
Lecture Notes on
Quicksort

15-122: Principles of Imperative Computation
Frank Pfenning

Lecture 8
September 19, 2013

1 Introduction

In this lecture we first sketch two related algorithms for sorting that achieve
a much better running time than the selection sort from last lecture: merge-
sort and quicksort. We then develop quicksort and its invariants in detail.
As usual, contracts and loop invariants will bridge the gap between the
abstract idea of the algorithm and its implementation.

We will revisit many of the computational thinking, algorithm, and pro-
gramming concepts from the previous lectures. We highlight the following
important ones:

Computational Thinking: We revisit the divide-and-conquer technique from
the lecture on binary search. We will also see the importance of ran-
domness for the first time.

Algorithms and Data Structures: We examine mergesort and quicksort, both
of which use divide-and-conquer, but with different overall strate-
gies.

Programming: We have occasionally seen recursion in specification func-
tions. In both mergesort and quicksort, it will be a central computa-
tional technique.

Both mergesort and quicksort are examples of divide-and-conquer. We di-
vide a problem into simpler subproblems that can be solved independently
and then combine the solutions. As we have seen for binary search, the
ideal divide step breaks a problem into two of roughly equal size, because it

LECTURE NOTES SEPTEMBER 19, 2013

Quicksort L8.2

means we need to divide only logarithmically many times before we have a
basic problem, presumably with an immediate answer. Mergesort achieves
this, quicksort not quite, which presents an interesting tradeoff when con-
sidering which algorithm to chose for a particular class of applications.

Recall linear search for an element in an array, which has asymptotic
complexity of O(n). The divide-and-conquer technique of binary search
divides the array in half, determines which half our element would have
to be in, and then proceeds with only that subarray. An interesting twist
here is that we divide, but then we need to conquer only a single new sub-
problem. So if the length of the array is 2k and we divide it by two on each
step, we need at most k iterations. Since there is only a constant number of
operations on each iteration, the overall complexity is O(log(n)). As a side
remark, if we divided the array into 3 equal sections, the complexity would
remain O(log(n)) because 3k = (2log2(3))k = 2log23∗k, so log2(n) and log3(n)
only differ in a constant factor, namely log2(3).

2 Mergesort

Let’s see how we can apply the divide-and-conquer technique to sorting.
How do we divide?

One simple idea is just to divide a given array in half and sort each
half independently. Then we are left with an array where the left half is
sorted and the right half is sorted. We then need to merge the two halves
into a single sorted array. We actually don’t really “split” the array into
two separate arrays, but we always sort array segments A[lower ..upper).
We stop when the array segment is of length 0 or 1, because then it must be
sorted.

A straightforward implementation of this idea would be as follows:

void mergesort (int[] A, int lower, int upper)

//@requires 0 <= lower && lower <= upper && upper <= \length(A);

//@ensures is_sorted(A, lower, upper);

{

if (upper-lower <= 1) return;

int mid = lower + (upper-lower)/2;

mergesort(A, lower, mid); //@assert is_sorted(A, lower, mid);

mergesort(A, mid, upper); //@assert is_sorted(A, mid, upper);

merge(A, lower, mid, upper);

return;

}

LECTURE NOTES SEPTEMBER 19, 2013

Quicksort L8.3

We would still have to write merge, of course. We use the specification func-
tion is_sorted from the last lecture that takes an array segment, defined
by its lower and upper bounds.

The simple and efficient way to merge two sorted array segments (so
that the result is again sorted) is to create a temporary array, scan each of
the segments from left to right, copying the smaller of the two into the
temporary array. This is a linear time (O(n)) operation, but it also requires
a linear amount of temporary space. Other algorithms, like quicksort later
in this lecture, sort entirely in place and do not require temporary memory
to be allocated. We do not develop the merge operation here further.

The mergesort function represents an example of recursion: a function
(mergesort) calls itself on a smaller argument. When we analyze such a
function call it would be a mistake to try to analyze the function that we
call recursively. Instead, we reason about it using contracts.

