
Lecture Notes on
Data Structure Implementation

15-122: Principles of Imperative Computation
Frank Pfenning, Rob Simmons, Andrè Platzer

Lecture 11
October 1, 2013

1 Introduction

In the last lecture we talked about using pointers and structs to implement
linked lists. In this lecture, we’ll talk about using linked lists as an imple-
mentation of the stacks and queues we introduced a week ago. The linked
list implementation of stacks and queues allows us to handle lists of any
length.

Relating this to our learning goals, we have

Computational Thinking: We emphasize the importance of abstraction by
producing a second implementation of the stacks and queues we in-
troduced in the notes for lecture 9.

Algorithms and Data Structures: We utilize linked lists, and also discuss
an algorithm for circularity checking.

Programming: We will again see structs and pointers.

2 Queues with Linked Lists

Here is a picture of the queue data structure the way we envision imple-
menting it, where we have elements 1, 2, and 3 in the queue.

LECTURE NOTES OCTOBER 1, 2013

Data Structure Implementation L11.2

	

	
 1	
 3	
 2	

front	
 back	

data	
 next	

A queue is implemented as a struct with a front and back field. The
front field points to the front of the queue, the back field points to the back
of the queue. We need these two pointers so we can efficiently access both
ends of the queue, which is necessary since dequeue (front) and enqueue
(back) access different ends of the list.

In the array implementation of queues, we kept the back as one greater
than the index of the last element in the array. In the linked-list implemen-
tation of queues, we use a similar strategy, making sure the back pointer
points to one element past the end of the queue. Unlike arrays, there must
be something in memory for the pointer to refer to, so there is always one
extra element at the end of the queue which does not have valid data or
next pointer. We have indicated this in the diagram by writing X.

The above picture yields the following definition.

struct queue_header {

list* front;

list* back;

};

typedef struct queue_header* queue;

We call this a header because it doesn’t hold any elements of the queue, just
pointers to the linked list that really holds them. The type definition allows
us to use queue as a type that represents a pointer to a queue header. We
define it this way so we can hide the true implementation of queues from
the client and just call it an element of type queue.

When does a struct of this type represent a valid queue? In fact, when-
ever we define a new data type representation we should first think about
the data structure invariants. Making these explicit is important as we
think about and write the pre- and postconditions for functions that im-
plement the interface.

LECTURE NOTES OCTOBER 1, 2013

Data Structure Implementation L11.3

What we need here is if we follow front and then move down the
linked list we eventually arrive at back. We call this a list segment. We
also want both front and back not to be NULL so it conforms to the picture,
with one element already allocated even if the queue is empty.

bool is_queue(queue Q) {

if (Q == NULL) return false;

if (Q->front == NULL) return false;

if (Q->back == NULL) return false;

if (!is_segment(Q->front, Q->back)) return false;

return true;

}

To check if the queue is empty we just compare its front and back. If
they are equal, the queue is empty; otherwise it is not. We require that we
are being passed a valid queue. Generally, when working with a data struc-
ture, we should always require and ensure that its invariants are satisfied
in the pre- and post-conditions of the functions that manipulate it. Inside
the function, we will generally temporarily violate the invariants.

bool queue_empty(queue Q)

//@requires is_queue(Q);

{

return Q->front == Q->back;

}

To obtain a new empty queue, we just allocate a list struct and point both
front and back of the new queue to this struct. We do not initialize the list
element because its contents are irrelevant, according to our representation.
It is good practice to always initialize memory if we care about its contents,
even if it happens to be the same as the default value placed there.

queue queue_new()

//@ensures is_queue(\result);

//@ensures queue_empty(\result);

{

queue Q = alloc(struct queue_header);

list* p = alloc(struct list_node);

Q->front = p;

Q->back = p;

return Q;

}

LECTURE NOTES OCTOBER 1, 2013

Data Structure Implementation L11.4

Let’s take one of these lines apart. Why does

queue Q = alloc(struct queue_header);

make sense? According to the definition of alloc, we might expect

struct queue_header* Q = alloc(struct queue_header);

since allocation returns the address of what we allocated. Fortunately, we
defined queue to be a short-hand for struct queue_header* so all is well.

To enqueue something, that is, add a new item to the back of the queue,
we just write the data (here: a string) into the extra element at the back,
create a new back element, and make sure the pointers updated correctly.
You should draw yourself a diagram before you write this kind of code.
Here is a before-and-after diagram for inserting "3" into a list. The new or
updated items are dashed in the second diagram.

