
Lecture Notes on
Ints

15-122: Principles of Imperative Computation
Frank Pfenning

Lecture 3
September 3, 2013

1 Introduction

Two fundamental types in almost any programming language are booleans
and integers. Booleans are comparatively straightforward: they have two
possible values (true and false) and conditionals to test boolean values.
We will return to their properties in a later lecture.

Integers . . . ,−2,−1, 0, 1, 2, . . . are considerably more complex, because
there are infinitely many of them. Because memory is finite, only a finite
subrange of them can be represented in computers. In this lecture we dis-
cuss how integers are represented, how we can deal with the limited range
in the representation, and how various operations are defined on these rep-
resentations.

In terms of our learning goals, this lecture addresses:

Computational Thinking: Work with and around resource limitations.

Algorithms and Data Structures: Employ integer algorithms (binary ad-
dition)

Programming: Identify, describe, and effectively use integers as signed
modular arithmetic and as fixed-length bit vectors in C0.

2 Binary Representation of Natural Numbers

For the moment, we only consider the natural numbers 0, 1, 2, . . . and we
do not yet consider the problems of limited range. Number notations have

LECTURE NOTES SEPTEMBER 3, 2013



Ints L3.2

a base b. To write down numbers in base b we need b distinct digits. Each
digit is multiplied by an increasing power of b, starting with b0 at the right
end. For example, in base 10 we have the ten digits 0–9 and the string 9380

represents the number 9∗103+3∗102+8∗101+0∗100. We call numbers in
base 10 decimal numbers. Unless it is clear from context that we are talking
about a certain base, we use a subscript[b] to indicate a number in base b.

In computer systems, two bases are of particular importance. Binary
numbers use base 2, with digits 0 and 1, and hexadecimal numbers (explained
more below) use base 16, with digits 0–9 and A–F . Binary numbers are
so important because the basic digits, 0 and 1, can be modeled inside the
computer by two different voltages, usually “off” for 0 and “on” for 1. To
find the number represented by a sequence of binary digits we multiply
each digit by the appropriate power of 2 and add up the results. In general,
the value of a bit sequence

bn−1 . . . b1b0 [2] = bn−12
n−1 + · · ·+ b12

1 + b02
0 =

n−1∑
i=0

bi2
i

For example, 10011[2] represents 1 ∗ 24 + 0 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 1 ∗ 20 =
16 + 2 + 1 = 19.

We can also calculate the value of a binary number in a nested way,
exploiting Horner’s rule for evaluating polynomials.

10011[2] = (((1 ∗ 2 + 0) ∗ 2 + 0) ∗ 2 + 1) ∗ 2 + 1 = 19

In general, if we have an n-bit number with bits bn−1 . . . b0, we can calculate

(· · · ((bn−1 ∗ 2 + bn−2) ∗ 2 + bn−3) ∗ 2 + · · ·+ b1) ∗ 2 + b0

For example, taking the binary number 10010110[2] write the digits
from most significant to least significant, calculating the cumulative value
from left to right by writing it top to bottom.

1 = 1
1 ∗ 2 + 0 = 2
2 ∗ 2 + 0 = 4
4 ∗ 2 + 1 = 9
9 ∗ 2 + 0 = 18

18 ∗ 2 + 1 = 37
37 ∗ 2 + 1 = 75
75 ∗ 2 + 0 = 150

LECTURE NOTES SEPTEMBER 3, 2013



Ints L3.3

Reversing this process allows us to convert a number into binary form.
Here we start with the number and successively divide by two, calculating
the remainder. At the end, the least significant bit is at the top.

For example, converting 198 to binary form would proceed as follows:

198 = 99 ∗ 2 + 0
99 = 49 ∗ 2 + 1
49 = 24 ∗ 2 + 1
24 = 12 ∗ 2 + 0
12 = 6 ∗ 2 + 0
6 = 3 ∗ 2 + 0
3 = 1 ∗ 2 + 1
1 = 0 ∗ 2 + 1

We read off the answer, from bottom to top, arriving at 11000110[2].

