
Lecture Notes on
Stacks & Queues

15-122: Principles of Imperative Computation
Frank Pfenning, André Platzer, Rob Simmons

Lecture 9
September 24, 2013

1 Introduction

In this lecture we introduce queues and stacks as data structures, e.g., for
managing tasks. They follow similar principles of organizing the data.
Each provides simple functions for adding and removing elements. But
they differ in terms of the order in which the elements are removed. They
can be implemented easily as a library in C0. In this lecture, we will focus
on the abstract principles of queues and stacks and defer a detailed imple-
mentation to the next lecture.

Relating this to our learning goals, we have

Computational Thinking: We illustrate the power of abstraction by con-
sidering both the client-side and library-side of the interface to a data
structure.

Algorithms and Data Structures: Queues and stacks are important data
structures in their own right, but also our first examples of abstract
datatypes.

Programming: Use and design of interfaces.

2 The Stack Interface

Stacks are data structures that allow us to insert and remove items. They
operate like a stack of papers or books on our desk - we add new things to
the top of the stack to make the stack bigger, and remove items from the top

LECTURE NOTES SEPTEMBER 24, 2013

Stacks & Queues L9.2

as well to make the stack smaller. This makes stacks a LIFO (Last In First
Out) data structure – the data we have put in last is what we will get out
first.

Before we consider the implementation of a data structure it is helpful
to consider the interface. We then program against the specified interface.
Based on the description above, we require the following functions:

/* type elem must be defined by the client */

bool stack_empty(stack S); /* O(1), check if stack empty */

stack stack_new(); /* O(1), create new empty stack */

void push(stack S, elem e); /* O(1), add item on top of stack */

elem pop(stack S) /* O(1), remove item from top */

//@requires !stack_empty(S);

;

We want the creation of a new (empty) stack as well as pushing and pop-
ping an item all to be constant-time operations, as indicated by O(1). Fur-
thermore, pop is only possible on non-empty stacks. This is a fundamental
aspect of the interface to a stack, that a client can only read data from a
non-empty stack. So we include this as a requires contract in the interface.

We are being quite abstract here — we do not write, in this file, what
type the elements of the stack have to be. Instead we assume that at the top
of the file, or before this file is read, we have already defined a type elem

for the type of stack elements. We say that the implementation is generic
or polymorphic in the type of the elements. Unfortunately, neither C nor C0
provide a good way to enforce this in the language and we have to rely on
programmer discipline.

In the future, we will sometimes indicate that we have a typedef waiting
to be filled in by the client by writing the following:

typedef _________ elem;

This is not actually valid C0, but the client using this library will be able
to fill in the underscores with a valid type to make the stack a stack of this
type. In this example, we will assume that the client wrote

typedef string elem;

The critical point here is that this is a choice that is up to the user of the
library (the client), and it is not a choice that the stack library needs to know
or care about.

LECTURE NOTES SEPTEMBER 24, 2013

Stacks & Queues L9.3

3 Using the Stack Interface

We play through some simple examples to illustrate the idea of a stack and
how to use the interface above. We write a stack as

x1, x2, . . . , xn

where x1 is the bottom of the stack and xn is the top of the stack. We push
elements on the top and also pop them from the top.

For example:

Stack Command Other variables
stack S = stack_new();

push(S, "a");

"a" push(S, "b");

"a", "b" string e = pop(S); e = "b"

"a" push(S, "c"); e = "b"

"a", "c" e = pop(S); e = "c"

"a" e = "c"

4 One Stack Implementation (With Arrays)

Any programming language is going to come with certain data structures
“built-in.” Arrays, the only really complex data structure we have used so
far in this class, are one example in C0. Other data structures, like stacks
and queues, need to be constructed using more primitive language fea-
tures.

We will get to a more proper implementation of stacks in the next lec-
ture, using linked lists. For this lecture we will implement stacks by using
the familiar arrays that we have already been using so far in this class.

