
Lecture Notes on
Spanning Trees

15-122: Principles of Imperative Computation
Frank Pfenning

Lecture 26
November 26, 2013

The following is a simple example of a connected, undirected graph
with 5 vertices (A,B,C,D,E) and 6 edges (AB, BC, CD, AE, BE, CE).

D 

E 

C B 

A 

In this lecture we are particularly interested in the problem of computing
a spanning tree for a connected graph. What is a tree here? They are a
bit different than the binary search trees we considered early. One simple
definition is that a tree is a connected graph with no simple cycles, where a
simple cycle lets you go from a node to itself without repeating an edge.
A spanning tree for a connected graph G is a tree containing all the vertices
of G and a subset of the edges of G. Below are two examples of spanning

LECTURE NOTES NOVEMBER 26, 2013

Spanning Trees L26.2

trees for our original example graph.

D 

E 

C B 

A  D 

E 

C B 

A 

When dealing with a new kind of data structure, it is a good strategy
to try to think of as many different characterizations as we can. This is
somewhat similar to the problem of coming up with good representations
of the data; different ones may be appropriate for different purposes. Here
are some alternative characterizations the class came up with:

1. Connected graph with no cycle (original).

2. Connected graph where no two neighbors are otherwise connected.
Neighbors are vertices connected directly by an edge, otherwise con-
nected means connected without the connecting edge.

3. Two trees connected by a single edge. This is a recursive characteriza-
tion. The base case is a single node, with the empty tree (no vertices)
as a possible special case.

4. A connected graph with exactly n − 1 edges, where n is the number
of vertices.

5. A graph with exactly one path between any two distinct vertices,
where a path is a sequence of distinct vertices where each is connected
to the next by an edge. (For paths in a tree to be distinct, we have to
disallow paths that double back on themselves).

When considering the asymptotic complexity of our various algorithms
on graphs, it is often useful to categorize graphs as dense or sparse. Dense
graphs have a lot of edges compared to the number of vertices. Writing
n = |V | for the number of vertices (which will be our notation in the rest of
the lecture) we can see that the number of edges can be at most n∗(n−1)/2:
each node could be connected to any other node (n ∗ (n − 1)), but in an
undirected way (n ∗ (n − 1)/2). If we write e for the number of edges, we
have e = O(n2). By comparison, a tree is sparse because e = n− 1 = O(n).

LECTURE NOTES NOVEMBER 26, 2013

Spanning Trees L26.3

1 Computing a Spanning Tree

There are many algorithms to compute a spanning tree for a connected
graph. The first is an example of a vertex-centric algorithm.

1. Pick an arbitrary node and mark it as being in the tree.

2. Repeat until all nodes are marked as in the tree:

(a) Pick an arbitrary node u in the tree with an edge e to a node w
not in the tree. Add e to the spanning tree and mark w as in the
tree.

We iterate n−1 times in Step 2, because there are n−1 vertices that have to
be added to the tree. The efficiency of the algorithm is determined by how
efficiently we can find a qualifying w.

The second algorithm is edge-centric.

1. Start with the collection of singleton trees, each with exactly one node.

2. As long as we have more than one tree, connect two trees together
with an edge in the graph.

This second algorithm also performs n steps, because it has to add n − 1
edges to the trees until we have a spanning tree. Its efficiency is determined
by how quickly we can tell if an edge would connect two trees or would
connect two nodes already in the same tree, a question we come back to in
the next lecture.

LECTURE NOTES NOVEMBER 26, 2013

Spanning Trees L26.4

Let’s try this algorithm on our first graph, considering edges in the
listed order: (AB, BC, CD, AE, BE, CE).

D 

E 

C B 

A  D 

E 

C B 

A  D 

E 

C B 

A  D 

E 

C B 

A 

D 

E 

C B 

A  D 

E 

C B 

A 

The first graph is the given graph, the completley disconnected graph is the
starting point for this algorithm. At the bottom right we have computed the
spanning tree, which we know because we have added n− 1 = 4 edges. If
we tried to continue, the next edge BE could not be added because it does
not connect two trees, and neither can CE. The spanning tree is complete.

2 Creating a Random Maze

We can use the algorithm to compute a spanning tree for creating a random
maze. We start with the graph where the vertices are the cells and the
edges represent the neighbors we can move to in the maze. In the graph,
all potential neighbors are connected. A spanning tree will be defined by a
subset of the edges in which all cells in the maze are still connected by some
(unique) path. Because a spanning tree connects all cells, we can arbitrarily
decide on the starting point and end point after we have computed it.

