used here that (2k)/2 = 2k−1 for k ≥ 1.

Our next challenge then will be to extend this result to arbitrary y. Be-
fore we do this, now that we have some positive results, let’s try to see if
we find some counterexample since the function is supposed to have a bug
somewhere!

Please try to find a counterexample to the conjecture that f(x, y) = xy

before you move on, taking the above information into account.

LECTURE NOTES AUGUST 29, 2013



Contracts L2.11

8 A Counterexample

We don’t have to look at powers of 2 — we already know the function
works correctly there. Some of the earlier examples were not powers of
two, and the function still worked:

--> f(2,3);

8 (int)

--> f(-2,3);

-8 (int)

--> f(2,1);

2 (int)

-->

What about 0, or negative exponents?

--> f(2,0);

2 (int)

--> f(2,-1);

2 (int)

-->

Looks like we have found at least two problems. 20 = 1, so the answer 2
is definitely incorrect. 2−1 = 1/2 so one might argue it should return 0. Or
one might argue in the absence of fractions (we are working with integers),
a negative exponent does not make sense. In any case, f(2,−1) should
certainly not return 2.

LECTURE NOTES AUGUST 29, 2013



Contracts L2.12

9 Imposing a Precondition

Let’s go back to a mathematical definition of the power function xy on inte-
gers x and y. We define:

x0 = 1
xy+1 = x ∗ xy for y ≥ 0

In this form it remains undefined for negative exponents. In programming,
this is captured as a precondition: we require that the second argument to f
not be negative. Preconditions are written as //@requires and come before
the body of the function.

int f (int x, int y)

//@requires y >= 0;

{

int r = 1;

while (y > 1) {

if (y % 2 == 1) {

r = x * r;

}

x = x * x;

y = y / 2;

}

return r * x;

}

This is the first part of what we call the function contract. It expresses what
the function requires of any client that calls it, namely that the second ar-
gument is positive. It is an error to call it with a negative argument; no
promises are made about what the function might return otherwise. It
might even abort the computation due to a contract violation.

But a contract usually has two sides. What does f promise? We know it
promises to compute the exponential function, so this should be formally
expressed.

LECTURE NOTES AUGUST 29, 2013



Contracts L2.13

10 Promising a Postcondition

The C0 language does not have a built-in power function. So we need to
write it explicitly ourselves. But wait! Isn’t that what f is supposed to do?
The idea in this and many other examples to capture a specification in the
simplest possible form, even if it may not be computationally efficient, and
then promise in the postcondition to satisfy this simple specification. Here,
we can transcribe the mathematical definition into a recursive function.

int POW (int x, int y)

//@requires y >= 0;

{

if (y == 0)

return 1;

else

return x * POW(x, y-1);

}

In the rest of the lecture we often silently go back and forth between xy

and POW (x, y). Now we incorporate POW into a formal postcondition for
the function. Postconditions have the form //@ensures e;, where e is a
boolean expression. They are also written before the function body, by con-
vention after the preconditions. Postconditions can use a special variable
\result to refer to the value returned by the function.

int f (int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int r = 1;

while (y > 1) {

if (y % 2 == 1) {

r = x * r;

}

x = x * x;

y = y / 2;

}

return r * x;

}

Note that as far as the function f is concerned, if we are considering call-
ing it we do not need to look at its body at all. Just looking at the pre-

LECTURE NOTES AUGUST 29, 2013



Contracts L2.14

and post-conditions (the @requires and @ensures clauses), tells us every-
thing we need to know. As long as we adhere to our contract and pass f a
nonnegative y, then f will adhere to its contract and return xy.

LECTURE NOTES AUGUST 29, 2013



Contracts L2.15

11 Dynamically Checking Contracts

During the program development phase, we can instruct the C0 compiler
or interpreter to check adherence to contracts. This is done with the -d flag
on the command line, which stands for dynamic checking. Let’s see how the
implementation now reacts to correct and incorrect inputs, assuming we
have added POW as well as pre- and postconditions as shown above.

% coin solution2a.c0 -d

foo.c0:10.5-10.6:error:cannot assign to variable ’x’

used in @ensures annotation

x = x * x;

~

Unable to load files, exiting...

%

The error is that we are changing the value of x in the body of the loop,
while the postcondition refers to x. If it were allowed, it would violate the
principle that we need to look only at the contract when calling the func-
tion, because assignments to x change the meaning of the postcondition.
We want \result == POW(x,y) for the original x and y we passed as argu-
ments to f and not the values x and y might hold at the end of the function.