The idea is to put all data elements in an array and maintain an integer
top, which is the index where we read off elements.

“a”	 “b”	 “c”	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

top	 bo0om	

LECTURE NOTES SEPTEMBER 24, 2013

Stacks & Queues L9.4

To help identify the similarities with the queue implementation, we decide
to also remember an integer bottom, which is the index of the bottom of the
stack. (The bottom will, in fact, remain 0.)

With this design decision, we do not have to handle the bottom of the
stack much different than any other element on the stack. The difference is
that the data at the bottom of the stack is meaningless and will not be used
in our implementation.

There appears to be a very big limitation to this design of stacks: our
stack can’t contain more than 9 elements, like a pile of books on our desk
that cannot grow too high lest it reach the ceiling or fall over. There are
multiple solutions to this problem, but for this lecture we will be content to
work with stacks that have a limited maximum capacity.

4.1 Structs and data structure invariants

Currently, our picture of a stack includes three different things: an array
containing the data, an integer indicating where the top is, and an integer
indicating where the bottom is. This is similar to the situation in Home-
work 1 where we had data (an array of pixels) and two integers, a width
and a height.

C0 has a feature that allows us to bundle these things up into a struct

rather than passing around all the pieces separately. We define:

struct stack_header {

elem[] data;

int top;

int bottom;

};

typedef struct stack_header* stack;

What this notation means exactly, and especially what the part with
struct stack_header* is all about, will be explained in the next lecture.
(These are pointers and it is crucial to understand them, but we defer this
topic for now.) For now, it is sufficient to think of this as providing a nota-
tion for bundling aggregate data. When we have a struct S of type stack,
we can refer to the data as S->data, the integer representing the top of the
stack as S->top, and the integer representing the bottom of the stack as
S->bottom.

When does a struct of this type represent a valid stack? Whenever we
define a new data type representation we should first think about the data
structure invariants. Making these explicit is important as we think about

LECTURE NOTES SEPTEMBER 24, 2013

Stacks & Queues L9.5

and write the pre- and postconditions for functions that implement the in-
terface. Here, it is a simple check of making sure that the bottom and top

indices are in the range of the array and that bottom stays at 0, where we
expect it to be.

bool is_stack(stack S)

{

if (!(S->bottom == 0)) return false;

if (!(S->bottom <= S->top)) return false;

//@assert S->top < \length(S->data);

return true;

}

WARNING: This specification function is missing something very impor-
tant (a check for NULL) – we will return to this next time!

When we write specification functions, we use a style of repeatedly say-
ing

if (!(some invariant of the data structure)) return false;

so that we can read off the invariants of the data structure. A specification
function like is_stack should be safe – it should only ever return true or
false or raise an assertion violation – and if possible it should avoid rais-
ing an assertion violation. Assertion violations are sometimes unavoidable
because we can only check the length of an array inside of the assertion
language.

4.2 Checking for emptiness

To check if the stack is empty, we only need to check whether top and
bottom are the same number.

bool stack_empty(stack S)

//@requires is_stack(S);

{

return S->top == S->bottom;

}

LECTURE NOTES SEPTEMBER 24, 2013

Stacks & Queues L9.6

4.3 Popping from a stack

To pop an element from the stack we just look up the data that is stored
at the position indicated by the top field of the stack in the array S->data

of the data field of the stack. To indicate that this element has now been
removed from the stack, we decrement the top field of the stack. We go
from

“a”	 “b”	 “c”	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

top	 bo0om	

to

“a”	 “b”	 “c”	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

top	 bo0om	

The "c" can still be present in the array at position 3, but it is now a part of
the array that we don’t care about, which we indicate by putting an X over
it. In code, popping looks like this:

elem pop(stack S)

//@requires is_stack(S);

//@requires !stack_empty(S);

//@ensures is_stack(S);

{

elem r = S->data[S->top];

S->top--;

return r;

}

Notice that contracts are cumulative. Since we already indicated

//@requires !stack_empty(S);

in the interface of pop, we would not have to repeat this requires clause in
the implementation. We repeat it regardless to emphasize its importance.