1. We have to ascertain that the preconditions of the function we are
calling are satisfied.

2. We are allowed to assume that the postconditions of the function we
are calling are satisfied when it returns.

This applies no matter whether the call is recursive, as it is in this example,
or not. In the mergesort code above the precondition is easy to see. We
have illustrated the postcondition with two explicit @assert annotations.

Reasoning about recursive functions using their contracts is an excel-
lent illustration of computational thinking, separating the what (that is, the
contract) from the how (that is, the definition of the function). To analyze
the recursive call we only care about what the function does.

We also need to analyze the termination behavior of the function, verify-
ing that the recursive calls are on strictly smaller arguments. What smaller
means differs for different functions; here the size of the subrange of the
array is what decreases. The quantity upper − lower is divided by two for
each recursive call and is therefore smaller since it is always greater or equal
to 2. If it were less than 2 we would return immediately and not make a
recursive call.

Let’s consider the asymptotic complexity of mergesort, assuming that
the merging operation is O(n).

LECTURE NOTES SEPTEMBER 19, 2013

Quicksort L8.4

n	

n/2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 n/2	

n/4	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 n/4	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 n/4	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 n/4	

1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	

1	 merge	 *	 n:	 O(n)	

2	 merges	 *	 n/2:	 O(n)	

4	 merges	 *	 n/4:	 O(n)	

Mergesort,	 worst	 case:	 log(n)	 levels,	 O(n)	 per	 level	

We see that the asymptotic running time will be O(nlog(n)), because there
are O(log(n)) levels, and on each level we have to perform O(n) operations
to merge.

3 The Quicksort Algorithm

A characteristic of mergesort is that the divide phase of divide-and-conquer
is immediate: we only need to calculate the midpoint. On the other hand,
it is (relatively) complicated and expensive (linear in time and temporary
space) to combine the results of solving the two independent subproblems
with the merging operation.

Quicksort uses the technique of divide-and-conquer in a different man-
ner. We proceed as follows:

1. Pick an arbitrary element of the array (the pivot).

2. Divide the array into two segments, those that are smaller and those
that are greater, with the pivot in between (the partition phase).

3. Recursively sort the segments to the left and right of the pivot.

In quicksort, dividing the problem into subproblems will be linear time,
but putting the results back together is immediate. This kind of trade-off is
frequent in algorithm design.

LECTURE NOTES SEPTEMBER 19, 2013

Quicksort L8.5

Let us analyze the asymptotic complexity of the partitioning phase of
the algorithm. Say we have the array

3, 1, 4, 4, 7, 2, 8

and we pick 3 as our pivot. Then we have to compare each element of this
(unsorted!) array to the pivot to obtain a partition where 2, 1 are to the left
and 4, 7, 8, 4 are to the right of the pivot. We have picked an arbitrary order
for the elements in the array segments: all that matters is that all smaller
ones are to the left of the pivot and all larger ones are to the right.

Since we have to compare each element to the pivot, but otherwise
just collect the elements, it seems that the partition phase of the algorithm
should have complexity O(k), where k is the length of the array segment
we have to partition.

It should be clear that in the ideal (best) case, the pivot element will be
magically the median value among the array values. This just means that
half the values will end up in the left partition and half the values will end
up in the right partition. So we go from the problem of sorting an array of
length n to an array of length n/2. Repeating this process, we obtain the
following picture:

n	

n/2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 n/2	

n/4	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 n/4	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 n/4	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 n/4	

1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	

1	 par**on	 *	 n:	 O(n)	

2	 par**ons	 *	 n/2:	 O(n)	

4	 par**ons	 *	 n/4:	 O(n)	

Quicksort,	 best	 case:	 log(n)	 levels,	 O(n)	 per	 level	

At each level the total work is O(n) operations to perform the partition.
In the best case there will be O(log(n)) levels, leading us to the O(nlog(n))
best-case asymptotic complexity.