	

	
 1	
 2	

front	
 back	

data	
 next	

Q	

	

	
 1	
 3	
 2	

front	
 back	

data	
 next	

Q	

Another important point to keep in mind as you are writing code that ma-
nipulates pointers is to make sure you perform the operations in the right
order, if necessary saving information in temporary variables.

LECTURE NOTES OCTOBER 1, 2013

Data Structure Implementation L11.5

void enq(queue Q, string s)

//@requires is_queue(Q);

//@ensures is_queue(Q);

{

list* p = alloc(struct list);

Q->back->data = s;

Q->back->next = p;

Q->back = p;

}

Finally, we have the dequeue operation. For that, we only need to
change the front pointer, but first we have to save the dequeued element
in a temporary variable so we can return it later. In diagrams:

	

	
 1	
 3	
 2	

front	
 back	

data	
 next	

	

	
 1	
 3	
 2	

front	
 back	

data	
 next	

LECTURE NOTES OCTOBER 1, 2013

Data Structure Implementation L11.6

And in code:

string deq(queue Q)

//@requires is_queue(Q);

//@requires !queue_empty(Q);

//@ensures is_queue(Q);

{

string s = Q->front->data;

Q->front = Q->front->next;

return s;

}

Let’s verify that the our pointer dereferencing operations are safe. We have

Q->front->data

which entails two pointer dereference. We know is_queue(Q) from the
precondition of the function. Recall:

bool is_queue(queue Q) {

if (Q == NULL) return false;

if (Q->front == NULL) return false;

if (Q->back == NULL) return false;

if (!is_segment(Q->front, Q->back)) return false;

return true;

}

We see that Q->front is okay, because by the first test we know that Q != NULL

is the precondition holds. By the second test we see that both Q->front and
Q->back are not null, and we can therefore dereference them.

We also make the assignment Q->front = Q->front->next. Why does
this preserve the invariant? Because we know that the queue is not empty
(second precondition of deq) and therefore Q->front != Q->back. Because
Q->front to Q->back is a valid non-empty segment, Q->front->next can-
not be null.

An interesting point about the dequeue operation is that we do not ex-
plicitly deallocate the first element. If the interface is respected there cannot
be another pointer to the item at the front of the queue, so it becomes un-
reachable: no operation of the remainder of the running programming could
ever refer to it. This means that the garbage collector of the C0 runtime sys-
tem will recycle this list item when it runs short of space.

LECTURE NOTES OCTOBER 1, 2013

Data Structure Implementation L11.7

3 Stacks with Linked Lists

For the implementation of stacks, we can reuse linked lists and the basic
structure of our queue implementation, except that we read off elements
from the same end that we write them to. We call the pointer to this end
top. Since we do not perform operations on the other side of the stack, we
do not necessarily need a pointer to the other end. For structural reasons,
and in order to identify the similarities with the queue implementation,
we still decide to remember a pointer bottom to the bottom of the stack.
With this design decision, we do not have to handle the bottom of the stack
much different than any other element on the stack. The difference is that
the data at the bottom of the stack is meaningless and will not be used in
our implementation. A typical stack then has the following form:

	

	
 3	
 1	
 2	

top	

data	
 next	

bo.om	

Here, 3 is the element at the top of the stack.
We define:

struct list_node {

elem data;

struct list_node* next;

};

typedef struct list_node list;

struct stack_header {

list* top;

list* bottom;

};

typedef struct stack_header* stack;

To test if some structure is a valid stack, we only need to check that

LECTURE NOTES OCTOBER 1, 2013

Data Structure Implementation L11.8

the list starting at top ends in bottom; this is almost identical to the data
structure invariant for queues:

bool is_stack(stack S) {

if (S == NULL) return false;

if (Q->front == NULL) return false;

if (Q->back == NULL) return false;

if (!is_segment(Q->front, Q->back)) return false;

return true;

}

Popping from a stack requires taking an item from the front of the
linked list, which is much like dequeuing.

elem pop(stack S)

//@requires is_stack(S);

//@requires !stack_empty(S);

//@ensures is_stack(S);

{

elem e = S->top->data;

S->top = S->top->next;

return e;

}

To push an element onto the stack, we create a new list item, set its data
field and then its next field to the current top of the stack – the opposite end
of the linked list from the queue. Finally, we need to update the top field of
the stack to point to the new list item. While this is simple, it is still a good
idea to draw a diagram. We go from

	

	
 3	
 1	
 2	

top	

data	
 next	

bo.om	

LECTURE NOTES OCTOBER 1, 2013

Data Structure Implementation L11.9

to

	

	
 3	
 1	
 2	

top	

data	
 next	

4	

bo/om	

data	
 next	

In code:

void push(stack S, elem e)

//@requires is_stack(S);

//@ensures is_stack(S);

{

list* p = alloc(struct list_node);

p->data = e;

p->next = S->top;

S->top = p;

}

This completes the implementation of stacks, which are a very simple
and pervasive data structure.

