
Lecture Notes on
Hash Tables

15-122: Principles of Imperative Computation
Frank Pfenning, Rob Simmons

Lecture 13
October 10, 2013

1 Introduction

In this lecture we re-introduce the dictionaries that were implemented as a
part of Clac and generalize them as so-called associative arrays. Associative
arrays are data structures that are similar to arrays but are not indexed by
integers, but other forms of data such as strings. One popular data struc-
tures for the implementation of associative arrays are hash tables. To analyze
the asymptotic efficiency of hash tables we have to explore a new point of
view, that of average case complexity. Another computational thinking con-
cept that we revisit is randomness. In order for hash tables to work effi-
ciently in practice we need hash functions whose behavior is predictable
(deterministic) but has some aspects of randomness.

Relating to our learning goals, we have

Computational Thinking: We consider the importance of randomness in al-
gorithms, and also discuss average case analysis, which is how we can
argue that hash tables have acceptable performance.

Algorithms and Data Structures: We describe a linear congruential genera-
tor, which is a certain kind of pseudorandom number generator. We also
discuss hashtables and their implementation with separate chaining
(an array of linked lists).

Programming: We review the implementation of the rand library in C0.

LECTURE NOTES OCTOBER 10, 2013

Hash Tables L13.2

2 Associative Arrays

Arrays can be seen as a mapping, associating with every integer in a given
interval some data item. It is finitary, because its domain, and therefore
also its range, is finite. There are many situations when we want to index
elements differently than just by integers. Common examples are strings
(for dictionaries, phone books, menus, data base records), or structs (for
dates, or names together with other identifying information). They are so
common that they are primitive in some languages such as PHP, Python,
or Perl and perhaps account for some of the popularity of these languages.
In many applications, associative arrays are implemented as hash tables
because of their performance characteristics. We will develop them incre-
mentally to understand the motivation underlying their design.

3 Keys and values

In many applications requiring associative arrays, we are storing complex
data values and want to access them by a key which is derived from the
data. A typical example of keys are strings, which are appropriate for many
scenarios. For example, the key might be a student id and the data entry
might be a collection of grades, perhaps another associative array where the
key is the name of assignment or exam and the data is a score. We make
the assumption that keys are unique in the sense that in an associative array
there is at most one data item associated with a given key.

We can think of built-in C0 arrays as having a set number of keys: a
C0 array of length 3 has three keys 0, 1, and 2. Our implementation of
unbounded arrays allowed us to add a specific new key, 3, to an array; we
want to be able to add new keys to the array. We want our associatve arrays
to allow us to have more interesting keys (like strings, or non-sequential
integers) while keeping the property that there is a unqiue value for each
valid key.

4 Chains

A first idea to explore is to implement the associative array as a linked
list, called a chain. If we have a key k and look for it in the chain, we just
traverse it, compute the intrinsic key for each data entry, and compare it
with k. If they are equal, we have found our entry, if not we continue the
search. If we reach the end of the chain and do not find an entry with key k,

LECTURE NOTES OCTOBER 10, 2013

Hash Tables L13.3

then no entry with the given key exists. If we keep the chain unsorted this
gives us O(n) worst case complexity for finding a key in a chain of length
n, assuming that computing and comparing keys is constant time.

Given what we have seen so far in our search data structures, this seems
very poor behavior, but if we know our data collections will always be
small, it may in fact be reasonable on occasion.

Can we do better? One idea goes back to binary search. If keys are or-
dered we may be able to arrange the elements in an array or in the form of
a tree and then cut the search space roughly in half every time we make a
comparison. We will begin thinking about this approach just before Spring
Break, and it will occupy us for a few lectures after the break as well. De-
signing such data structures is a rich and interesting subject, but the best
we can hope for with this approach is O(log(n)), where n is the number of
entries. We have seen that this function grows very slowly, so this is quite
a practical approach.