3 Modular Arithmetic

Within a computer, there is a natural size of words that can be processed
by single instructions. In early computers, the word size was typically 8
bits; now it is 32 or 64. In programming languages that are relatively close
to machine instructions like C or C0, this means that the native type int of
integers is limited to the size of machine words. In C0, we decided that the
values of type int occupy 32 bits.

This is very easy to deal with for small numbers, because the more sig-
nificant digits can simply be 0. According to the formula that yields their
number value, these bits do not contribute to the overall value. But we
have to decide how to deal with large numbers, when operations such as
addition or multiplication would yield numbers that are too big to fit into
a fixed number of bits. One possibility would be to raise overflow excep-
tions. This is somewhat expensive (since the overflow condition must be
explicitly detected), and has other negative consequences. For example,
(n+n)−n is no longer equal to n+(n−n) because the former can overflow
while the latter always yields n and does not overflow. Another possibility
is to carry out arithmetic operations modulo the number of representable
integers, which would be 232 in the case of C0. We say that the machine
implements modular arithmetic.

In higher-level languages, one would be more inclined to think of the
type of int to be inhabited by integers of essentially unbounded size. This
means that a value of this type would consist of a whole vector of machine

LECTURE NOTES SEPTEMBER 3, 2013



Ints L3.4

words whose size may vary as computation proceeds. Basic operations
such as addition no longer map directly onto machine instruction, but are
implemented by small programs. Whether this overhead is acceptable de-
pends on the application.

Returning to modular arithmetic, the idea is that any operation is car-
ried out modulo 2p for size p. Even when the modulus is not a power of
two, many of the usual laws of arithmetic continue to hold, which makes it
possible to write programs confidently without having to worry, for exam-
ple, about whether to write x+(y+z) or (x+y)+z. We have the following
properties of the abstract algebraic class of rings which are shared between
ordinary integers and integers modulo a fixed number n.

Commutativity of addition x+ y = y + x
Associativity of addition (x+ y) + z = x+ (y + z)
Additive unit x+ 0 = x

Additive inverse x+ (−x) = 0
Cancellation −(−x) = x

Commutativity of multiplication x ∗ y = y ∗ x
Associativity of multiplication (x ∗ y) ∗ z = x ∗ (y ∗ z)
Multiplicative unit x ∗ 1 = x

Distributivity x ∗ (y + z) = x ∗ y + x ∗ z
Annihilation x ∗ 0 = 0

Some of these laws, such as associativity and distributivity, do not hold
for so-called floating point numbers that approximate real numbers. This
significantly complicates the task of reasoning about programs with float-
ing point numbers which we have therefore omitted from C0.

4 An Algorithm for Binary Addition

In the examples, we use arithmetic modulo 24, with 4-bit numbers. Addi-
tion proceeds from right to left, adding binary digits modulo 2, and using
a carry if the result is 2 or greater. For example,

1 0 1 1 = 11
+ 1 01 01 1 = 9

(1) 0 1 0 0 = 20 = 4 (mod 16)

where we used a subscript to indicate a carry from the right. The final carry,
shown in parentheses, is ignored, yielding the answer of 4 which is correct
modulo 16.

LECTURE NOTES SEPTEMBER 3, 2013



Ints L3.5

This grade-school algorithm is quite easy to implement in software, but
it is not suitable for a hardware implementation because it is too sequential.
On 32 bit numbers the algorithm would go through 32 stages, for an oper-
ation which, ideally, we should be able to perform in one machine cycle.
Modern hardware accomplishes this by using an algorithm where more of
the work can be done in parallel.