LECTURE NOTES SEPTEMBER 24, 2013

Stacks & Queues L9.7

4.4 Pushing onto a stack

To push an element onto the stack, we increment the top field of the stack
to reflect that there are more elements on the stack. And then we put the
element e into the array S->data at position top. While this is simple, it is
still a good idea to draw a diagram. We go from

“a”	 “b”	 “c”	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

top	 bo0om	

to

“a”	 “b”	 “c”	 “e”	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

top	 bo0om	

In code:

void push(stack S, elem e)

//@requires is_stack(S);

//@ensures is_stack(S);

{

S->top++;

S->data[S->top] = e;

}

Why is the array access S->data[S->top] safe? Is it even safe? At this
point, it is important to note that it is not safe if we ever try to push more el-
ements on the stack than we have reserved space for. We fully address this
shortcoming of our stack implementation in the next lecture. What we can
do right now to address the issue is to redesign the struct stack_header

by adding a capacity field that remembers the length of the array of the
data field:

LECTURE NOTES SEPTEMBER 24, 2013

Stacks & Queues L9.8

struct stack_header {

elem[] data;

int top;

int bottom;

int capacity; // capacity == \length(data);

};

typedef struct stack_header* stack;

Giving us the following updated view of array-based stacks:

“a”	 “b”	 “c”	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

top	 bo0om	 capacity	

The comment that capacity == \length(data) is helpful for indicat-
ing what the intent of capacity is, but it is preferable for us to modify our
is_stack function to account for the change. (The WARNING from before
still applies here.)

bool is_stack(stack S)

{

if (!(S->bottom == 0)) return false;

if (!(S->bottom <= S->top)) return false;

if (!(S->top < S->capacity)) return false;

//@assert S->capacity == \length(S->data);

return true;

}

With a capacity in hand, we check for sufficient space with an explicit
assert statement before we try to access the array or change top.

void push(stack S, elem e)

//@requires is_stack(S);

//@ensures is_stack(S);

{

assert(S->top < S->capacity - 1); // otherwise no space left

S->top++;

S->data[S->top] = e;

}

LECTURE NOTES SEPTEMBER 24, 2013

Stacks & Queues L9.9

This assertion can indeed fail if the client tries to push too many ele-
ments on the stack, which is why we use a hard assert – an assertion that
will run whether or not we compile with -d. The alternative would be to
expose the capacity of the stack to the user with a stack_full function
and then add a precondition //@requires !stack_full(S) to our push()
function.

4.5 Creating a new stack

For creating a new stack, we allocate a struct stack_header and initialize
the top and bottom numbers to 0.

stack stack_new()

//@ensures stack_empty(\result);

//@ensures is_stack(\result);

{

stack S = alloc(struct stack_header);

S->bottom = 0;

S->top = 0;

S->capacity = 100; // arbitrary resource bound

S->data = alloc_array(elem, S->capacity);

return S;

}

As shown above, we also need to allocate an array data to store the ele-
ments in. At this point, at the latest, we realize a downside of our stack im-
plementation. If we want to implement stacks in arrays in the simple way
that we just did, the trouble is that we need to decide its capacity ahead
of time. That is, we need to decide how many elements at maximum will
ever be allowed in the stack at the same time. Here, we arbitrarily choose
the capacity 100, but this gives us a rather poor implementation of stacks in
case the client needs to store more data. We will see how to solve this issue
with a better implementation of stacks in the next lecture.

This completes the implementation of stacks, which are a very simple
and pervasive data structure.

LECTURE NOTES SEPTEMBER 24, 2013

Stacks & Queues L9.10

5 Abstraction

An important point about formulating a precise interface to a data structure
like a stack is to achieve abstraction. This means that as a client of the data
structure we can only use the functions in the interface. In particular, we
are not permitted to use or even know about details of the implementation
of stacks.