We therefore change the function body, creating auxiliary variables b
(for base) and e (for exponent) to replace x and y which we leave un-
changed.

int f (int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int r = 1;

int b = x; /* base */

int e = y; /* exponent */

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

LECTURE NOTES AUGUST 29, 2013



Contracts L2.16

Now invoking the interpreter with -d works correctly when we return
the right answer, but raises an exception if we give it arguments where we
know the function to be incorrect, or arguments that violate the precondi-
tion to the function.

% coin solution2b.c0 -d

C0 interpreter (coin) 0.3.2 ’Nickel’ (r256, Thu Jan 3 14:18:03 EST 2013)

Type ‘#help’ for help or ‘#quit’ to exit.

--> f(3,2);

9 (int)

--> f(3,-1);

foo.c0:12.4-12.20: @requires annotation failed

Last position: foo.c0:12.4-12.20

f from <stdio>:1.1-1.8

--> f(2,0);

foo.c0:13.4-13.32: @ensures annotation failed

Last position: foo.c0:13.4-13.32

f from <stdio>:1.1-1.7

-->

The fact that @requires annotation fails in the second example call means
that our call is to blame, not f . The fact that the @ensures annotation fails
in the third example call means the function f does not satisfy its contract
and is therefore to blame.

LECTURE NOTES AUGUST 29, 2013



Contracts L2.17

12 Generalizing the Loop Invariant

Before fixing the bug with an exponent of 0, let’s figure out why the func-
tion apparently works when the exponent is odd. Our loop invariant so far
only works when y is a power of 2. It uses the basic law that b2∗c = (b2)c =
(b ∗ b)c in the case where the exponent e = 2 ∗ c is even.

What about the case where the exponent is odd? Then we are trying
to compute b2∗c+1. With analogous reasoning to above we obtain b2∗c+1 =
b ∗ b2∗c = b ∗ (b ∗ b)c. This means there is an additional factor of b in the
answer. We see that we exactly multiply r by b in the case that e is odd!

int f (int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int r = 1;

int b = x; /* base */

int e = y; /* exponent */

while (e > 1) {

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

What quantity remains invariant now, throughout the loop? Try to form a
conjecture for a more general loop invariant before reading on.

LECTURE NOTES AUGUST 29, 2013



Contracts L2.18

Let’s make a table again, this time to trace a call when the exponent is
not a power of two, say, while computing 27 by calling f(2, 7).

iteration b e r be

0 2 7 1 128

1 4 3 2 64

2 16 1 8 16

As we can see, be is not invariant, but r ∗ be = 128 is! The extra factor from
the equation on the previous page is absorbed into r.

We now express this proposed invariant formally in C0. This requires
the @loop_invariant annotation. It must come immediately before the
loop body, but it is checked just before the loop exit condition. We would
like to say that the expression r * POW(b,e) is invariant, but this is not
possible directly.

Loop invariants in C0 are boolean expressions which must be either true
or false. We can achieve this by stating that r * POW(b,e) == POW(x,y).
Observe that x and y do not change in the loop, so this guarantees that
r * POW(b,e) never changes either. But it says a little more, stating what
the invariant quantity is in term of the original function parameters.

int f (int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int r = 1;

int b = x; /* base */

int e = y; /* exponent */

while (e > 1)

//@loop_invariant r * POW(b,e) == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

return r * b;

}

LECTURE NOTES AUGUST 29, 2013



Contracts L2.19

13 Fixing the Function

The bug we have discovered so far was for y = 0. In that case, e = 0
so we never go through the loop. If we exit the loop and e = 1, then the
loop invariant implies the function postcondition. To see this, note that we
return r ∗ b and r ∗ b = r ∗ b1 = r ∗ be = xy, where the last equation is the
loop invariant. When y (and therefore e) is 0, however, this reasoning does
not apply because we exit the loop and e = 0, not 1.

Think about how you might fix the function and its annotations before
reading on.

LECTURE NOTES AUGUST 29, 2013



Contracts L2.20

We can fix it by carrying on with the while loop until e = 0. On the
last iteration e is 1, which is odd, so we set r′ = b ∗ r. This means we now
should return r′ (the new r) after the one additional iteration of the loop,
and not r ∗ b.

int f (int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int r = 1;

int b = x; /* base */

int e = y; /* exponent */

while (e > 0)

//@loop_invariant r * POW(b,e) == POW(x,y);

{

if (e % 2 == 1) r = b * r;

b = b * b;

e = e / 2;

}

return r;

}

Now when the exponent y = 0 we skip the loop body and return r = 1,
which is the right answer for x0! Indeed:

% coin solution2d.c0 -d

Coin 0.2.3 "Penny" (r1478, Thu Jan 20 16:14:15 EST 2011)

Type ‘#help’ for help or ‘#quit’ to exit.