4 Circularity checking

In the last lecture, we talked about how to identify circularity in linked lists,
thus avoiding

	

	
 3	
 3	
 7	

data	
 next	
 data	
 next	
 data	
 next	
 data	
 next	

start	

	

	

end	

12	

data	
 next	

18	

LECTURE NOTES OCTOBER 1, 2013

Data Structure Implementation L11.10

The idea for a more efficient solution is to create two pointers, let’s name
them t and h. t traverses the list like the pointer p before, in single steps. h,
on the other hand, skips two elements ahead for every step taken by p. If
the slower one t ever gets into a loop, the other pointer h will overtake it
from behind. And this is the only way that this is possible. Let’s try it on
our list. We show the state of t and h on every iteration.

1  3 2  4 

data  next 

5 6 

t  h 

1  3 2  4 

data  next 

5 6 

t 

h 

1  3 2  4 

data  next 

5 6 

t 

h 

LECTURE NOTES OCTOBER 1, 2013

Data Structure Implementation L11.11

1  3 2  4 

data  next 

5 6 

t 

h 

In code:

bool is_circular(list* l)

{

if (l == NULL) return false;

list* t = l; // tortoise

list* h = l->next; // hare

while (t != h)

{

if (h == NULL || h->next == NULL) return false;

t = t->next;

h = h->next->next;

}

return true;

}

This algorithm has been called the tortoise and the hare and is due to Floyd.
We have chosen t to stand for tortoise and h to stand for hare.

A few points about this code: in the condition inside the loop we exploit
the short-circuiting evaluation of the logical or ‘||’ so we only follow the
next pointer for h when we know it is not NULL. Guarding against trying to
dereference a NULL pointer is an extremely important consideration when
writing pointer manipulation code such as this. The access to h->next and
h->next->next is guarded by the NULL checks in the if statement. But what
about the dereference of t in t->next? Before you turn the page: can you
figure it out?

LECTURE NOTES OCTOBER 1, 2013

Data Structure Implementation L11.12

One solution would be to add another if statement checking whether
t==NULL. That is unnecessarily inefficient, though, because the tortoise t,
being slower than the hare h, will never follow pointers that the hare has
not followed already successfully. In particular, they cannot be NULL. How
do we represent this information? The loop invariant t != NULL may come
to mind, but it is hard to prove that it actually is a loop invariant, because,
for all we know so far, t->next may be NULL even if t is not.

The crucial loop invariant that is missing is the information that the
tortoise will be able to travel to the current position of the hare by following
next pointers. Of course, the hare will have moved on then, but at least
there is a chain of next pointers from the current position of the tortoise to
the current position of the hare. This is represented by the following loop
invariant in is_circular:

bool is_circular(list* l)

{

if (l == NULL) return false;

list* t = l; // tortoise

list* h = l->next; // hare

while (t != h)

//@loop_invariant is_segment(t, h);

{

if (h == NULL || h->next == NULL) return false;

t = t->next;

h = h->next->next;

}

return true;

}

As an exercise, you should show that this loop invariant is true initially and
implies safety. The key insight is that the loop invariant ensures that there
is a linked list segment from t to h, and the loop condition ensures t 6= h.
Thus, if there is a link segment from t to a different h, the access t->next

must work.
However, this loop invariant is not preserved by every iteration of the

loop! Why not? (Try to work out the answer before going to the next page.)

LECTURE NOTES OCTOBER 1, 2013

Data Structure Implementation L11.13

The definition of is_segment we have presented does not allow either
endpoint to be NULL, but there is no reason that h->next->next, which will
be h on the next iteration of the loop, shouldn’t be null. The segment that
we have is actually from t to whatever pointed to h.

bool is_circular(list* l)

{

if (l == NULL) return false;

list* t = l; // tortoise

list* h = l->next; // hare

list* hprev = h; // one prior to the hare

while (t != h)

//@loop_invariant is_segment(t, hprev);

//@loop_invariant hprev->next == h;

{

if (h == NULL || h->next == NULL) return false;

t = t->next;

hprev = h->next;

h = h->next->next;