LECTURE NOTES SEPTEMBER 19, 2013

Quicksort L8.6

How many recursive calls do we have in the worst case, and how long
are the array segments? In the worst case, we always pick either the small-
est or largest element in the array so that one side of the partition will be
empty, and the other has all elements except for the pivot itself. In the ex-
ample above, the recursive calls might proceed as follows (where we have
surrounded the unsorted part of the array with brackets):

array pivot

[3, 1, 4, 4, 8, 2, 7] 1
1, [3, 4, 4, 8, 2, 7] 2
1, 2, [3, 4, 4, 8, 7] 3
1, 2, 3, [4, 4, 8, 8] 4
1, 2, 3, 4, [4, 8, 7] 4
1, 2, 3, 4, 4, [8, 7] 7
1, 2, 3, 4, 4, 7, [8]

All other recursive calls are with the empty array segment, since we never
have any unsorted elements less than the pivot. We see that in the worst
case there are n − 1 significant recursive calls for an array of size n. The
kth recursive call has to sort a subarray of size n − k, which proceeds by
partitioning, requiring O(n− k) comparisons.

This means that, overall, for some constant c we have

c
n−1∑
k=0

k = c
n(n− 1)

2
∈ O(n2)

comparisons. Here we used the fact that O(p(n)) for a polynomial p(n) is
always equal to the O(nk) where k is the leading exponent of the polyno-
mial. This is because the largest exponent of a polynomial will eventually
dominate the function, and big-O notation ignores constant coefficients.

So quicksort has quadratic complexity in the worst case. How can we
mitigate this? If we could always pick the median among the elements in
the subarray we are trying to sort, then half the elements would be less and
half the elements would be greater. So in this case there would be only
log(n) recursive calls, where at each layer we have to do a total amount of
n comparisons, yielding an asymptotic complexity of O(nlog(n)).

Unfortunately, it is not so easy to compute the median to obtain the
optimal partitioning. It turns out that if we pick a random element, its ex-
pected rank will be close enough to the median that the expected running
time of algorithm is still O(nlog(n)).

LECTURE NOTES SEPTEMBER 19, 2013

Quicksort L8.7

We really should make this selection randomly. With a fixed-pick strat-
egy, there may be simple inputs on which the algorithm takes O(n2) steps.
For example, if we always pick the first element, then if we supply an array
that is already sorted, quicksort will take O(n2) steps (and similarly if it is
“almost” sorted with a few exceptions)! If we pick the pivot randomly each
time, the kind of array we get does not matter: the expected running time is
always the same, namely O(nlog(n)).1 Proving this, however, is a different
matter and beyond the scope of this course. This is an important example
on how to exploit randomness to obtain a reliable average case behavior,
no matter what the distribution of the input values.

4 The Quicksort Function

We now turn our attention to developing an imperative implementation of
quicksort, following our high-level description. We implement quicksort
in the function sort as an in-place sorting function that modifies a given
array instead of creating a new one. It therefore returns no value, which is
expressed by giving a return type of void.

void sort(int[] A, int lower, int upper)

//@requires 0 <= lower && lower <= upper && upper <= \length(A);

//@ensures is_sorted(A, lower, upper);

{

...

}

Quicksort solves the same problem as selection sort, so their contract is the
same, but their implementation differs. We sort the segment A[lower ..upper)
of the array between lower (inclusively) and upper (exclusively). The pre-
condition in the @requires annotation verifies that the bounds are mean-
ingful with respect to A. The postcondition in the @ensures clause guaran-
tees that the given segment is sorted when the function returns. It does not
express that the output is a permutation of the input, which is required to
hold but is not formally expressed in the contract (see Exercise 1).

Before we start the body of the function, we should consider how to
terminate the recursion. We don’t have to do anything if we have an array
segment with 0 or 1 elements. So we just return if upper − lower ≤ 1.

1Actually not quite, with the code that we show. Can you find the reason?

LECTURE NOTES SEPTEMBER 19, 2013

Quicksort L8.8

void sort(int[] A, int lower, int upper)

//@requires 0 <= lower && lower <= upper && upper <= \length(A);

//@ensures is_sorted(A, lower, upper);

{

if (upper-lower <= 1) return;

...

