
Lecture Notes on
Priority Queues

15-122: Principles of Imperative Computation
Frank Pfenning

Lecture 15
October 17, 2013

1 Introduction

In this lecture we will look at priority queues as an abstract type and dis-
cuss several possible implementations. We then pick the implementation
as heaps and start to work towards an implementation. Heaps have the
structure of binary trees, a very common structure since a (balanced) bi-
nary tree with n elements has depth O(log(n)). During the presentation of
algorithms on heaps we will also come across the phenomenon that invari-
ants must be temporarily violated and then restored. We will study this in
more depth in the next lecture. From the programming point of view, we
will see a cool way to implement binary trees in arrays which, alas, does
not work very often.

2 Priority Queues

Priority queues are a generalization of stacks and queues. Rather than in-
serting and deleting elements in a fixed order, each element is assigned a
priority represented by an integer. We always remove an element with the
highest priority, which is given by the minimal integer priority assigned.
Priority queues often have a fixed size. For example, in an operating system
the runnable processes might be stored in a priority queue, where certain
system processes are given a higher priority than user processes. Similarly,
in a network router packets may be routed according to some assigned pri-
orities. In both of these examples, bounding the size of the queues helps to

LECTURE NOTES OCTOBER 17, 2013



Priority Queues L15.2

prevent so-called denial-of-service attacks where a system is essentially dis-
abled by flooding its task store. This can happen accidentally or on purpose
by a malicious attacker.

Here is an abstract interface to a (bounded) priority queue. Our imple-
mentation uses a data structure call a heap which we discuss shortly.

/* Library-side interface */

typedef _______________ pq;

pq pq_new(int capacity) /* create new heap of given capacity */

//@requires capacity > 0;

;

bool pq_empty(pq P); /* is P empty? */

bool pq_full(pq P); /* is P full? */

void pq_insert(pq P, elem e) /* insert e into P */

//@requires !pq_full(P);

;

elem pq_min(pq P) /* find minimum */

//@requires !pq_empty(P);

;

elem pq_delmin(pq P) /* delete minimum */

//@requires !pq_empty(P);

;

On the client side we must have a function that extracts the priority of an
element, since the library cannot know in general what this priority would
be. Since priorities in general are supposed to be a linear order, we just
use integers directly, rather than an abstract type such a key together with a
comparison function.

/* Client-side interface */

typedef ______________ elem;

int elem_priority(elem e);

3 Some Implementations

Before we come to heaps, it is worth considering different implementation
choices and consider the complexity of various operations.

LECTURE NOTES OCTOBER 17, 2013



Priority Queues L15.3

The first idea is to use an unordered array of size limit , where we keep
a current index n. Inserting into such an array is a constant-time operation,
since we only have to insert it at n and increment n. However, finding
the minimum will take O(n), since we have to scan the whole portion of
the array that’s in use. Consequently, deleting the minimal element also
takes O(n): first we find the minimal element, then we swap it with the last
element in the array, and decrement n.

A second idea is to keep the array sorted. In this case, inserting an el-
ement is O(n). We can quickly (in O(log(n)) steps) find the place i where
it belongs using binary search, but then we need to shift elements to make
room for the insertion. This take O(n) copy operations. Finding the mini-
mum is O(1) (since it is stored at index 0 in the array). We can also make
deleting it O(1) if we keep the array sorted in descending order, or if we
keep two array indices: one for the smallest current element and one for
the largest.

To anticipate our analysis, heaps will have logarithmic time for insert
and deleting the minimal element.

insert delmin findmin
unordered array O(1) O(n) O(n)
ordered array O(n) O(1) O(1)
heap O(log(n)) O(log(n)) O(1)

4 The Heap Invariant

Typically, when using a priority queue, we expect the number of inserts
and deletes to roughly balance. Then neither the unordered nor the or-
dered array provide a good data structure since a sequence of n inserts and
deletes will have worst-case complexity O(n2).

The idea of the heap is to use something cleverly situated in between.
A heap is like an array that is ordered to some extent: enough, that the least
element can be found in O(1), but not so rigidly that inserting would take
O(n) time. A heap is a binary tree where the invariant guarantees that the
least element is at the root. For this to be the case we just require that the
key of a node is less or equal to the keys of its children. Alternatively, we
could say that each node except the root is greater or equal to its parent.

Heap ordering invariant, alternative (1) : The key of each node in the tree
is less or equal to all of its childrens’ keys.

LECTURE NOTES OCTOBER 17, 2013



Priority Queues L15.4

Heap ordering invariant, alternative (2) : The key of each node in the tree
except for the root is greater or equal to its parent’s key.

These two characterizations are equivalent. Sometimes it turns out to be
convenient to think of it one way, sometimes the other. Either of them im-
plies that the minimal element in the heap is a the root, due to the transi-
tivity of the ordering.

There is a second invariant, not as crucial but convenient, which is that
we fill the tree level by level, from left to right. This means the shape of the
tree is completely determined by the number of elements in it. Here are the
shapes of heaps with 1 through 7 nodes.

1 node  2 nodes  3 nodes  4 nodes 

5 nodes  6 nodes  7 nodes 

We call this latter invariant the shape invariant.

5 Inserting into a Heap

When we insert into a heap, we already know (by the shape invariant)
where a new node has to go. However, we cannot simply put the new
data element there, because it might violate the ordering invariant. We do
it anyway and then work to restore the invariant. We will talk more about
temporarily violating a data structure invariant in the next lecture, as we
develop code. Let’s consider an example. On the left is the heap before
insertion of data with key 1; on the right after, but before we have restored

LECTURE NOTES OCTOBER 17, 2013



Priority Queues L15.5

the invariant.