Let’s consider an example of a client-side program. We would like to
examine the element at the top of the stack without removing it from the
stack. Such a function would have the declaration

string peek(stack S)

//@requires !stack_empty(S);

;

The first instinct might be to write it as follows:

string peek(stack S)

//@requires !stack_empty(S);

{

return S->data[S->top];

}

However, this would be completely wrong. Let’s recall the interface:

bool stack_empty(stack S); /* O(1), check if stack empty */

stack stack_new(); /* O(1), create new empty stack */

void push(stack S, elem e); /* O(1), add item on top of stack */

elem pop(stack S); /* O(1), remove item from top */

//@requires !stack_empty(S);

;

We don’t see any top field, or any data field, so accessing these as a
client of the data structure would violate the abstraction. Why is this so
wrong? The problem is that if the library implementer decided to improve
the code, or perhaps even just rename some of the structures to make it eas-
ier to read, then the client code will suddenly break! In fact, we will provide
a different implementation of stacks in the next lecture, which would make
the above implementation of peek break. With the above client-side im-
plementation of peek, the stack interface does not serve the purpose it is
intended for, namely provide a reliable way to work with a data structure.
Interfaces are supposed to separate the implementation of a data structure

LECTURE NOTES SEPTEMBER 24, 2013

Stacks & Queues L9.11

in a clean way from its use so that we can change one of the two without
affecting the other.

So what can we do? It is possible to implement the peek operation
without violating the abstraction! Consider how before you read on.

LECTURE NOTES SEPTEMBER 24, 2013

Stacks & Queues L9.12

The idea is that we pop the top element off the stack, remember it in a
temporary variable, and then push it back onto the stack before we return.

string peek(stack S)

//@requires !stack_empty(S);

{

string x = pop(S);

push(S, x);

return x;

}

This is clearly less efficient: instead of just looking up the fields of a struct
and accessing an element of an array we actually have to pop an element
and then push it back onto the stack. However, it is still a constant-time
operation (O(1)) since both pop and push are constant-time operations.
Nonetheless, we have a possible argument to include a function peek in
the interface and implement it library-side instead of client-side to save a
small constant of time.

If we are actually prepared to extend the interface, then we can go back
to our original implementation.

string peek(stack S)

//@requires !stack_empty(S);

{

return S->data[S->top];

}

Is this a good implementation? Not quite. First we note that inside the
library we should refer to elements as having type elem, not string. For
our running example, this is purely a stylistic matter because these two
are synonyms. But, just as it is important that clients respect the library
interface, it is important that the library respect the client interface. In this
case, that means that the users of a stack can, without changing the library,
decide to change the definition of elem type in order to store different data
in the stack.

Second we note that we are now missing a precondition. In order to
even check if the stack is non-empty, we first need to be assured that it
is a valid stack. On the client side, all elements of type stack come from
the library, and any violation of data structure invariants could only be
discovered when we hand it back through the library interface to a function
implemented in the library. Therefore, the client can assume that values of

LECTURE NOTES SEPTEMBER 24, 2013

Stacks & Queues L9.13

type stack are valid and we don’t have explicit pre- or post-conditions for
those. Inside the library, however, we are constantly manipulating the data
structure in ways that break and then restore the invariants, so we should
check if the stack is indeed valid.

From these two considerations we obtain the following code for inside
the library:

elem peek(stack S)

//@requires is_stack(S);

//@requires !stack_empty(S);

{

return S->data[S->top];

}

6 Computing the Size of a Stack

Let’s exercise our data structure once more by developing two implemen-
tations of a function that returns the size of a stack: one on the client’s side,
using only the interface, and one on the library’s side, exploiting the data
representation. Let’s first consider a client-side implementation, using only
the interface so far.

int stack_size(stack S);

Again, we encourage you to consider this problem and program it before
you read on.