5 Two’s Complement Representation

So far, we have concentrated on the representation of natural numbers
0, 1, 2, . . .. In practice, of course, we would like to program with nega-
tive numbers. How do we define negative numbers? We define nega-
tive numbers as additive inverses: −x is the number y such that x + y = 0.
A crucial observation is that in modular arithmetic, additive inverses al-
ready exist! For example, −1 = 15 (mod 16) because −1 + 16 = 15. And
1+15 = 16 = 0 (mod 16), so, indeed, 15 is the additive inverse of 1 modulo
16.

Similarly, −2 = 14 (mod 16), −3 = 13 (mod 16), etc. Writing out
the equivalence classes of numbers modulo 16 together with their binary
representation, we have

. . . −16 0 16 . . . 0000

. . . −15 1 17 . . . 0001

. . . −14 2 18 . . . 0010

. . . −13 3 19 . . . 0011

. . . −12 4 20 . . . 0100

. . . −11 5 21 . . . 0101

. . . −10 6 22 . . . 0110

. . . −9 7 23 . . . 0111

. . . −8 8 24 . . . 1000

. . . −7 9 25 . . . 1001

. . . −6 10 26 . . . 1010

. . . −5 11 27 . . . 1011

. . . −4 12 28 . . . 1100

. . . −3 13 29 . . . 1101

. . . −2 14 30 . . . 1110

. . . −1 15 31 . . . 1111

At this point we just have to decide which numbers we interpret as pos-
itive and which as negative. We would like to have an equal number of

LECTURE NOTES SEPTEMBER 3, 2013



Ints L3.6

positive and negative numbers, where we include 0 among the positive
ones. From this consideration we can see that 0, . . . , 7 should be positive
and −8, . . . ,−1 should be negative and that the highest bit of the 4-bit bi-
nary representation tells us if the number is positive or negative.

Just for verification, let’s check that 7 + (−7) = 0 (mod 16):

0 1 1 1
+ 11 01 01 1

(1) 0 0 0 0

It is easy to see that we can obtain−x from x in the bit representation by
first complementing all the bits and then adding 1. In fact, the addition of x
with its bitwise complement (written∼x) always consists of all 1’s, because
in each position we have a 0 and a 1, and no carries at all. Adding one to
the number 11 . . . 11 will always result in 00 . . . 00, with a final carry of 1
that is ignored.

These considerations also show that, regardless of the number of bits,
−1 is always represented as a string of 1’s.

In 4-bit numbers, the maximal positive number is 7 and the minimal
negative number is −8, thus spanning a range of 16 = 24 numbers. In
general, in a representation with p bits, the positive numbers go from 0
to 2p−1 − 1 and the negative numbers from −2p−1 to −1. It is remarkable
that because of the origin of this representation in modular arithmetic, the
“usual” bit-level algorithms for addition and multiplication can ignore that
some numbers are interpreted as positive and others as negative and still
yield the correct answer modulo 2p.

However, for comparisons, division, and modulus operations the sign
does matter. We discuss division below in Section 9. For comparisons, we
just have to properly take into account the highest bit because, say, −1 =
15 (mod 16), but −1 < 0 and 0 < 15.

6 Hexadecimal Notation

In C0, we use 32 bit integers. Writing these numbers out in decimal nota-
tion is certainly feasible, but sometimes awkward since the bit pattern of
the representation is not easy to discern. Binary notation is rather expan-
sive (using 32 bits for one number) and therefore difficult to work with.
A good compromise is found in hexadecimal notation, which is a represen-
tation in base 16 with the sixteen digits 0–9 and A–F . “Hexadecimal” is

LECTURE NOTES SEPTEMBER 3, 2013



Ints L3.7

often abbreviated as “hex”. In the concrete syntax of C0 and C, hexadeci-
mal numbers are preceded by 0x in order to distinguish them from decimal
numbers.

binary hex decimal
0000 0x0 0
0001 0x1 1
0010 0x2 2
0011 0x3 3
0100 0x4 4
0101 0x5 5
0110 0x6 6
0111 0x7 7
1000 0x8 8
1001 0x9 9
1010 0xA 10
1011 0xB 11
1100 0xC 12
1101 0xD 13
1110 0xE 14
1111 0xF 15

Hexadecimal notation is convenient because most common word sizes
(8 bits, 16 bits, 32 bits, and 64 bits) are multiples of 4. For example, a 32 bit
number can be represented by eight hexadecimal digits. We can even do
a limited amount on arithmetic on them, once we get used to calculating
modulo 16. Mostly, though, we use hexadecimal notation when we use
bitwise operations rather than arithmetic operations.