Nevertheless, the challenge arises if we can do better than O(log(n)),
say, constant time O(1) to find an entry with a given key. We know that
it can done be for arrays, indexed by integers, which allow constant-time
access. Can we also do it, for example, for strings?

5 Hashing

The first idea behind hash tables is to exploit the efficiency of arrays. So:
to map a key to an entry, we first map a key to an integer and then use the
integer to index an array A. The first map is called a hash function. We write
it as hash(). Given a key k, our access could then simply be A[hash(k)].

There is an immediate problem with this approach: there are 231 pos-
itive integers, so we would need a huge array, negating any possible per-
formance advantages. But even if we were willing to allocate such a huge
array, there are many more strings than int’s so there cannot be any hash
function that always gives us different int’s for different strings.

The solution is to allocate an array of smaller size, say m, and then look
up the result of the hash function modulo m, for example, A[hash(k)%m].
This creates a new problem: it is inevitable that multiple strings will map
to the same array index. For example, if the array has size m then if we
have more then m elements, at least two must map to the same index. In
practice, this will happen much sooner than this.

If two hash functions map a key to the same integer value (modulo m),
we say we have a collision. In general, we would like to avoid collisions,

LECTURE NOTES OCTOBER 10, 2013

Hash Tables L13.4

because some additional operations will be required to deal with them,
slowing down operations and taking more space. We analyze the cost of
collisions more below.

6 Separate Chaining

How do we deal with collisions of hash values? The simplest is a technique
called separate chaining. Assume we have hash(k1)%m = i = hash(k2)%m,
where k1 and k2 are the distinct keys for two data entries e1 and e2 we want
to store in the table. In this case we just arrange e1 and e2 into a chain
(implemented as a linked list) and store this list in A[i].

In general, each elementA[i] in the array will either be NULL or a chain of
entries. All of these must have the same hash value for their key (modulo
m), namely i. As an exercise, you might consider other data structures
here instead of chains and weigh their merits: how about sorted lists? Or
queues? Or doubly-linked lists? Or another hash table?

We stick with chains because they are simple and fast, provided the
chains don’t become too long. This technique is called separate chaining
because the chains are stored separately, not directly in the array. Another
technique, which we do not discuss, is linear probing where we continue by
searching (linearly) for an unused spot in the array itself, starting from the
place where the hash function put us.

Under separate chaining, a snapshot of a hash table might look some-
thing like this picture.

0 

m 

LECTURE NOTES OCTOBER 10, 2013

Hash Tables L13.5

7 Average Case Analysis

How long do we expect the chains to be on average? For a total number
n of entries in a table of size m, it is n/m. This important number is also
called the load factor of the hash table. How long does it take to search for
an entry with key k? We follow these steps:

1. Compute i = hash(k)%m. This will beO(1) (constant time), assuming
it takes constant time to compute the hash function.

2. Go to A[i], which again is constant time O(1).

3. Search the chain starting at A[i] for an element whose key matches k.
We will analyze this next.

The complexity of the last step depends on the length of the chain. In the
worst case it could be O(n), because all n elements could be stored in one
chain. This worst case could arise if we allocated a very small array (say,
m = 1), or because the hash function maps all input strings to the same
table index i, or just out of sheer bad luck.

Ideally, all the chains would be approximately the same length, namely
n/m. Then for a fixed load factor such as n/m = α = 2 we would take on
the average 2 steps to go down the chain and find k. In general, as long
as we don’t let the load factor become too large, the average time should be
O(1).

If the load factor does become too large, we could dynamically adapt its
size, like in an unbounded array. As for unbounded arrays, it is beneficial
to double the size of the hash table when the load factor becomes too high,
or possibly halve it if the size becomes too small. Analyzing these factors
is a task for amortized analysis, just as for unbounded arrays.