LECTURE NOTES SEPTEMBER 24, 2013

Stacks & Queues L9.14

First we reassure ourselves that it will not be a simple operation. We
do not have access to the array (in fact, as the client, we cannot know that
there is an array), so the only thing we can do is pop all the elements off the
stack. This can be accomplished with a while-loop that finishes as soon as
the stack is empty.

int stack_size(stack S) {

int count = 0;

while (!stack_empty(S)) {

pop(S);

count++;

}

return count;

}

However, this function has a big problem: in order to compute the size
we have to destroy the stack! Clearly, there may be situations where we
would like to know the number of elements in a stack without deleting all
of its elements. Fortunately, we can use the idea from the peek function in
amplified form: we maintain a new temporary stack T to hold the elements
we pop from S. Once we are done counting, we push them back onto S to
repair the damage.

int stack_size(stack S) {

stack T = stack_new();

int count = 0;

while (!stack_empty(S)) {

push(T, pop(S));

count++;

}

while (!stack_empty(T)) {

push(S, pop(T));

}

return count;

}

The complexity of this function is clearly O(n), where n is the number of
elements in the stack S, since we traverse each while loop n times, and
perform a constant number of operations in the body of both loops. For
that, we need to know that push and pop are constant time (O(1)).

What about a library-side implementation of stack_size? This can be
done more efficiently.

LECTURE NOTES SEPTEMBER 24, 2013

Stacks & Queues L9.15

int stack_size(stack S)

//@requires is_stack(S);

{

return S->top - S->bottom;

}

7 The Queue Interface

A queue is a data structure where we add elements at the back and remove
elements from the front. In that way a queue is like “waiting in line”: the
first one to be added to the queue will be the first one to be removed from
the queue. This is also called a FIFO (First In First Out) data structure.
Queues are common in many applications. For example, when we read a
book from a file as in Assignment 2, it would be natural to store the words
in a queue so that when we are finished reading the file the words are in the
order they appear in the book. Another common example are buffers for
network communication that temporarily store packets of data arriving on
a network port. Generally speaking, we want to process them in the order
that they arrive.

Here is our interface:

/* type elem must be defined */

bool queue_empty(queue Q); /* O(1), check if queue is empty */

queue queue_new(); /* O(1), create new empty queue */

void enq(queue Q, elem s); /* O(1), add item at back */

elem deq(queue Q) /* O(1), remove item from front */

//@requires !queue_empty(Q);

;

Dequeuing is only possible on non-empty queues, which we indicate by a
requires contract in the interface.

We can write out this interface without committing to an implementa-
tion of queues. In particular, the type queue remains abstract in the sense
that we have not given its definition. This is important so that different
implementations of the functions in this interface can choose different rep-
resentations. Clients of this data structure should not care about the inter-
nals of the implementation. In fact, they should not be allowed to access
them at all and operate on queues only through the functions in this inter-
face. Some languages with strong module systems enforce such abstraction

LECTURE NOTES SEPTEMBER 24, 2013

Stacks & Queues L9.16

rigorously. In C, it is mostly a matter of adhering to conventions.

8 Using the Queue Interface

We play through some simple examples to illustrate the idea of a queue
and how to use the interface above. We write a queue as

x1, x2, . . . , xn

where x1 is the front of the queue and xn is the back of the queue. We enqueue
elements in the back and dequeue them from the front.

For example:

Queue Command Other variables
queue Q = queue_new();

enq(Q, "a");

"a" enq(Q, "b");

"a", "b" string s = deq(Q); s = "a"

"b" enq(Q, "c"); s = "a"

"b", "c" s = deq(Q); s = "b"

"c" s = "b"

9 Copying a Queue Using Its Interface

Suppose we have a queue Q and want to obtain a copy of it. That is, we
want to create a new queue C and implement an algorithm that will make
sure that Q and C have the same elements and in the same order. How can
we do that? Before you read on, see if you can figure it out for yourself.