}

Next we have to select a pivot element and call a partition function.
We tell that function the index of the element that we chose as the pivot.
For illustration purposes, we use the middle element as a pivot (to work
reasonably well for arrays that are sorted already), but it should really be
a random element, as in the code in qsort.c0. We want partitioning to be
done in place, modifying the array A. Still, partitioning needs to return the
index mid of the pivot element because we then have to recursively sort the
two subsegments to the left and right of the index where the pivot is after
partitioning. So we declare:

int partition(int[] A, int lower, int pivot_index, int upper)

//@requires 0 <= lower && lower <= pivot_index;

//@requires pivot_index < upper && upper <= \length(A);

//@ensures lower <= \result && \result < upper;

//@ensures ge_seg(A[\result], A, lower, \result);

//@ensures le_seg(A[\result], A, \result+1, upper);

;

Here we use the auxiliary functions ge_seg (for greater or equal than segment)
and le_seg (for less or equal than segment), where

• ge_seg(x, A, lower, mid) if x ≥ y for every y in A[lower ..mid).

• le_seg(x, A, mid+1, upper) if x ≤ y for every y in A[mid+1..upper).

Their definitions can be found in the file arrayutil.c0.
Some details on this specification: we require pivot index to be a valid

index in the array range, i.e., lower ≤ pivot index < upper . In particular,
we require lower < upper because if they were equal, then the segment
could be empty and we cannot possibly pick a pivot element or return its
index.

Now we can fill in the remainder of the main sorting function.

LECTURE NOTES SEPTEMBER 19, 2013

http://www.cs.cmu.edu/~rjsimmon/15122-f13/lec/08-qsort/qsort.c0
http://www.cs.cmu.edu/~rjsimmon/15122-f13/lec/08-qsort/arrayutil.c0

Quicksort L8.9

void sort(int[] A, int lower, int upper)

//@requires 0 <= lower && lower <= upper && upper <= \length(A);

//@ensures is_sorted(A, lower, upper);

{

if (upper-lower <= 1) return;

int pivot_index = lower + (upper-lower)/2; /* should be random */

int mid = partition(A, lower, pivot_index, upper);

sort(A, lower, mid);

sort(A, mid+1, upper);

return;

}

It is a simple but instructive exercise to reason about this program, using
only the contract for partition together with the pre- and postconditions
for sort (see Exercise 2).

To show that the sort function terminates, we have to show the array
segment becomes strictly smaller in each recursive call. First, mid−lower <
upper − lower since mid < upper by the postcondition for partition. Sec-
ond, upper − (mid + 1) < upper − lower because lower < mid + 1, also by
the postcondition for partition.

5 Partitioning

The trickiest aspect of quicksort is the partitioning step, in particular since
we want to perform this operation in place. Let’s consider the situation
when partition is called:

2	 14	 25	 21	 12	 78	 97	 16	 89	 21	

upper	 lower	

pivot_index	

…	 …	

Perhaps the first thing we notice is that we do not know where the pivot
will end up in the partitioned array! That’s because we don’t know how
many elements in the segment are smaller and how many are larger than
the pivot. In particular, the return value of partition could be different than

LECTURE NOTES SEPTEMBER 19, 2013

Quicksort L8.10

the pivot index that we pass in, even if the value that used to be at the
pivot index in the array before calling partition will be at the returned in-
dex when partition is done.2 One idea is to make a pass over the segment
and count the number of smaller elements, move the pivot into its place,
and then scan the remaining elements and put them into their place. For-
tunately, this extra pass is not necessary. We start by moving the pivot
element out of the way, by swapping it with the leftmost element in the
array segment.

16	 14	 25	 21	 12	 78	 97	 2	 89	 21	

upper	

…	 …	

pivot	 =	 16	

lower	

Now the idea is to gradually work towards the middle, accumulating ele-
ments less than the pivot on the left and elements greater than the pivot on
the right end of the segment (excluding the pivot itself). For this purpose
we introduce two indices, left and right . We start them out as lower + 1 (to
avoid the stashed-away pivot) and upper .