8 Randomness

The average case analysis relies on the fact that the hash values of the key
are relatively evenly distributed. This can be restated as saying that the
probability that each key maps to an array index i should be about the
same, namely 1/m. In order to avoid systematically creating collisions,
small changes in the input string should result in unpredicable change in
the output hash value that is uniformly distributed over the range of C0 in-
tegers. We can achieve this with a pseudorandom number generator (PRNG).

LECTURE NOTES OCTOBER 10, 2013

Hash Tables L13.6

A pseudorandom number generator is just a function that takes one num-
ber and obtains another in a way that is both unpredictable and easy to
calculate. The C0 rand library is a pseudorandom number generator with
a fairly simple interface:

/* library file rand.h0 */

typedef struct rand* rand_t;

rand_t init_rand (int seed);

int rand(rand_t gen);

One can generate a random number generator (type rand_t) by initializing
it with an arbitrary seed. Then we can generate a sequence of random
numbers by repeatedly calling rand on such a generator.

The rand library in C0 is implemented as a linear congruential genera-
tor. A linear congruential generator takes a number x and finds the next
number by calculating (a × x) + c modulo m. In C0, it’s easiest to say that
m is just 232, since addition and multiplication in C0 are already defined
modulo 232. The trick is finding a good multiplier a and summand c.

If we were using 4-bit numbers (from −8 to 7 where multiplication and
addition are modulo 16) then we could set a to 5 and c to 7 and our pseudo-
random number generator would generate the following series of numbers:

0→ 7→ (−6)→ (−7)→ 4→ (−5)→ (−2)→
− 3→ (−8)→ (−1)→ 1→ (−4)→ 3→ 6→ 5→ 0→ . . .

The PRNG used in C0’s library sets a to 1664525 and c to 1013904223
and generates the following series of numbers starting from 0:

0→ 1013904223→ 1196435762→ (−775096599)→ (−1426500812)→ . . .

This kind of generator is fine for random testing or (indeed) the basis for
a hashing function, but the results are too predictable to use it for cryp-
tographic purposes such as encrypting a message. In particular, a linear
congruential generator will sometimes have repeating patterns in the lower
bits. If one wants numbers from a small range it is better to use the higher
bits of the generated results rather than just applying the modulus opera-
tion.

It is important to realize that these numbers just look random, they aren’t
really random. In particular, we can reproduce the exact same sequence if
we give it the exact same seed. This property is important for both test-
ing purposes and for hashing. If we discover a bug during testing with

LECTURE NOTES OCTOBER 10, 2013

Hash Tables L13.7

pseudorandom numbers, we want to be able to reliably reproduce it, and
whenever we hash the same key using pseudorandom numbers, we need
to be sure we will get the same result.

/* library file rand.c0 */

struct rand {

int seed;

};

rand_t init_rand (int seed) {

rand_t gen = alloc(struct rand);

gen->seed = seed;

return gen;

}

int rand(rand_t gen) {

gen->seed = gen->seed * 1664525 + 1013904223;

return gen->seed;

}

We will discuss using random number generators to hash strings in Lec-
ture 14.

Exercises

Exercise 1 What happens when you replace the data structure for separate chain-
ing by something other than a linked list? Discuss the changes and identify ben-
efits and disadvantages when using a sorted list, a queue, a doubly-linked list, or
another hash table for separate chaining.

Exercise 2 Consider the situation of writing a hash function for strings of length
two, that only use the characters ’A’ to ’Z’. There are 676 different such strings.
You were hoping to get away with implementing a hash table without collisions,
since you are only using 79 out of those 676 two-letter words. But you still see
collisions most of the time. Explain this phenomenon with the birthday problem.

LECTURE NOTES OCTOBER 10, 2013

http://www.cs.cmu.edu/~rjsimmon/15122-s13/14-interfaces.pdf
http://www.cs.cmu.edu/~rjsimmon/15122-s13/14-interfaces.pdf

	Introduction
	Associative Arrays
	Keys and values
	Chains
	Hashing
	Separate Chaining
	Average Case Analysis
	Randomness