LECTURE NOTES SEPTEMBER 24, 2013

Stacks & Queues L9.17

The first thing to note is that

queue C = Q;

will not have the effect of copying the queue Q into a new queue C. Just
as for the case of arrays, this assignment makes C and Q aliases, so if we
change one of the two, for example enqueue an element into C, then the
other queue will have changed as well. Just as for the case of arrays, we
need to implement a function for copying the data.

The queue interface provides functions that allow us to dequeue data
from the queue, which we can do as long as the queue is not empty. So we
create a new queue C. Then we read all data from queue Q and put it into
the new queue C.

queue C = queue_new();

while (!queue_empty(Q)) {

enq(C, deq(Q));

}

//@assert queue_empty(Q);

Now the new queue C will contain all data that was previously in Q, so C
is a copy of what used to be in Q. But there is a problem with this approach.
Before you read on, can you find out which problem?

LECTURE NOTES SEPTEMBER 24, 2013

Stacks & Queues L9.18

Queue C now is a copy of what used to be in Q before we started copy-
ing. But our copying process was destructive! By dequeueing all elements
from Q to put them into C, Q has now become empty. In fact, our assertion
at the end of the above loop even indicated queue_empty(Q). So what we
need to do is put all data back into Q when we are done copying it all into
C. But where do we get it from? We could read it from the copy C to put
it back into Q, but, after that, the copy C would be empty, so we are back
to where we started from. Can you figure out how to copy all data into C
and make sure that it also ends up in Q? Before you read on, try to find a
solution for yourself.

LECTURE NOTES SEPTEMBER 24, 2013

Stacks & Queues L9.19

We could try to enqueue all data that we have read from Q back into Q
before putting it into C.

queue C = queue_new();

while (!queue_empty(Q)) {

string s = deq(Q);

enq(Q, s);

enq(C, s);

}

//@assert queue_empty(Q);

But there is something very fundamentally wrong with this idea. Can you
figure it out?

LECTURE NOTES SEPTEMBER 24, 2013

Stacks & Queues L9.20

The problem with the above attempt is that the loop will never termi-
nate unless Q is empty to begin with. For every element that the loop body
dequeues from Q, it enqueues one element back into Q. That way, Q will
always have the same number of elements and will never become empty.
Therefore, we must go back to our original strategy and first read all ele-
ments from Q. But instead of putting them into C, we will put them into a
third queue T for temporary storage. Then we will read all elements from
the temporary storage T and enqueue them into both the copy C and back
into the original queue Q. At the end of this process, the temporary queue
T will be empty, which is fine, because we will not need it any longer. But
both the copy C and the original queue Q will be replenished with all the
elements that Q had originally. And C will be a copy of Q.

queue queue_copy(queue Q) {

queue T = queue_new();

while (!queue_empty(Q)) {

enq(T, deq(Q));

}

//@assert queue_empty(Q);

queue C = queue_new();

while (!queue_empty(T)) {

string s = deq(T);

enq(Q, s);

enq(C, s);

}

//@assert queue_empty(T);

return C;

}

For example, when queue_copy returns, neither C nor Q will be empty.
Except if Q was empty to begin with, in which case both C and Q will still
be empty in the end.

LECTURE NOTES SEPTEMBER 24, 2013

Stacks & Queues L9.21

10 The Queue Implementation

In this lecture, we implement the queue using an array, similar to how we
have implemented stacks in this lecture.

“a”	 “b”	 “c”	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

back	 front	 capacity	

A queue is implemented as a struct with a front and back field. The
front field is the index of the front of the queue, the back field is the index
of the back of the queue. We need both so that we can dequeue (at the front)
and enqueue (back).

In the stack, we did not use anything outside the range (bottom, top],
and for queues, we do not use anything outside the range [front , back).
Again, we mark this in diagrams with an X.

