
Lecture Notes on
Pointers

15-122: Principles of Imperative Computation
Frank Pfenning, Rob Simmons

Lecture 10
September 28, 2013

1 Introduction

In this lecture we complete our discussion of types in C0 by discussing
pointers and structs, two great tastes that go great together. We will dis-
cuss using contracts to ensure that pointer accesses are safe, as well as the
use of linked lists to implement the stack and queue interfaces that were
introduced last time. The linked list implementation of stacks and queues
allows us to handle lists of any length.

Relating this to our learning goals, we have

Computational Thinking: We emphasize the importance of abstraction by
producing a second implementation of the stacks and queues we in-
troduced in the last lecture.

Algorithms and Data Structures: Linked lists are a fundamental data struc-
ture.

Programming: We will see structs and pointers, and the use of recursion in
the definition of structs.

2 Structs and pointers

So far in this course, we’ve worked with five different C0 types – int, bool,
char, string, and arrays t[] (there is a array type t[] for every type t).
The character, string, Boolean, and integer values that we manipulate, store

LECTURE NOTES SEPTEMBER 28, 2013



Pointers L10.2

locally, and pass to functions are just the values themselves; the picture we
work with looks like this:

“b”	   “e”	   “e”	   “f”	  

0	   1	   2	   3	   4	  
‘\n’	  

4	  

char	  c	  

int	  i	  

string[]	  A	  

When we consider arrays, the things we store in assignable variables or
pass to functions are addresses, references to the place where the data stored
in the array can be accessed. An array allows us to store and access some
number of values of the same type (which we reference as A[0], A[1], and
so on.

The next data structure we will consider is the struct. A struct can be
used to aggregate together different types of data, which helps us to create
data structures. In contrast, an array is an aggregate of elements of the same
type.

Structs must be explicitly declared in order to define their “shape”. For
example, if we think of an image, we want to store an array of pixels along-
side the width and height of the image, and a struct allows us to do that:

typedef int pixel;

struct img_header {

pixel[] data;

int width;

int height;

};

Here data , width , and height are not variables, but fields of the struct.
The declaration expresses that every image has an array of data as well as a
width and a height . This description is incomplete, as there are some miss-
ing consistency checks – we would expect the length of data to be equal to
the width times the height , for instance, but we can capture such properties
in a separate data structure invariant.

Structs do not necessarily fit into a machine word because they can
have arbitrarily many components, so they must be allocated on the heap
(in memory, just like arrays). This is true even if they happen to be small
enough to fit into a word (in order to maintain a uniform and simple lan-
guage implementation).

LECTURE NOTES SEPTEMBER 28, 2013



Pointers L10.3

% coin structdemo.c0

C0 interpreter (coin) 0.3.2 ’Nickel’

Type ‘#help’ for help or ‘#quit’ to exit.

--> struct img_header IMG;

<stdio>:1.1-1.22:error:type struct img_header not small

[Hint: cannot pass or store structs in variables directly; use

pointers]

How, then, do we manipulate structs? We use the same solution as
for arrays: we manipulate them via their address in memory. Instead of
alloc_array we call alloc which returns a pointer to the struct that has
been allocated in memory. Let’s look at an example in coin.

--> struct img_header* IMG = alloc(struct img_header);

IMG is 0xFFAFFF20 (struct img_header*)

We can access the fields of a struct, for reading or writing, through the
notation p->f where p is a pointer to a struct, and f is the name of a field
in that struct. Continuing above, let’s see what the default values are in the
allocated memory.

--> IMG->data;

(default empty int[] with 0 elements)

--> IMG->width;

0 (int)

--> IMG->height;

0 (int)

We can write to the fields of a struct by using the arrow notation on the
left-hand side of an assignment.

--> IMG->data = alloc_array(pixel, 2);

IMG->data is 0xFFAFC130 (int[] with 2 elements)

--> IMG->width = 1;

IMG->width is 1 (int)

--> (*IMG).height = 2;

(*(IMG)).height is 2 (int)

--> IMG->data[0] = 0xFF00FF00;

IMG->data[0] is -16711936 (int)

--> IMG->data[1] = 0xFFFF0000;

IMG->data[1] is -65536 (int)

LECTURE NOTES SEPTEMBER 28, 2013



Pointers L10.4

The notation (*p).f is a longer form of p->f. First, *p follows the
pointer to arrive at the struct in memory, then .f selects the field f. We
will rarely use this dot-notation (*p).f in this course, preferring the arrow-
notation p->f.

An updated picture of memory, taking into account the initialization
above, looks like this:

“b”	   “e”	   “e”	   “f”	  

0	   1	   2	   3	   4	  
‘\n’	  

4	  

char	  c	  

int	  i	  

string[]	  A	  

struct	  img_header*	  IMG	   1	   2	  

data	   width	   height	  

0xFF00FF00	   0xFFFF0000	  

0	   1	   2	  

3 Pointers

As we have seen in the previous section, a pointer is needed to refer to a
struct that has been allocated on the heap. In can also be used more gener-
ally to refer to an element of arbitrary type that has been allocated on the
heap. For example:

--> int* ptr1 = alloc(int);

ptr1 is 0xFFAFC120 (int*)

--> *ptr1 = 16;

*(ptr1) is 16 (int)

--> *ptr1;

16 (int)

In this case we refer to the value using the notation *p, either to read (when
we use it inside an expression) or to write (if we use it on the left-hand side
of an assignment).