How would we ensure that the maze is random? The idea is to gener-
ate a random permutation (see Exercise 1) of the edges and then consider
the edges in the fixed order. Each edge is either added (if it connects two
disconnected parts of the maze) or not (if the two vertices are already con-
nected). But, of course, we need an efficient way to determine if the two

LECTURE NOTES NOVEMBER 26, 2013

Spanning Trees L26.5

vertices are already connected. We could use one of the search methods
from yesterday’s lecture, but as we’ll see tomorrow, we can do better.

3 Minimum Weight Spanning Trees

In many applications of graphs, there is some measure associated with the
edges. For example, when the vertices are locations then the edge weights
could be distances. We might then be interested in not any spanning tree,
but one whose total edge weight is minimal among all the possible span-
ning trees, a so-called minimum weight spanning tree (MST). An MST is not
necessarily unique. For example, all the edge weights could be identical in
which case any spanning tree will be minimal.

We annotate the edges in our running example with edge weights as
shown on the left below. On the right is the minimum weight spanning
tree, which has weight 9.

D 

E 

C B 

A 

2  2 

2 

3 

3 

3 

D 

E 

C B 

A 

2  2 

2 

3 

Before we develop a refinement of our edge-centric algorithm for span-
ning trees to take edge weights into account, we discuss a basic property it
is based on.

Cycle Property. Let C be a simple cycle in graph G, and e be an edge of
maximal weight in C. Then there is some MST of G that does not
contain e.

How do we convince ourselves of this property? Assume we have a
minimum spanning tree T , and edge e from the cycle property connects
vertices u and w. If e is not in T , then, indeed, we don’t need it. If e is in
T , we will construct another spanning tree without e of weight less than
or equal to T ’s weight. Removing edge e splits T into two subtrees. There
must be another edge e′ from C that is not in T which also connects the two

LECTURE NOTES NOVEMBER 26, 2013

Spanning Trees L26.6

subtrees. Removing e and adding e′ instead yields another spanning tree,
T ′, which does not contain e. T ′ has equal or lower weight to T , since e′

must have less or equal weight than e.
The cycle property is the basis for Kruskal’s algorithm.

1. Sort all edges in increasing weight order.

2. Consider the edges in order. If the edge does not create a cycle, add
it to the spanning tree. Otherwise discard it. Stop when n − 1 edges
have been added, because then we must have spanning tree.

Why does this create a minimum-weight spanning tree? It is a straightfor-
ward application of the cycle property (see Exercise 2).

Sorting the edges will take O(e ∗ log(e)) steps with most appropriate
sorting algorithms. The complexity of the second part of the algorithm
depends on how efficiently we can check if adding an edge will create a
cycle or not. As we will see in Lecture 27, this can be O(n ∗ log(n)) or even
more efficient if we use a so-called union-find data structure.

Illustrating the algorithm on our example

D 

E 

C B 

A 

2  2 

2 

3 

3 

3 

we first sort the edges. There is some ambiguity—say we obtain the follow-
ing list

AE 2
BE 2
CE 2
BC 3
CD 3
AB 3

We now add the edges in order, making sure we do not create a cycle. After

LECTURE NOTES NOVEMBER 26, 2013

http://www.cs.cmu.edu/~fp/courses/15122-s11/lectures/27-unionfind.pdf

Spanning Trees L26.7

AE, BE, CE, we have

D 

E 

C B 

A 

2  2 

2 

At this point we consider BC. However, this edge would create a cycle
BCE since it connects two vertices in the same tree instead of two differ-
ent trees. We therefore do not add it to the spanning tree. Next we consider
CD, which does connect two trees. At this point we have a minimum span-
ning tree

D 

E 

C B 

A 

2  2 

2 

3 

We do not consider the last edge, AB, because we have already added n −
1 = 4 edges.

In the next lecture we will analyze the problem of incrementally adding
edges to a tree in a way that allows us to quickly determine if an edge
would create a cycle.

LECTURE NOTES NOVEMBER 26, 2013

Spanning Trees L26.8

Exercises

Exercise 1 Write a function to generate a random permutation of a given array,
using a random number generator with the interface in the standard rand library.
What is the asymptotic complexity of your function?

Exercise 2 Prove that the cycle property implies the correctness of Kruskal’s algo-
rithm.

LECTURE NOTES NOVEMBER 26, 2013

	Computing a Spanning Tree
	Creating a Random Maze
	Minimum Weight Spanning Trees