--> f(2,0);

1 (int)

-->

LECTURE NOTES AUGUST 29, 2013



Contracts L2.21

14 Strengthening the Loop Invariant Again

We would now like to show that the improved function is correct. That
requires two steps: one is that the loop invariant implies the postcondition;
another is that the proposed loop invariant is indeed a loop invariant. The
loop invariant, r ∗ be = xy implies that the result r = xy if we know that
e = 0 (since b0 = 1).

But how do we know that e = 0 when we exit the loop? Actually,
we don’t: the loop invariant is too weak to prove that. The negation of
the exit condition only tells us that e ≤ 0. However, if we add another
loop invariant, namely that e ≥ 0, then we know e = 0 when the loop is
exited and the postcondition follows. For clarity, we also add a (redundant)
assertion to this effect after the loop and before the return statement.

int f (int x, int y)

//@requires y >= 0;

//@ensures \result == POW(x,y);

{

int r = 1;

int b = x; /* base */

int e = y; /* exponent */

while (e > 0)

//@loop_invariant e >= 0;

//@loop_invariant r * POW(b,e) == POW(x,y);

{

if (e % 2 == 1) {

r = b * r;

}

b = b * b;

e = e / 2;

}

//@assert e == 0;

return r;

}

The @assert annotation can be used to verify an expression that should
be true. If it is not, our reasoning must have been faulty somewhere else.
@assert is a useful debugging tool and sometimes helps the reader under-
stand better what the code author intended.

LECTURE NOTES AUGUST 29, 2013



Contracts L2.22

15 Verifying the Loop Invariants

It seems like we have beaten this example to death: we have added pre- and
post-conditions, stated loop invariants, fixed the original bug and shown
that the loop invariants imply the postcondition. But we have not yet veri-
fied that the loop invariant actually holds! Ouch! Let’s do it.

We begin with the invariant e ≥ 0. We have to demonstrate two prop-
erties.

Init: The invariant holds initially. When we enter the loop, e = y and y ≥ 0
by the precondition of the function. Done.

Preservation: Assume the invariant holds just before the exit condition is
checked. We have to show that it is true again when we reach the exit
condition after one iteration of the loop

Assumption: e ≥ 0.

To show: e′ ≥ 0 where e′ = e/2, with integer division. This clearly
holds.

Next, we look at the invariant r ∗ POW (b, e) = POW (x, y).

Init: The invariant holds initially, because when entering the loop we have
r = 1, b = x and e = y.

Preservation: We show that the invariant is perserved on every iteration.
For this, we distinguish two cases: e is even and e is odd.

Assumption: r ∗ POW (b, e) = POW (x, y).

To show: r′ ∗ POW (b′, e′) = POW (x, y), where r′, b′, and e′ are the
values of r, b, and e after one iteration.

Case: e is even. Then r′ = r, b′ = b ∗ b and e′ = e/2 and we reason:
r′ ∗ POW (b′, e′) = r ∗ POW (b ∗ b, e/2)

= r ∗ POW (b, 2 ∗ (e/2)) Since (a2)c = a2∗c

= r ∗ POW (b, e) Since e is even
= POW (x, y) By assumption

Case: e is odd. Then r′ = b ∗ r, b′ = b ∗ b and e′ = (e − 1)/2 (because
e is odd, integer division rounds towards 0, and e ≥ 0) and we

LECTURE NOTES AUGUST 29, 2013



Contracts L2.23

reason:
r′ ∗ POW (b′, e′) = (b ∗ r) ∗ POW (b ∗ b, (e− 1)/2)

= (b ∗ r) ∗ POW (b, 2 ∗ (e− 1)/2) Since (a2)c = a2∗c

= (b ∗ r) ∗ POW (b, e− 1) Since e− 1 is even
= r ∗ POW (b, e) Since a ∗ (ac) = ac+1

= POW (x, y) By assumption

This shows that both loop invariants hold on every iteration.

LECTURE NOTES AUGUST 29, 2013



Contracts L2.24

16 Termination

The previous argument for termination still holds. By loop invariant, we
know that e ≥ 0. When we enter the body of the loop, the condition must
be true so e > 0. Now we just use that e/2 < e for e > 0, so the value
of e is strictly decreasing and positive, which, as an integer, means it must
eventually become 0, upon which we exit the loop and return from the
function after one additional step.

