
Lecture Notes on
Interfaces

15-122: Principles of Imperative Computation
Frank Pfenning

Lecture 14
October 15, 2013

1 Introduction

The notion of an interface to an implementation of an abstract data type or li-
brary is an extremely important concept in computer science. The interface
defines not only the types, but also the available operations on them and the
pre- and postconditions for these operations. For general data structures it
is also important to note the asymptotic complexity of the operations so
that potential clients can decide if the data structure serves their purpose.

For the purposes of this lecture we call the data structures and the op-
erations on them provided by an implementation the library and code that
uses the library the client.

What makes interfaces often complex is that in order for the library to
provide its services it may in turn require some operations provided by the
client. Hash tables provide an excellent example for this complexity, so we
will discuss the interface to hash tables in details before giving the hash
table implementation. Binary search trees, discussed in Lecture 15 provide
another excellent example.

Relating to our learning goals, we have

Computational Thinking: We discuss the separation of client interfaces
and client implementations.

Algorithms and Data Structures: We discuss algorithms for hashing strings.

Programming: We revisit the char data type and use it to consider string
hashing.

LECTURE NOTES OCTOBER 15, 2013

http://www.andrew.cmu.edu/user/annpenny/15122-m13/15-bst.pdf

Interfaces L14.2

2 Generic Hash Tables

We call hash tables generic because the implementation should work re-
gardless of the type of keys or elements to be stored in the table.

We start with the types. The implementations of which types are pro-
vided by the library? Clearly, the type of hash tables.

/* library side types */

typedef ___ ht;

where we have left it open for now (indicated by ___) how the type ht of
hash tables will eventually be defined. That is really the only type pro-
vided by the implementation. In addition, it is supposed to provide three
functions:

/* library side functions */

ht ht_new(int capacity)

//@requires capacity > 0;

;

elem ht_lookup(ht H, key k); /* O(1) avg. */

void ht_insert(ht H, elem e) /* O(1) avg. */

//@requires e != NULL;

;

The function ht_new(int capacity) takes the initial capacity of the hash
table as an argument (which must be strictly positive) and returns a new
hash table without any elements.

The function ht_lookup(ht H, key k) searches for an element with
key k in the hash table H . If such an element exists, it is returned. If it does
not exist, we return NULL instead.

From these decisions we can see that the client must provide the type of
keys and the type of elements. Only the client can know what these might
be in any particular use of the library. In addition, we observe that NULL
must be a value of type elem.

The function ht_insert(ht H, elem e) inserts an element e into the
hash table H, which is changed as an effect of this operation. But NULL can-
not be a valid element to insert, because otherwise the client would not
know how to interpret a return value NULL for ht_search. We therefore
require e not to be null.

To summarize the types we have discovered will have to come from the
client:

LECTURE NOTES OCTOBER 15, 2013

Interfaces L14.3

/* client-side types */

typedef ___* elem;

typedef ___ key;

We have noted the fact that elem must be a pointer by already filling in the
* in its definition. Keys, in contrast, can be arbitrary.

Does the client also need to provide any functions? Yes! The hash ta-
ble implementation needs functions that can operate on values of the types
elem and key, so that it can hash and compare keys and find the key of an
element. Since the library is supposed to be generic, the library implemen-
tors cannot write these functions; we require the client to provide them.

There are three of these “client-side” functions. First, and most obvi-
ously, we need a hash function which maps keys to integers.

/* client-side functions */

int hash(key k);

The result can be any intenger, so our hash table implementation will have
to take this arbitary integer and m, the size of the hash table’s table. For the
hash table implementation to achieve its advertised (average-case) asymp-
totic complexity, the hash function should have the property that its results
are evenly distributed between 0 and m. Interestingly, it will work correctly
(albeit slowly), as long as hash satisfies its contract even, for example, if it
maps every key to 0.

Now recall how lookup in a hash table works. We map the key to an
integer and retrieve the chain of elements stored in this slot in the array.
Then we walk down the chain and compare keys of the stored elements
with the lookup key. This requires the client to provide two additional
operations: one to compare keys, and one to extract a key from an element.

/* client-side functions */

bool key_equal(key k1, key k2);

key elem_key(elem e)

//@requires e != NULL;

;

Key extraction works only on elements that are not null.

LECTURE NOTES OCTOBER 15, 2013

Interfaces L14.4

This completes the interface which we now summarize.

/*************************/

/* client-side interface */

/*************************/

typedef ___* elem;

typedef ___ key;

int hash(key k);

bool key_equal(key k1, key k2);

key elem_key(elem e)

//@requires e != NULL;

;

/**************************/

/* library side interface */

/**************************/

typedef struct ht_header* ht;

ht ht_new(int capacity)

//@requires capacity > 0;

;

elem ht_search(ht H, key k); /* O(1) avg. */

void ht_insert(ht H, elem e) /* O(1) avg. */

//@requires e != NULL;

;

int ht_size(ht H); /* O(1) */

void ht_stats(ht h);

The function ht_size reports the total number of elements in the array
(remember that the load factor is the size n divided by the capacity m). The
function ht_stats has no effect, but prints out a histogram reporting how
many chains in the hash table are empty, how many have length 1, how
many have length 2, and so on. For a hashtable to have good performance,
chains should be generally short.