16	 14	 25	 21	 12	 78	 97	 2	 89	 21	

upper	 le'	

…	 …	

lower	 right	

pivot	 =	 16	

Since 14 < pivot , we can advance the left index: this element is in the
proper place.

16	 14	 25	 21	 12	 78	 97	 2	 89	 21	 …	 …	

le%	

≤	 pivot	

lower	

pivot	 =	 16	

upper	 right	

2To see why, imagine there are several elements equal to the pivot value.

LECTURE NOTES SEPTEMBER 19, 2013

Quicksort L8.11

At this point, 25 > pivot , it needs to go on the right side of the array. If we
put it on the extreme right end of the array, we can then say that it is in it’s
proper place. We swap it into A[right − 1] and decrement the right index.

16	 14	 21	 21	 12	 78	 97	 2	 89	 25	 …	 …	

le%	 lower	

pivot	 =	 16	

upper	 right	

≤	 pivot	 ≤	 pivot	

In the next two steps, we proceed by making swaps. First, we decide that
the 21 that is currently at left can be properly placed to the left of the 25, so
we swap it with the element to the left of 25. Then, we have 89 at A[left],
and so we can decide this is well-placed to the left of that 21.

16	 14	 89	 21	 12	 78	 97	 2	 21	 25	 …	 …	

le%	 lower	

pivot	 =	 16	

upper	 right	

≤	 pivot	 ≤	 pivot	

16	 14	 2	 21	 12	 78	 97	 89	 21	 25	 …	 …	

le%	 lower	

pivot	 =	 16	

upper	 right	

≤	 pivot	 ≤	 pivot	

Let’s take one more step: 2 < pivot , so we again just decide that the 2 is fine
where it is and increment left .

16	 14	 2	 21	 12	 78	 97	 89	 21	 25	 …	 …	

le%	 lower	

pivot	 =	 16	

upper	 right	

≤	 pivot	 ≤	 pivot	

LECTURE NOTES SEPTEMBER 19, 2013

Quicksort L8.12

At this point we pause to read off the general invariants which will
allow us to synthesize the program. We see:

(1) pivot ≥ A[lower + 1 ..left)

(2) pivot ≤ A[right ..upper)

(3) A[lower] = pivot

We may not be completely sure about the termination condition, but we
can play the algorithm through to its end and observe:

16	 14	 2	 12	 78	 97	 21	 89	 21	 25	 …	 …	

lower	

pivot	 =	 16	

upper	

≤	 pivot	 ≤	 pivot	

Where do left and right need to be, according to our invariants? By in-
variant (1), all elements up to but excluding left must be less or equal to
pivot . To guarantee we are finished, therefore, the left must address the el-
ement 78 at lower + 4. Similarly, invariant (2) states that the pivot must be
less or equal to all elements starting from right up to but excluding upper .
Therefore, right must also address the element 3 at lower + 3.

16	 14	 2	 12	 78	 97	 21	 89	 21	 25	 …	 …	

lower	

pivot	 =	 16	

upper	

≤	 pivot	 ≤	 pivot	

le1	 right	

This means after the last iteration, just before we exit the loop, we have
left = right , and throughout:

(4) lower + 1 ≤ left ≤ right ≤ upper

Now comes the last step: since left = right , pivot ≥ A[left − 1] and we
can swap the pivot at lower with the element at left − 1 to complete the
partition operation. We can also see the left − 1 should be returned as the
new position of the pivot element.

LECTURE NOTES SEPTEMBER 19, 2013

Quicksort L8.13

6 Implementing Partitioning

Now that we understand the algorithm and its correctness proof, it remains
to turn these insights into code. We start by swapping the pivot element to
the beginning of the segment.

int partition(int[] A, int lower, int pivot_index, int upper)

//@requires 0 <= lower && lower <= pivot_index;

//@requires pivot_index < upper && upper <= \length(A);

//@ensures lower <= \result && \result < upper;

//@ensures ge_seg(A[\result], A, lower, \result);

//@ensures le_seg(A[\result], A, \result+1, upper);

{

int pivot = A[pivot_index];

swap(A, lower, pivot_index);

...