7 Useful Powers of 2

The drive to expand the native word size of machines by making circuits
smaller was influenced by two different considerations. For one, since the
bits of a machine word (like 32 or 64) are essentially treated in parallel in
the circuitry, operations on larger numbers are much more efficient. For
another, we can address more memory directly by using a machine word
as an address.

A useful way to relate this to common measurements of memory and
storage capacity is to use

210 = 1024 = 1K

LECTURE NOTES SEPTEMBER 3, 2013



Ints L3.8

Note that this use of “1K” in computer science is slightly different from
its use in other sciences where it would indicate one thousand (1, 000). If
we want to see how much memory we can address with a 16 bit word we
calculate

216 = 26 ∗ 210 = 64K

so roughly 64K cells of memory each usually holding a byte which is 8 bits
wide). We also have

220 = 210 ∗ 210 = 1, 048, 576 = 1M

(pronounced “1 Meg”) which is roughly 1 million and

230 = 210 ∗ 210 ∗ 210 = 1, 073, 741, 824 = 1G

(pronounced “1 Gig”) which is roughly 1 billion.
In a more recent processor with a word size of 32 we can therefore ad-

dress
232 = 22 ∗ 210 ∗ 210 ∗ 210 = 4GB

of memory where “GB” stands for Gigabyte.
The next significant number would be 1024GB which would be 1TB

(Terabyte).

8 Bitwise Operations on Ints

Ints are also used to represent other kinds of data. An example, explored in
the first programming assignment, is colors (see Section 11). The so-called
ARGB color model divides an int into four 8-bit quantities. The highest 8
bits represent the opaqueness of the color against its background, while the
lower 24 bits represent the intensity of the red, green and blue components
of a color. Manipulating this representation with addition and multiplica-
tion is quite unnatural; instead we usually use bitwise operations.

The bitwise operations are defined by their action on a single bit and
then applied in parallel to a whole word. The tables below define the mean-
ing of bitwise and &, bitwise exclusive or ^ and bitwise or |. We also have bitwise
negation ~ as a unary operation.

And Exclusive Or Or Negation

& 0 1

0 0 0

1 0 1

^ 0 1

0 0 1

1 1 0

| 0 1

0 0 1

1 1 1

~ 0 1

1 0

LECTURE NOTES SEPTEMBER 3, 2013



Ints L3.9

9 Integer Division and Modulus

The division and modulus operators on integers are somewhat special. As
a multiplicative inverse, division is not always defined, so we adopt a dif-
ferent definition. We write x/y for integer division of x by y and x%y for
integer modulus. The two operations must satisfy the property

(x/y) ∗ y + (x%y) = x

so that x%y is like the remainder of division. The above is not yet sufficient
to define the two operations. In addition we say 0 ≤ |x%y| < |y|. Still, this
leaves open the possibility that the modulus is positive or negative when
y does not divide x evenly. We fix this by stipulating that integer division
truncates its result towards zero. This means that the modulus must be
negative if x is negative and there is a remainder, and it must be positive if
x is positive.

By contrast, the quotient operation always truncates down (towards−∞),
which means that the remainder is always positive. There are no primitive
operators in C0 for quotient and remainder, but they can be implemented
with the ones at hand.

Of course, the above constraints are impossible to satisfy when y = 0,
because 0 ≤ |x%0| < |0| is impossible. But division by zero is defined to
raise an error, and so is the modulus.