2 

4  3 

7  8 9 

2 

4  3 

7  8 9  1 

The dashed line indicates where the ordering invariant might be violated.
And, indeed, 3 > 1.

We can fix the invariant at the dashed edge by swapping the two nodes.
The result is shown on the right.

2 

4  3 

7  8 9  1 

2 

4  1 

7  8 9  3 

The link from the node with key 1 to the node with key 8 will always satisfy
the invariant, because we have replaced the previous key 3 with a smaller
key (1). But the invariant might now be violated going up the tree to the
root. And, indeed 2 > 1.

We repeat the operation, swapping 1 with 2.

2 

4  1 

7  8 9  3 

1 

4  2 

7  8 9  3 

As before, the link between the root and its left child continues to satisfy
the invariant because we have replaced the key at the root with a smaller

LECTURE NOTES OCTOBER 17, 2013



Priority Queues L15.6

one. Furthermore, since the root node has no parent, we have fully restored
the ordering invariant.

In general, we swap a node with its parent if the parent has a strictly
greater key. If not, or if we reach the root, we have restored the ordering
invariant. The shape invariant was always satisfied since we inserted the
new node into the next open place in the tree.

The operation that restores the ordering invariant is called sifting up,
since we take the new node and move it up the heap until the invariant has
been reestablished. The complexity of this operation is O(l), where l is the
number of levels in the tree. For a tree of n ≥ 1 nodes there are log(n) + 1
levels. So the complexity of inserting a new node is O(log(n)), as promised.

6 Deleting the Minimal Element

To delete the minimal element from the priority queue we cannot sim-
ple delete the root node where the minimal element is stored, because we
would not be left with a tree. But by the shape invariant we know what the
tree has to look like. So we take the last element in the tree and move it to
the root, and delete that last node.

2 

3  4 

7  8 9 

8 

3  4 

7 9 

However, the node that is now at the root might have a strictly greater key
one or both of its children, which would violate the ordering invariant.

If the ordering invariant in indeed violated, we swap the node with the

LECTURE NOTES OCTOBER 17, 2013



Priority Queues L15.7

smaller of its children.

8 

3  4 

7 9 

3 

8  4 

7 9 

This will reestablish the invariant at the root. In general we see this as
follows. Assume that before the swap the invariant is violated, and the left
child has a smaller key than the right one. It must also be smaller than
the root, otherwise the ordering invariant would hold. Therefore, after we
swap the root with its left child, the root will be smaller than its left child. It
will also be smaller than its right child, because the left was smaller than the
right before the swap. When the right is smaller than the left, the argument
is symmetric.

Unfortunately, we may not be done, because the invariant might now
be violated at the place where the old root ended up. If not, we stop. If yes,
we compare the children as before and swap with the smaller one.

3 

8  4 

7 9 

3 

7  4 

8 9 

We stop this downward movement of the new node if either the order-
ing invariant is satisfied, or we reach a leaf. In both cases we have fully
restored the ordering invariant. This process of restoring the invariant is
called sifting down, since we move a node down the tree. As in the case for
insert, the number of operations is bounded by the number of levels in the
tree, which is O(log(n)) as promised.

LECTURE NOTES OCTOBER 17, 2013



Priority Queues L15.8

7 Finding the Minimal Element

Since the minimal element is at the root, finding the minimal element is a
constant-time operation.

8 Representing Heaps as Arrays

A first thought on how to represent a heap would be using structs with
pointers. The sift-down operation follows the pointers from nodes to their
children, and the sift-up operation follows goes from children to their par-
ents. This means all interior nodes require three pointers: one to each child
and one to the parent, the root requires two, and each leaf requires one.

While a pointer structure is not unreasonable, there is a more elegant
representation using arrays. We use binary numbers as addresses of tree
nodes. Assume a node has index i. Then we append a 0 to the binary
representation of i to obtain the index for the left child and a 1 to obtain the
index of the right child. We start at the root with the number 1. If we tried
to use 0, then the root and its left child would get the same address. The
node number for a full three-level tree on the left in binary and on the right
in decimal.

1 

10  11 

101  110 100  111 

1 

2  3 

5  6 4  7 

Mapping this back to numeric operations, for a node at index i we obtain
its left child as 2∗i, its right child as 2∗i+1, and its parent as i/2. Care must
be taken, since any of these may be out of bounds of the array. A node may
not have a right child, or neither right nor left child, and the root does not
have a parent.

In the next lecture we will write some code to implement heaps and
reason about its correctness.

LECTURE NOTES OCTOBER 17, 2013



Priority Queues L15.9

Exercises

Exercise 1 One of many options is using a sorted linked list instead of a sorted
array to implement priority queues. What is the complexity of the priority queue
operations on this representation? What are the advantages/disadvantages com-
pared to an ordered array?

Exercise 2 Consider implementing priority queues using an unordered list in-
stead of an unordered array to implement priority queues. What is the complex-
ity of the priority queue operations on this representation? What are the advan-
tages/disadvantages compared to an unordered array?

LECTURE NOTES OCTOBER 17, 2013


	Introduction
	Priority Queues
	Some Implementations
	The Heap Invariant
	Inserting into a Heap
	Deleting the Minimal Element
	Finding the Minimal Element
	Representing Heaps as Arrays