}

return true;

}

Because we have a loop invariant that hprev and h are equal, we can instead
bring h inside the loop rather than tracking it separately.

bool is_circular(list* l)

{

if (l == NULL) return false;

list* t = l; // tortoise

list* hprev = h; // one prior to the hare

while (t != hprev->next)

//@loop_invariant is_segment(t, hprev);

{

list* h = hprev->next;

if (h == NULL || h->next == NULL) return false;

t = t->next;

hprev = h->next;

}

return true;

}

LECTURE NOTES OCTOBER 1, 2013

Data Structure Implementation L11.14

Another option we could have taken would have been to change our def-
inition of is_segment to allow for NULL to appear in valid segments. You
can do this as an exercise.

It is now possible to prove that this loop invariant is preserved. How
would this invariant imply that t is not NULL? How does it imply that the
loop guard is safe?

This algorithm has complexity O(n). An easy way to see this was sug-
gested by a student in class: when there is no loop, the hare will stumble
over NULL after O(n) steps. If there is a loop, then consider the point when
the tortoise enters the loop. At this point, the hare must already be some-
where in the loop. Now for every step the tortoise takes in the loop the hare
takes two, so on every iteration it comes one closer. The hare will catch the
tortoise after at most half the size of the loop. Therefore the overall com-
plexity of O(n): the tortoise will not complete a full trip around the

5 Data in Memory

Ultimately, “all” data resides in memory. In fact, part of the data may also
be kept in fast registers directly on the CPU. You will learn about registers
in detail in 15-213 and can learn about their use in programming languages
in 15-411. For the purposes of today’s lecture, it is sufficient to pretend
all data would sit in memory and ignore registers for the time being. This
simplifies the principles without losing too much precision.

The data in memory is addressed by memory addresses that fit to the
addressing of the CPU in your computer. We will just pretend 32bit ad-
dresses, because those are shorter to write down. All addresses are posi-
tive, so the lowest address is 0x00000000 and the highest address 232 − 1 =
0xFFFFFFFF. All data (with the caveat about registers) sits in memory at
some address. One important question about all data in memory is how
big it is, so that the compiler can make sure program data is stored without
accidental overlapping regions.

The basic memory layout looks as follows:

OS AREA

============

System stack (local variables and function calls)

============

unused

============

System heap (data allocated here... alloc or alloc_array)

LECTURE NOTES OCTOBER 1, 2013

http://www.cs.cmu.edu/~213/
http://symbolaris.com/course/compiler11.html

Data Structure Implementation L11.15

============

.text (read only) (program instructions sit in memory)

============

OS AREA

One consequence of this memory layout is that the stack grows towards
the heap, and the heap usually grows towards the stack. The reason that
the stack is called a stack is because it operates somewhat like the principle
of the stack data structure. Your program can put new data on the top of
the stack. It can also pop elements of the stack if this data is no longer
necessary. Unlike the stack abstraction, it may appear as if your program
internally also modifies data that is on the stack, even if it is not quite at the
top of it. However, the only data on the stack that the program modifies is
in the top range of the stack (perhaps the top 512 bytes or so, depending on
the function that runs), even if it is not just the top word of the stack.

Programs cannot access memory cells that belong to the operating sys-
tem. If they try, programs get an “exception” like a segmentation fault.
Where can that happen in C0? C0 takes great care to ensure that it never
gives you any pointers to uninitialized or random or garbage data in mem-
ory, except, of course, the NULL pointer. NULL is a special pointer to the mem-
ory address 0, which belongs to the operating system. Any access by a
user-land program by dereferencing a NULL pointer causes a segfault.

If, however, you are writing a program that will be running as part of
the operating system, your program has no protection against NULL pointer
dereferencing anymore, because memory address 0 is a valid address for
the operating system, even if not for regular programs. When writing code
for operating systems, you, thus, need to have mastered the art of protect-
ing against illegal NULL dereferences. This is exactly one of the things that
contracts, loop invariants, and assertions prepare you for.

Exercises

Exercise 1 Consider what would happen if we pop an element from the empty
stack when contracts are not checked in the linked list implementation? When
does an error arise?

Exercise 2 Stacks are usually implemented with just one pointer in the header, to
the top of the stack. Rewrite the implementation in this style, dispensing with the
bottom pointer, terminating the list with NULL instead.

LECTURE NOTES OCTOBER 1, 2013

	Introduction
	Queues with Linked Lists
	Stacks with Linked Lists
	Circularity checking
	Data in Memory