LECTURE NOTES AUGUST 29, 2013



Contracts L2.25

17 A Surprise

Now, let’s try our function on some larger numbers, computing some pow-
ers of 2.

% coin -d solution2e.c0

Coin 0.2.3 "Penny" (r1478, Thu Jan 20 16:14:15 EST 2011)

Type ‘#help’ for help or ‘#quit’ to exit.

--> f(2,30);

1073741824 (int)

--> f(2,31);

-2147483648 (int)

--> f(2,32);

0 (int)

-->

230 looks plausible, but how could 231 be negative or 232 be zero? We
claimed we just proved it correct!

The reason is that the values of type int in C0 or C and many other
languages actually do not represent arbitrarily large integers, but have a
fixed-size representation. In mathematical terms, this means we that we are
dealing with modular arithmetic. The fact that 232 = 0 provides a clue that
integers in C0 have 32 bits, and arithmetic operations implement arithmetic
modulo 232.

In this light, the results above are actually correct. We examine modular
arithmetic in detail in the next lecture.

LECTURE NOTES AUGUST 29, 2013



Contracts L2.26

18 Summary: Contracts, and Why They are Important

We have introduced contracts, using the example of an algorithm for integer
exponentiation.

Contracts are expressed in form of annotations, started with //@. These
annotations are checked when the program is executed if it is compiled or
interpreted with the -d flag. Otherwise, they are ignored.

The forms of contracts, and how they are checked, are:

@requires: A precondition to a function. This is checked just before the
function body executes.

@ensures: A postcondition for a function. This is checked just after the
function body has been executed. We use \result to refer to the value
returned by the function to impose a condition on it.

@loop invariant: A loop invariant. This is checked every time just before
the loop exit condition is tested.

@assert: An assertion. This is like a statement and is checked every time
it is encountered during execution.

Contracts are important for two purposes.

Testing: Contracts represent a kind of generic test of a function. Rather
than stating specific inputs (like f(2,8) and testing the answer 256),
contracts talk about expected properties for arbitrary values. On the
other hand, contracts are only useful in this regard if we have a good
set of test cases, because contracts that are not executed with values
that cause them to fail cannot cause execution to abort.

Reasoning: Contracts express important properties of programs so we can
prove them. Ultimately, this can mathematically verify program cor-
rectness. Since correctness is the most important concern about pro-
grams, this is a crucial aspect of program development. Different
forms of contracts have different roles, reviewed below.

The proof obligations for contracts are as follows:

@requires: At the call sites we have to prove that the precondition for the
function is satisfied for the given arguments. We can then assume it
when reasoning in the body of the function.

LECTURE NOTES AUGUST 29, 2013



Contracts L2.27

@ensures: At the return sites inside a function we have to prove that the
postcondition is satisfied for the given return value. We can then as-
sume it at the call site.

@loop invariant: We have to show:

Init: The loop invariant is satisfied initially, when the loop is first
encountered.

Preservation: Assuming the loop invariant is satisfied at the begin-
ning of the loop (just before the exit test), we have to show it still
holds when the beginning of the loop is reached again, after one
iteration of the loop.

We are then allowed to assume that the loop invariant holds after the
loop exits, together with the exit condition.

@assert: We have to show that an assertion is satisfied when it is reached
during program execution. We can then assume it for subsequent
statements.

Contracts are crucial for reasoning since (a) they express what needs to
be proved in the first place (give the program’s specification), and (b) they
localize reasoning: from a big program to the conditions on the individual
functions, from the inside of a big function to each loop invariant or asser-
tion.

LECTURE NOTES AUGUST 29, 2013



Contracts L2.28

Exercises

Exercise 1 Rewrite first POW and then f so that it signals an error in case of an
overflow rather than silently working in modular arithmetic. You can use the
statement error("Overflow"); to signal an overflow.

LECTURE NOTES AUGUST 29, 2013


	Introduction
	A Mysterious Program
	Forming a Conjecture
	Finding a Loop Invariant
	Proving the Loop Invariant
	Loop Invariant Implies Postcondition
	Termination
	A Counterexample
	Imposing a Precondition
	Promising a Postcondition
	Dynamically Checking Contracts
	Generalizing the Loop Invariant
	Fixing the Function
	Strengthening the Loop Invariant Again
	Verifying the Loop Invariants
	Termination
	A Surprise
	Summary: Contracts, and Why They are Important