3 A Tiny Client

One sample application is to count word occurrences – say, in a corpus of
Twitter data or in the collected works of Shakespeare. In this application,

LECTURE NOTES OCTOBER 15, 2013

Interfaces L14.5

the keys are the words, represented as strings. Data elements are pairs of
words and word counts, the latter represented as integers.

/******************************/

/* client-side implementation */

/******************************/

struct wcount {

string word;

int count;

};

int hash(string s) {

return hash_string(s); /* from hash-string.c0 */

}

bool key_equal(string s1, string s2) {

return string_equal(s1, s2);

}

string elem_key(struct wcount* wc) {

return wc->word;

}

We can now fill in the types in the client-side of the interface.

typedef struct wcount* elem;

typedef string key;

4 A Universal Hash Function

One question we have to answer is how to hash strings, that is, how to map
strings to integers so that the integers are evenly distributed no matter how
the input strings are distributed.

We can get access to the individual characers in a string with the string_charat(s, i)

function, and we can get the integer ASCII value of a charwith the char_ord(c)
function; both of these are defined in the C0 string library. Therefore, our
general picture of hashing strings looks like this:

int hash_string(string s) {

int len = string_length(s);

LECTURE NOTES OCTOBER 15, 2013

Interfaces L14.6

int h = 0;

for (int i = 0; i < len; i++)

//@loop_invariant 0 <= i;

{

int ch = char_ord(string_charat(s, i));

// Do something to combine h and ch

}

return h;

}

Now, if we don’t add anything to replace the comment, the function above
will still allow the hashtable to work correctly, it will just be very slow
because the hash value of every string will be zero.

A slightly better idea is combining h and ch with addition or multipli-
cation:

for (int i = 0; i < len; i++)

//@loop_invariant 0 <= i;

{

int ch = char_ord(string_charat(s, i));

h = h + ch;

}

This is still pretty bad, however. We can see how bad by running entering
the n = 45, 600 news vocabulary words from Homework 2 into a table with
m = 22, 800 chains (load factor is 2) and running ht_stats:

Hash table distribution: how many chains have size...

...0: 21217

...1: 239

...2: 132

...3: 78

...4: 73

...5: 55

...6: 60

...7: 46

...8: 42

...9: 23

...10+: 835

Longest chain: 176

Most of the chains are empty, and many of the chains are very, very long.
One problem is that most strings are likely to have very small hash values

LECTURE NOTES OCTOBER 15, 2013

Interfaces L14.7

when we use this hash function. An even bigger problem is that rearrang-
ing the letters in a string will always produce another string with the same
hash value – so we know that "cab" and "abc" will always collide in a
hash table. Hash collisions are inevitable, but when we can easily predict
that two strings have the same hash value, we should be suspicious that
something is wrong.

To address this, we can manipulate the value h in some way before we
combine it with the current value. Some versions of Java use this as their
default string hashing function.

for (int i = 0; i < len; i++)

//@loop_invariant 0 <= i;

{

int ch = char_ord(string_charat(s, i));

h = 31*h;

h = h + ch;

}

This does much better when we add all the news vocabulary strings into
the hash table:

Hash table distribution: how many chains have size...

...0: 3057

...1: 6210

...2: 6139

...3: 4084

...4: 2151

...5: 809

...6: 271

...7: 53

...8: 21

...9: 4

...10+: 1

Longest chain: 10

We can try adding a bit of randomness into this function in a number
of different ways. For instance, instead of multiplying by 31, we could
multiply by a number generated by the pseudorandom number generator
from C0’s library:

rand_t r = init_rand(0x1337BEEF);

for (int i = 0; i < len; i++)

LECTURE NOTES OCTOBER 15, 2013

Interfaces L14.8

//@loop_invariant 0 <= i;

{

int ch = char_ord(string_charat(s, i));

h = rand(r) * h;

h = h + ch;

}

If we look at the performance of this function, it is comparable to the Java
hash function, though it is not actually quite as good – more of the chains
are empty, and more are longer.

Hash table distribution: how many chains have size...

...0: 3796

...1: 6214

...2: 5424

...3: 3589

...4: 2101

...5: 1006

...6: 455

...7: 145

...8: 48

...9: 15

...10+: 7

Longest chain: 11

Many other variants are possible; for instance, we could try directly
applying the linear congruential generator to the hash value at every step:

for (int i = 0; i < len; i++)

//@loop_invariant 0 <= i;

{

int ch = char_ord(string_charat(s, i));

h = 1664525 * h + 1013904223;

h = h + ch;

}

The key goals are that we want a hash function that is very quick to com-
pute and that nevertheless achieves good distribution across our hash ta-
ble. Handwritten hash functions often do not work well, which can signifi-
cantly affect the performance of the hash table. Whenever possible, the use
of randomness can help to avoid any systematic bias.