So we would be tempted to say that a pointer value is simply an ad-
dress. But this story, which was correct for arrays, is not quite correct for
pointers. There is also a special value NULL. Its main feature is that NULL is
not a valid address, so we cannot dereference it to obtain stored data. For
example:

LECTURE NOTES SEPTEMBER 28, 2013



Pointers L10.5

--> int* ptr2 = NULL;

p is NULL (int*)

--> *ptr2;

Error: null pointer was accessed

Last position: <stdio>:1.1-1.3

Graphically, NULL is sometimes represented with the ground symbol, so we
can represent our updated setting like this:

“b”	   “e”	   “e”	   “f”	  

0	   1	   2	   3	   4	  
‘\n’	  

4	  

char	  c	  

int	  i	  

string[]	  A	  

struct	  img_header*	  IMG	  

int*	  ptr1	  

int*	  ptr2	  
16	  

1	   2	  

data	   width	   height	  

0xFF00FF00	   0xFFFF0000	  

0	   1	   2	  

To rephrase, we say that a pointer value is an address, of which there
are two kinds. A valid address is one that has been allocated explicitly with
alloc, while NULL is an invalid address. In C, there are opportunities to
create many other invalid addresses, as we will discuss in another lecture.

Attempting to dereference the null pointer is a safety violation in the
same class as trying to access an array with an out-of-bounds index. In C0,
you will reliably get an error message, but in C the result is undefined and
will not necessarily lead to an error. Therefore:

Whenever you dereference a pointer p, either as *p or p->f, you must
have a reason to know that p cannot be NULL.

In many cases this may require function preconditions or loop invariants,
just as for array accesses.

4 Linked Lists

Linked lists are a common alternative to arrays in the implementation of
data structures. Each item in a linked list contains a data element of some
type and a pointer to the next item in the list. It is easy to insert and delete
elements in a linked list, which are not natural operations on arrays, since

LECTURE NOTES SEPTEMBER 28, 2013



Pointers L10.6

arrays have a fixed size. On the other hand access to an element in the
middle of the list is usually O(n), where n is the length of the list.

An item in a linked list consists of a struct containing the data element
and a pointer to another linked list. In C0 we have to commit to the type
of element that is stored in the linked list. We will refer to this data as
having type elem, with the expectation that there will be a type definition
elsewhere telling C0 what elem is supposed to be. Keeping this in mind
ensures that none of the code actually depends on what type is chosen.
These considerations give rise to the following definition:

struct list_node {

elem data;

struct list_node* next;

};

typedef struct list_node list;

This definition is an example of a recursive type. A struct of this type
contains a pointer to another struct of the same type, and so on. We usually
use the special element of type t*, namely NULL, to indicate that we have
reached the end of the list. Sometimes (as will be the case for our use of
linked lists in stacks and queues), we can avoid the explicit use of NULL and
obtain more elegant code. The type definition is there to create the type
name list, which stands for struct list_node, so that a pointer to a list
node will be list*.

There are some restriction on recursive types. For example, a declara-
tion such as

struct infinite {

int x;

struct infinite next;

}

would be rejected by the C0 compiler because it would require an infinite
amount of space. The general rule is that a struct can be recursive, but
the recursion must occur beneath a pointer or array type, whose values are
addresses. This allows a finite representation for values of the struct type.

We don’t introduce any general operations on lists; let’s wait and see
what we need where they are used. Linked lists as we use them here are
a concrete type which means we do not construct an interface and a layer of
abstraction around them. When we use them we know about and exploit
their precise internal structure. This is contrast to abstract types such as

LECTURE NOTES SEPTEMBER 28, 2013



Pointers L10.7

queues or stacks (see next lecture) whose implementation is hidden behind
an interface, exporting only certain operations. This limits what clients
can do, but it allows the author of a library to improve its implementation
without having to worry about breaking client code. Concrete types are
cast into concrete once and for all.

5 List segments

A lot of the operations we’ll perform in the next few lectures are on segments
of lists: a series of nodes starting at start and ending at end.

	  
	  x1	   xn	  x2	  

data	   next	   data	   next	   data	   next	   data	   next	  
…	  

start	   end	  

This is the familiar structure of an “inclusive-lower, exclusive-upper” bound:
we want to talk about the data in a series of nodes, ignoring the data in
the last node. That means that, for any non-NULL list node pointer l, a
segment from l to l is empty (contains no data). Consider the following
structure:

	  
	  3	   3	  7	  

data	   next	   data	   next	   data	   next	   data	   next	  

a1	  
a2	  
a3	  
a4	  

12	  

According to our definition of segments, the data in the segment from a1 to
a4 is the sequence 3, 7, 3, the data in the segment from a2 to a3 contains the
sequence 7, and the data in the segment from a1 to a1 is the empty sequence.
Note that if we compare the pointers a1 and a3 C0 will tell us they are not
equal – even though they contain the same data they are different locations
in memory.