The above picture yields the following definition, where we will again
remember the capacity of the queue, i.e., the length of the array stored in
the data field.

struct queue_header {

elem[] data;

int front;

int back;

int capacity;

};

typedef struct queue_header* queue;

When does a struct of this type represent a valid queue? In fact, when-
ever we define a new data type representation we should first think about
the data structure invariants. Making these explicit is important as we
think about and write the pre- and postconditions for functions that im-
plement the interface.

What we need here is simply that the front and back are within the
array bounds for array data and that the capacity is not too small. The
back of the queue is not used (marked X) but in the array, so we decide to

LECTURE NOTES SEPTEMBER 24, 2013

Stacks & Queues L9.22

require that the capacity of a queue be at least 2 to make sure we can store
at least one element. (The WARNING about NULL still applies here.)

bool is_queue(queue Q)

{

if (Q->capacity < 2) return false;

if (Q->front < 0 || Q->front >= Q->capacity) return false;

if (Q->back < 0 || Q->back >= Q->capacity) return false;

//@assert Q->capacity == \length(Q->data);

return true;

}

To check if the queue is empty we just compare its front and back. If
they are equal, the queue is empty; otherwise it is not. We require that we
are being passed a valid queue. Generally, when working with a data struc-
ture, we should always require and ensure that its invariants are satisifed
in the pre- and post-conditions of the functions that manipulate it. Inside
the function, we will generally temporarily violate the invariants.

bool queue_empty(queue Q)

//@requires is_queue(Q);

{

return Q->front == Q->back;

}

To dequeue an element, we only need to increment the field front,
which represents the index in data of the front of the queue. To emphasize
that we never use portions of the array outside the front to back range, we
first save the dequeued element in a temporary variable so we can return it
later. In diagrams:

“a”	 “b”	 “c”	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

back	 front	 capacity	

LECTURE NOTES SEPTEMBER 24, 2013

Stacks & Queues L9.23

And in code:

elem deq(queue Q)

//@requires is_queue(Q);

//@requires !queue_empty(Q);

//@ensures is_queue(Q);

{

elem e = Q->data[Q->front];

Q->front++;

return e;

}

To enqueue something, that is, add a new item to the back of the queue,
we just write the data (here: a string) into the extra element at the back, and
increment back. You should draw yourself a diagram before you write this
kind of code. Here is a before-and-after diagram for inserting "e":

“a”	 “b”	 “c”	 “e”	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

back	 front	 capacity	

“a”	 “b”	 “c”	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

back	 front	 capacity	

In code:

void enq(queue Q, string s)

//@requires is_queue(Q);

//@ensures is_queue(Q);

//@ensures !queue_empty(Q);

{

assert(Q->back < Q->capacity-1); // otherwise out of resources

Q->data[Q->back] = e;

Q->back++;

}

LECTURE NOTES SEPTEMBER 24, 2013

Stacks & Queues L9.24

To obtain a new empty queue, we allocate a queue header struct and
initialize both front and back to 0, the first element of the array. We do
not initialize the elements in the array because its contents are irrelevant
until some data is put in. It is good practice to always initialize memory if
we care about its contents, even if it happens to be the same as the default
value placed there.

queue queue_new()

//@ensures is_queue(\result);

//@ensures queue_empty(\result);

{

queue Q = alloc(struct queue_header);

Q->front = 0;

Q->back = 0;

Q->capacity = 100;

Q->data = alloc_array(elem, Q->capacity);

return Q;

}

Observe that, unlike the queue implementation, the queue interface
only uses a single contract: that deq requires a non-empty queue to work.
The queue implementation has several additional implementation contracts.
All queue implementation functions use is_queue(Q) in their requires and
ensures contract. The only exception is the queue_new implementation,
which ensures the analogue is_queue(\result) instead. These is_queue

contracts do not appear in the queue interface because is_queue itself does
not appear in the interface, because it is an internal data structure invariant. If
the client obeys the interface abstraction, all he can do with queues is create
them via queue_new and then pass them to the various queue operations in
the interface. At no point in this process does the client have the oppor-
tunity to tamper with the queue data structure to make it fail is_queue,
unless the client violates the interface.