LECTURE NOTES OCTOBER 15, 2013

Interfaces L14.9

5 A Fixed-Size Implementation of Hash Tables

The implementation of hash tables we wrote in lecture did not adjust their
size. This requires that we can a priori predict a good size, or we will not
be able to get the advertized O(1) average time complexity. Choose the size
too large and it wastes space and slows the program down due to a lack of
locality. Choose the size too small and the load factor will be high, leading
to poor asymptotic (and practical) running time.

We start with the type of lists to represent the chains of elements, and
the hash table type itself.

/*******************************/

/* library-side implementation */

/*******************************/

struct list_node {

elem data; /* data != NULL */

struct list_node* next;

};

typedef struct list_node list;

struct ht_header {

int size; /* size >= 0 */

int capacity; /* capacity > 0 */

list*[] table; /* \length(table) == capacity */

};

The first thing after the definition of a data structure is a function to
verify its invariants. Besides the invariants noted above we should check
that each data value in each chain in the hash table should be non-null and
the hash value of the key of every element in each chain stored in A[i] is
indeed i. (This is_ht function is incomplete.)

bool is_ht(ht H) {

if (H == NULL) return false;

if (!(H->size >= 0)) return false;

if (!(H->capacity > 0)) return false;

//@assert \length(H->table) == H->capacity;

/* check that each element of table is a valid chain */

/* includes checking that all elements are non-null */

return true;

}

LECTURE NOTES OCTOBER 15, 2013

Interfaces L14.10

Recall that the test on the length of the array must be inside an annotation,
because the \length function is not available when the code is compiled
without dynamic checking enabled.

Allocating a hash table is straightforward.

ht ht_new(int capacity)

//@requires capacity > 0;

//@ensures is_ht(\result);

{

ht H = alloc(struct ht_header);

H->size = 0;

H->capacity = capacity;

H->table = alloc_array(list*, capacity);

/* Every cell in H->table is initialized to NULL */

return H;

}

Equally straightforward is searching for an element with a given key. We
omit an additional loop invariant and add an assertion that should follow
from it instead.

elem ht_lookup(ht H, key k)

//@requires is_ht(H);

{

int i = abs(hash(k) % H->capacity);

list* p = H->table[i];

while (p != NULL)

// loop invariant: p points to a chain (no NULL data)

{

//@assert p->data != NULL;

if (key_equal(elem_key(p->data), k))

return p->data;

else

p = p->next;

}

/* not in list */

return NULL;

}

We can extract the key from the element l->data because the data can not
be null in a valid hash table. (Think: how would we phrase this as a loop
invariant?)

LECTURE NOTES OCTOBER 15, 2013

Interfaces L14.11

Inserting an element follows generally the same structure as search. If
we find an element in the right chain with the same key we replace it. If we
find none, we insert a new one at the beginning of the chain.

void ht_insert(ht H, elem e)

//@requires is_ht(H);

//@requires e != NULL;

//@ensures is_ht(H);

//@ensures ht_lookup(H, elem_key(e)) != NULL;

{

key k = elem_key(e);

int i = abs(hash(k) % H->capacity);

chain* p = H->table[i];

while (p != NULL)

// loop invariant: p points to a chain (no NULL data)

{

//@assert p->data != NULL;

if (key_equal(elem_key(p->data), k)) {

/* overwrite existing element */

p->data = e;

return;

} else {

p = p->next;

}

}

//@assert p == NULL;

/* prepend new element */

chain* q = alloc(struct chain_node);

q->data = e;

q->next = H->table[i];

H->table[i] = q;

(H->size)++;

return;

}

LECTURE NOTES OCTOBER 15, 2013

Interfaces L14.12

Exercises

Exercise 1 Extend the hash table implementation so it dynamically resizes itself
when the load factor exceeds a certain threshold. When doubling the size of the
hash table you will need to explicitly insert every element from the old hash table
into the new one, because the result of hashing depends on the size of the hash table.

Exercise 2 Redo the library implementation for a different client interface that has
a function hash(key k, int m) that returns a result between 0 (inclusive) and
m (exclusive).

Exercise 3 Extend the hash table interface with new functions ht_size that re-
turns the number of elements in a table and ht_tabulate that returns an array
with the elements in the hash table, in some arbitrary order.

Exercise 4 Complete the client-side code to build a hash table containing word
frequencies for the words appearing in Shakespeare’s collected works. You should
build upon the code in Assignment 2.

Exercise 5 Extend the hash table interface with a new function to delete an ele-
ment with a given key from the table. To be extra ambitious, shrink the size of the
hash table once the load factor drops below some minimum, similarly to the way
we could grow and shrink unbounded arrays.

LECTURE NOTES OCTOBER 15, 2013

	Introduction
	Generic Hash Tables
	A Tiny Client
	A Universal Hash Function
	A Fixed-Size Implementation of Hash Tables