LECTURE NOTES SEPTEMBER 28, 2013



Pointers L10.8

Given an inclusive beginning point start and an exclusive ending point
end, how can we check whether we have a segment from start to end? The
simple idea is to follow next pointers forward from start until we reach end.
If we reach NULL instead of end then we know that we missed our desired
endpoint, so that we do not have a segment. (We also have to make sure
that we say that we do not have a segment if either start or end is NULL, as
that is not allowed by our definition of segments above.) We can implement
this simple idea in all sorts of ways:

Recursively

bool is_segment(list* start, list* end) {

if (start == NULL) return false;

if (start == end) return true;

return is_segment(start->next, end);

}

For loop

bool is_segment(list* start, list* end) {

for (list* p = start; p != NULL; p = p->next) {

if (p == end) return true;

}

return false;

}

While loop

bool is_segment(list* start, list* end) {

list l = start;

while (l != NULL) {

if (l == end) return true;

l = l->next;

}

return false;

}

LECTURE NOTES SEPTEMBER 28, 2013



Pointers L10.9

However, every one of these implementations of is_segment has the
same problem: if given a circular linked-list structure, the specification
function is_segment may not terminate.

It’s quite possible to create structures like this, intentionally or uninten-
tionally. Here’s how we could create the above structure in Coin:

--> list* start = alloc(list);

--> start->data = 3;

--> start->next = alloc(list);

--> start->next->data = 7;

--> start->next->next = alloc(list);

--> start->next->next->data = 3;

--> start->next->next->next = alloc(list);

--> start->next->next->next->data = 12;

--> start->next->next->next->next = start->next;

--> list* end = alloc(list);

--> end->data = 18;

--> end->next = NULL;

--> is_segment(start, end);

and this is what it would look like:

	  
	  3	   3	  7	  

data	   next	   data	   next	   data	   next	   data	   next	  

start	  
	  
	  
end	  

12	  

data	   next	  

18	  

While it is not strictly necessary, whenever possible, our specification func-
tions should return true or false rather than not terminating or raising an as-
sertion violation. We do treat it as strictly necessary that our specification
functions should always be safe – they should never divide by zero, access
an array out of bounds, or dereference a null pointer. We will see how to
address this problem in our next lecture.

LECTURE NOTES SEPTEMBER 28, 2013



Pointers L10.10

6 Checking for circularity

In the 9am lecture, after a couple of false starts we developed a reasonable
way of checking for circularity. The idea that is implicit in the solution we
discovered is that, if you have a circular linked list structure, then eventu-
ally you are going encounter a node that you’ve seen before. So what we
need is an always-terminating way of checking all the places we’ve already
seen.

A helper function that can be useful for this operation is one that we’ll
call is_in_bounded(x, start, n). This function tells us whether we’ll get
to the list node x from start by following no more than n pointers.

bool is_in_bounded(list* x, list* start, int numsteps)

//@requires 0 <= numsteps;

{

int i = 0;

for (list* p = start; p != NULL; p = p->next)

//@loop_invariant 0 <= i && i <= numsteps;

{

if (i == numsteps) {

// If the thing we’re looking for is in the list,

// it is further on.

return false;

}

if (p == x) {

// Oh, here it is!

return true;

}

i += 1;

}

// We reached a NULL, it’s not in the bounded list

return false;

}

LECTURE NOTES SEPTEMBER 28, 2013



Pointers L10.11

On the ith iteration of our naive is_segment loop, we know that we can
get from start to p by following exactly i pointers. We know we have a
cycle if we can also get p by following fewer than i pointers. In our example
of a circular linked list, we could get to the list node containing 7 by follow-
ing either 1 next pointer or 4 next pointers, and we will return false the
second time we encounter that node.

// Always returns true or false

bool is_segment(list* start, list* end) {

int i = 0;

for (list* p = start; p != NULL; p = p->next)

//@loop_invariant 0 <= i;

{

//@assert(is_in_bounded(p, start, i+1));

if (is_in_bounded(p, start, i)) return false; // CYCLE!

if (p == end) return true; // DONE!

i += 1;

}

// We reached NULL without getting to end first

return false;

}

Exercises

Exercise 1 We say “on the ith iteration of our naive is_segment loop, we know
that we can get from start to p by following exactly i pointers.” Write a function
is_reachable_in(list* start, list* end, int numsteps); this function
should return true if we can get from start to end in exactly numsteps steps.
Use this function as a loop invariant for is_segment.

LECTURE NOTES SEPTEMBER 28, 2013


	Introduction
	Structs and pointers
	Pointers
	Linked Lists
	List segments
	Checking for circularity

