15-122 Exam 2 Review Page 1 of 6

15-122 : Principles of Imperative Computation

Fall 2013

Midterm 2 Review (Topics in C)

Exam Date: Tuesday, Nov. 12, 2013



15-122 Exam 2 Review Page 2 of 6

1 Handout

I've put together a basic handout for you, to get some practice in writing C code. To get to
the handout, you should do the following. First, ssh into your Andrew space, and navigate
to a folder where you want to do your practice. Once there, do the following (don’t ommit
the period!):

cp /afs/andrew/usr23/eszabowe/15122_Review.tar .
tar -xvf 15122_Review.tar
cd 15122_Exam_Review

You should now have 4 directories in your space: (1) basics, (2) usage, (3) memory, (4) lib.
There are 4 example C files, 2 in basics, 1 each in usage and memory. You should go through
each, and attempt to finish the files as specified, without consulting any external sources, or
compiling. You can get the solutions by doing:

cp /afs/andrew/usr23/eszabowe/15122_Exam_Review_Soln.tar .
tar -xvf 15122_Exam_Review_Soln.tar
cd 15122_Exam_Review_Soln



15-122 Exam 2 Review Page 3 of 6

2 Basics (Syntax)

Much of the syntax remains the same, between C and C0. To make sure you remember it
all, try to fill in exl.c and ex2.c in the basics folder.

#include <_____ > // standard C library
#include <_____ > // C terminal 1/0

,,,,,,,,,, { // a structure named exl

x; // an integer called =x

y; // an integer called vy

L; // a pointer to a structure of type exl, called L
R; // a pointer to a structure of type exl, called R

// a typedef which lets us call instances of exl by "exl”

int main () {
ex]l runner;

,,,,,, : // assign the field of x on runner to be &

,,,,,, : // assign the field of y on runner to be 7

,,,,,, : // assign sum to be the sum of x and y

; // print the following string: "Runner runs to #7,
// where # is sum

return sum;

}




15-122 Exam 2 Review Page 4 of 6

#include 7 ../ 1lib /exam prep.h” // Do not modify this

// Assume the following has been executed:

/%

typedef struct {
bool bitl;
bool bit2;
bool allow;
char xstr;

} oex2;

*/

int main () {
ex2 sxwalks = prep_helperl ();
,,,,,, i // assign the allow field of walks to be [bitl or bit2]
selective_print (walks);
free (walks);

ex2 sxwalks2 = prep_helper2();
,,,,,, i // assign the allow field of walks2 to be [bitl and bit2]
selective_print (walks);
free (walks2);

return 0;

}

void selective_print (ex2 xinput) {
if (_____ ) // if allow is asserted within input, then

: // print the str field from input




15-122 Exam 2 Review Page 5 of 6

3 Usage (More Syntax)

There are a couple of new things in C, among them the switch statement, and the address
of operator. Fill in the blanks in ex3.c, to get some practice with switches.

#include 7 ../ lib /exam_prep.h” // DO NOT MODIFY

int main () {

char some_char = gen_char ();

int x;

,,,,,, { // case on some_char
,,,,,,,, . /) if Ca’, set x to 0
,,,,,,,, i /) if b7 set x o to 1
,,,,,,,, /) if ¢’ set x o to 2
,,,,,,,, ; // otherwise, set = to 10

prep_output_3(x);
// Assume we have:

/%

typedef struct {
bool p;
char xstr;

} oexd;

*/

ex3 xgen = prep_helper3 ();
; // wusing the ternary operator (?),
// print gen—>str if p is true.
// otherwise, print "Nope! You can’t make me.”

free(gen);
return 0;




15-122 Exam 2 Review Page 6 of 6

4 Memory (Management)

A major distinction between C and C0 is that CO is garbage collected, while C is not. This
means that every bit of memory in C allocated on the heap (via a call to one of the malloc
functions) must be explicitly freed, else it will not be reclaimed. If a program does not free
its memory, we say that it has a memory leak, and this is a Very Bad Thing™. To refresh
yourself on malloc/calloc, and freeing memory, fill in the blanks in ex4.c.

#include 7 ../ 1lib /exam_prep.h”

typedef struct tree {
int d;
struct tree xL;
struct tree xR;

} tree;

int main () {

tree *xroot = ______ : // allocate the tree using a malloc function
tree x1 = . // allocate left child with malloc function
tree xr = ______ ;. // allocate right child with malloc function

,,,,, ;. // set data to be 0 for left child, 1 for root, 2 for righ

,,,,, ; // free the memory (this may take multiple lines)
return 0;

}

*

Frees a tree recursively. We assume that every node in the

tree has been allocated via a call to malloc, and the memory

must now be returned.

REQUIRES: R is a wvalid binary tree (enforced by data structure)

ENSURES : tree_free(R) will free all of the memory of the left
and right subtrees of R, and then the memory associate
with the root node itself.

* X X X X X KX K

*
™~

void tree_free (tree xR) {
... // fill in the recursive code here to free R
}

~