10 Shifts

We also have some hybrid operators on ints, somewhere between bit-level
and arithmetic. These are the shift operators. We write x << k for the result
of shifting x by k bits to the left, and x >> k for the result of shifting x by k
bits to the right. In both cases, the value of k must be between 0 (inclusive)
and 32 (exclusive) – any other value is an arithmetic error like division by
zero. We assume below that k is in that range.

The left shift, x << k (for 0 ≤ k < 32), fills the result with zeroes on
the right, so that bits 0, . . . , k − 1 will be 0. Every left shift corresponds to a
multiplication by 2 so x << k returns x ∗ 2k (modulo 232). We illustrate this
with 8-bit numbers.

LECTURE NOTES SEPTEMBER 3, 2013



Ints L3.10

b0b0

b0

b1b1

b1

b2b2

b2

b3b3

b3

b4b4

b4

b5b5

b5

b6b6

b6

b7b7

0

<<1

b0b0

b0

b1b1

b1

b2b2

b2

b3b3

b3

b4b4

b4

b5b5

b5

b6b6b7b7

00

<<2

The right shift, x >> k (for 0 ≤ k < 32), copies the highest bit while
shifting to the right, so that bits 31, . . . , 32− k of the result will be equal to
the highest bit of x. If viewing x as an integer, this means that the sign of
the result is equal to the sign of x, and shifting x right by k bits corresponds
to integer division by 2k except that it truncates towards−∞. For example,
-1 >> 1 == -1.

b0b0b1b1

b1

b2b2

b2

b3b3

b3

b4b4

b4

b5b5

b5

b6b6

b6

b7b7

b7b7

>>1

b0b0b1b1b2b2

b2

b3b3

b3

b4b4

b4

b5b5

b5

b6b6

b6

b7b7

b7b7 b7

>>2

LECTURE NOTES SEPTEMBER 3, 2013



Ints L3.11

11 Representing Colors

As a small example of using the bitwise interpretation of ints, we consider
colors. Colors are decomposed into their primary components red, green,
and blue; the intensity of each uses 8 bits and therefore varies between
0 and 255 (or 0x00 and 0xFF). We also have the so-called α-channel which
indicates how opaque the color is when superimposed over its background.
Here, 0xFF indicates completely opaque, and 0x00 completely transparent.

For example, to extract the intensity of the red color in a given pixel p,
we could compute (p >> 16) & 0xFF. The first shift moves the red color
value into the bits 0–7; the bitwise and masks out all the other bits by setting
them to 0. The result will always be in the desired range, from 0–255.

Conversely, if we want to set the intensity of green of the pixel p to
the value of g (assuming we already have 0 ≤ g ≤ 255), we can compute
(p & 0xFFFF00FF) | (g << 8). This works by first setting the green in-
tensity to 0, while keep everything else the same, and then combining it
with the value of g, shifted to the right position in the word.

For more on color values and some examples, see Assignment 1.

LECTURE NOTES SEPTEMBER 3, 2013



Ints L3.12

Exercises

Exercise 1 Write functions quot and rem that calculate quotient and remainder
as explained in Section 9. Your functions should have the property that

quot(x,y)*y + rem(x,y) == x;

for all ints x and y unless quot overflows. How is that possible?

Exercise 2 Write a function int2hex that returns a string containing the hex-
adecimal representation of a given integer as a string. Your function should have
prototype

string int2hex(int x);

Exercise 3 Write a function lsr (logical shift right), which is like right shift (>>)
except that it fills the most significant bits with zeroes instead of copying the sign
bit. Explain what lsr(x,1) means on integers in two’s complement representa-
tion.

LECTURE NOTES SEPTEMBER 3, 2013


	Introduction
	Binary Representation of Natural Numbers
	Modular Arithmetic
	An Algorithm for Binary Addition
	Two's Complement Representation
	Hexadecimal Notation
	Useful Powers of 2
	Bitwise Operations on Ints
	Integer Division and Modulus
	Shifts
	Representing Colors