}

At this point we initialize left and right to lower + 1 and upper , respectively.
We have to make sure that the invariants are satisfied when we enter the
loop for the first time, so let’s write these.

int left = lower+1;

int right = upper;

while (left < right)

//@loop_invariant lower+1 <= left && left <= right && right <= upper;

//@loop_invariant ge_seg(pivot, A, lower+1, left); // Not lower!

//@loop_invariant le_seg(pivot, A, right, upper);

{

...

}

The crucial observation here is that lower < upper by the precondition of
the function. Therefore left ≤ upper = right when we first enter the loop.
The segments A[lower + 1 ..left) and A[right ..upper) will both be empty, ini-
tially.

LECTURE NOTES SEPTEMBER 19, 2013

Quicksort L8.14

The code in the body of the loop just compares the element at index left
with the pivot and either increments left , or swaps the element to A[right].

while (left < right)

//@loop_invariant lower+1 <= left && left <= right && right <= upper;

//@loop_invariant ge_seg(pivot, A, lower+1, left); // Not lower!

//@loop_invariant le_seg(pivot, A, right, upper);

{

if (A[left] <= pivot) {

left++;

} else {

//@assert A[left] > pivot;

swap(A, left, right-1);

right--;

}

}

Now we just note the observations about the final loop state with an as-
sertion, swap the pivot into place, and return the index left . The complete
function is on the next page, for reference.

LECTURE NOTES SEPTEMBER 19, 2013

Quicksort L8.15

int partition(int[] A, int lower, int pivot_index, int upper)

//@requires 0 <= lower && lower <= pivot_index;

//@requires pivot_index < upper && upper <= \length(A);

//@ensures lower <= \result && \result < upper;

//@ensures ge_seg(A[\result], A, lower, \result);

//@ensures le_seg(A[\result], A, \result, upper);

{

// Hold the pivot element off to the left at "lower"

int pivot = A[pivot_index];

swap(A, lower, pivot_index);

int left = lower+1;

int right = upper;

while (left < right)

//@loop_invariant lower+1 <= left && left <= right && right <= upper;

//@loop_invariant ge_seg(pivot, A, lower+1, left); // Not lower!

//@loop_invariant le_seg(pivot, A, right, upper);

{

if (A[left] <= pivot) {

left++;

} else {

//@assert A[left] > pivot;

swap(A, left, right-1);

right--;

}

}

//@assert left == right;

swap(A, lower, left-1);

return left-1;

}

LECTURE NOTES SEPTEMBER 19, 2013

Quicksort L8.16

Exercises

Exercise 1 In this exercise we explore strengthening the contracts on in-place
sorting functions.

1. Write a function is_permutation which checks that one segment of an
array is a permutation of another.

2. Extend the specifications of sorting and partitioning to include the permu-
tation property.

3. Discuss any specific difficulties or problems that arise. Assess the outcome.

Exercise 2 Prove that the precondition for sort together with the contract for
partition implies the postcondition. During this reasoning you may also assume
that the contract holds for recursive calls.

Exercise 3 Our implementation of partitioning did not pick a random pivot, but
took the middle element. Construct an array with seven elements on which our
algorithm will exhibit its worst-case behavior, that is, on each step, one of the par-
titions is empty.

Exercise 4 An alternative way of implementing the partition function is to use
extra memory for temporary storage. Develop such an implementation of

int partition(int[] A, int lower, int pivot_index, int upper)

//@requires 0 <= lower && lower <= pivot_index;

//@requires pivot_index < upper && upper <= \length(A);

//@ensures lower <= \result && \result < upper;

//@ensures ge_seg(A[\result], A, lower, \result);

//@ensures le_seg(A[\result], A, \result+1, upper);

LECTURE NOTES SEPTEMBER 19, 2013

	Introduction
	Mergesort
	The Quicksort Algorithm
	The Quicksort Function
	Partitioning
	Implementing Partitioning