But there are other additional contracts in the queue implementation,
which we want to use to check our implementation, and they still are not
part of the interface. For example. we could have included the following
additional contracts in the interface

queue queue_new() /* O(1), create new empty queue */

//@ensures queue_empty(\result);

;

void enq(queue Q, elem s) /* O(1), add item at back */

LECTURE NOTES SEPTEMBER 24, 2013

Stacks & Queues L9.25

//@ensures !queue_empty(Q);

;

Those contracts need to hold for all queue implementations. Why did we
decide not to include them? The reason is that there are not many situa-
tions in which this knowledge about queues is useful, because we rarely
want to dequeue an element right after enqueueing it. This is in contrast
to the //@requires !queue_empty(Q) contract of deq, which is critical for
the client to know about, because he can only dequeue elements from non-
empty queues and has to check for non-emptyness before calling deq.

Similar observations hold for our rationale for designing the stack in-
terface.

11 Bounded versus Unbounded Stacks & Queues

Both the queue and the stack implementation that we have seen so far have
a fundamental limitation. They are of bounded capacity. However large
we allocate their data arrays, there is a way of enqueuing elements into the
queue or pushing elements onto the stack that requires more space than
the array has had in the first place. And if that happens, the enq or push
operations will fail an assertion because of a resource bound that the client
has no way of knowing about. This is bad, because the client would have
to expect that any of his enq or push operations might fail, because he does
not know about the capacity of the queue and has no way of influencing
this.

One way of solving this problem would be to add operations into the
interface that make it possible to check whether a queue is full.

bool queue_full(queue Q);

Then we change the precondition of enq to require that elements can only
be enqueued if the queue is not full

void enq(queue Q, elem s)

//@requires !queue_full(Q)

....

Similarly, we could add an operation to the interface of stacks to check
whether the stack is full

bool stack_full(stack S);

LECTURE NOTES SEPTEMBER 24, 2013

Stacks & Queues L9.26

And require that pushing is only possible if the stack is not full

void push(stack S, elem s)

//@requires !stack_full(S)

....

The advantage of this design is that the client now has a way of checking
whether there still is space in the stack/queue. The downside, however, is
that the client still does not have a way of increasing the capacity if he wants
to store more data in it.

In the next lecture, we will see a better implementation of stacks and
queues that does not have any of those capacity bounds. That implemen-
tation uses pointers and linked lists.

LECTURE NOTES SEPTEMBER 24, 2013

Stacks & Queues L9.27

Exercises

Exercise 1 Can you implement a version of stack that does not use the bottom

field in the struct stack_header?

Exercise 2 Consider what would happen if we pop an element from the empty
stack when contracts are not checked? When does an error arise?

Exercise 3 Our queue implementation wastes a lot of space unnecessarily. After
enqueuing and dequeueing a number of elements, the back may reach the capacity
limit. If the front has moved on, then there is a lot of space wasted in the beginning
of the data array. How can you change the implementation to reuse this storage
for enqueuing elements? How do you need to change the implementation of enq
and deq for that purpose?

Exercise 4 Our queue design always “wasted” one element that we marked X.
Can we save this memory and implement the queue without extra elements? What
are the tradeoffs and alternatives when implementing a queue?

Exercise 5 The stack implementation using arrays may run out of space if its
capacity is exceeded. Can you think of a way of implementing unbounded stacks
stored in an array?

LECTURE NOTES SEPTEMBER 24, 2013

	Introduction
	The Stack Interface
	Using the Stack Interface
	One Stack Implementation (With Arrays)
	Structs and data structure invariants
	Checking for emptiness
	Popping from a stack
	Pushing onto a stack
	Creating a new stack

	Abstraction
	Computing the Size of a Stack
	The Queue Interface
	Using the Queue Interface
	Copying a Queue Using Its Interface
	The Queue Implementation
	Bounded versus Unbounded Stacks & Queues

